Ellis Herbert

Ellis Herbert

1577948509

4 Best React Navbar Component for Your App

React navbar is a horizontal navigation component which apart from traditional, text links, might embed icons, dropdowns, avatars or search forms.

Here are 4 React navbar component that will help your application. Enjoy!

1. React Scrolling NavBar

This Repo is not actively maintained! Please do not use in professional environment!

This is a React navbar component based on react-scroll. While this component is good, it doesn’t support mobile well, especially when there are many items in navbar. That’s why we need another navbar design for more responsiveness, mobile friendliness.

React Scrolling NavBar

Github: https://github.com/lijunray/react-scrolling-nav

Download Link: https://github.com/lijunray/react-scrolling-nav/archive/master.zip

2. react-responsive-navbar

Navbar component that moves the navbar items to a dropdown, if they do not fit in the content area.

react-responsive-navbar

View Demo: https://opuscapita.github.io/react-responsive-navbar/

Github: http://github.com/OpusCapita/react-responsive-navbar

Download Link: https://github.com/OpusCapita/react-responsive-navbar/archive/master.zip

3. react-navbar

React.js component rendering a translatable menu bar with Twitter Bootstrap Navbar HTML markup. For example, for a menu structure like the that:

react-navbar

Github: https://github.com/ikr/react-navbar

Download Link: https://github.com/ikr/react-navbar/archive/master.zip

4. NavbarNative

A fully customizable Navbar component for React-Native.

It works for both iOS and Android!

This is image title

View Demo:

This is image title

Github: https://github.com/redbaron76/navbar-native

Download Link: https://github.com/redbaron76/navbar-native/archive/master.zip

#React #react-navbar #navbar-component #react-navbar-component

What is GEEK

Buddha Community

4 Best React Navbar Component for Your App
Franz  Becker

Franz Becker

1648803600

Plpgsql Check: Extension That Allows to Check Plpgsql Source Code.

plpgsql_check

I founded this project, because I wanted to publish the code I wrote in the last two years, when I tried to write enhanced checking for PostgreSQL upstream. It was not fully successful - integration into upstream requires some larger plpgsql refactoring - probably it will not be done in next years (now is Dec 2013). But written code is fully functional and can be used in production (and it is used in production). So, I created this extension to be available for all plpgsql developers.

If you like it and if you would to join to development of this extension, register yourself to postgresql extension hacking google group.

Features

  • check fields of referenced database objects and types inside embedded SQL
  • using correct types of function parameters
  • unused variables and function argumens, unmodified OUT argumens
  • partially detection of dead code (due RETURN command)
  • detection of missing RETURN command in function
  • try to identify unwanted hidden casts, that can be performance issue like unused indexes
  • possibility to collect relations and functions used by function
  • possibility to check EXECUTE stmt agaist SQL injection vulnerability

I invite any ideas, patches, bugreports.

plpgsql_check is next generation of plpgsql_lint. It allows to check source code by explicit call plpgsql_check_function.

PostgreSQL PostgreSQL 10, 11, 12, 13 and 14 are supported.

The SQL statements inside PL/pgSQL functions are checked by validator for semantic errors. These errors can be found by plpgsql_check_function:

Active mode

postgres=# CREATE EXTENSION plpgsql_check;
LOAD
postgres=# CREATE TABLE t1(a int, b int);
CREATE TABLE

postgres=#
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
AS $function$
DECLARE r record;
BEGIN
  FOR r IN SELECT * FROM t1
  LOOP
    RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
  END LOOP;
END;
$function$;

CREATE FUNCTION

postgres=# select f1(); -- execution doesn't find a bug due to empty table t1
  f1 
 ────
   
 (1 row)

postgres=# \x
Expanded display is on.
postgres=# select * from plpgsql_check_function_tb('f1()');
─[ RECORD 1 ]───────────────────────────
functionid │ f1
lineno     │ 6
statement  │ RAISE
sqlstate   │ 42703
message    │ record "r" has no field "c"
detail     │ [null]
hint       │ [null]
level      │ error
position   │ 0
query      │ [null]

postgres=# \sf+ f1
    CREATE OR REPLACE FUNCTION public.f1()
     RETURNS void
     LANGUAGE plpgsql
1       AS $function$
2       DECLARE r record;
3       BEGIN
4         FOR r IN SELECT * FROM t1
5         LOOP
6           RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
7         END LOOP;
8       END;
9       $function$

Function plpgsql_check_function() has three possible formats: text, json or xml

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)

postgres=# select * from plpgsql_check_function('fx()', format:='xml');
                 plpgsql_check_function                     
────────────────────────────────────────────────────────────────
 <Function oid="16400">                                        ↵
   <Issue>                                                     ↵
     <Level>error</level>                                      ↵
     <Sqlstate>42P01</Sqlstate>                                ↵
     <Message>relation "foo111" does not exist</Message>       ↵
     <Stmt lineno="3">RETURN</Stmt>                            ↵
     <Query position="23">SELECT (select a from foo111)</Query>↵
   </Issue>                                                    ↵
  </Function>
 (1 row)

Arguments

You can set level of warnings via function's parameters:

Mandatory arguments

  • function name or function signature - these functions requires function specification. Any function in PostgreSQL can be specified by Oid or by name or by signature. When you know oid or complete function's signature, you can use a regprocedure type parameter like 'fx()'::regprocedure or 16799::regprocedure. Possible alternative is using a name only, when function's name is unique - like 'fx'. When the name is not unique or the function doesn't exists it raises a error.

Optional arguments

relid DEFAULT 0 - oid of relation assigned with trigger function. It is necessary for check of any trigger function.

fatal_errors boolean DEFAULT true - stop on first error

other_warnings boolean DEFAULT true - show warnings like different attributes number in assignmenet on left and right side, variable overlaps function's parameter, unused variables, unwanted casting, ..

extra_warnings boolean DEFAULT true - show warnings like missing RETURN, shadowed variables, dead code, never read (unused) function's parameter, unmodified variables, modified auto variables, ..

performance_warnings boolean DEFAULT false - performance related warnings like declared type with type modificator, casting, implicit casts in where clause (can be reason why index is not used), ..

security_warnings boolean DEFAULT false - security related checks like SQL injection vulnerability detection

anyelementtype regtype DEFAULT 'int' - a real type used instead anyelement type

anyenumtype regtype DEFAULT '-' - a real type used instead anyenum type

anyrangetype regtype DEFAULT 'int4range' - a real type used instead anyrange type

anycompatibletype DEFAULT 'int' - a real type used instead anycompatible type

anycompatiblerangetype DEFAULT 'int4range' - a real type used instead anycompatible range type

without_warnings DEFAULT false - disable all warnings

all_warnings DEFAULT false - enable all warnings

newtable DEFAULT NULL, oldtable DEFAULT NULL - the names of NEW or OLD transitive tables. These parameters are required when transitive tables are used.

Triggers

When you want to check any trigger, you have to enter a relation that will be used together with trigger function

CREATE TABLE bar(a int, b int);

postgres=# \sf+ foo_trg
    CREATE OR REPLACE FUNCTION public.foo_trg()
         RETURNS trigger
         LANGUAGE plpgsql
1       AS $function$
2       BEGIN
3         NEW.c := NEW.a + NEW.b;
4         RETURN NEW;
5       END;
6       $function$

Missing relation specification

postgres=# select * from plpgsql_check_function('foo_trg()');
ERROR:  missing trigger relation
HINT:  Trigger relation oid must be valid

Correct trigger checking (with specified relation)

postgres=# select * from plpgsql_check_function('foo_trg()', 'bar');
                 plpgsql_check_function                 
--------------------------------------------------------
 error:42703:3:assignment:record "new" has no field "c"
(1 row)

For triggers with transitive tables you can set a oldtable or newtable parameters:

create or replace function footab_trig_func()
returns trigger as $$
declare x int;
begin
  if false then
    -- should be ok;
    select count(*) from newtab into x; 

    -- should fail;
    select count(*) from newtab where d = 10 into x;
  end if;
  return null;
end;
$$ language plpgsql;

select * from plpgsql_check_function('footab_trig_func','footab', newtable := 'newtab');

Mass check

You can use the plpgsql_check_function for mass check functions and mass check triggers. Please, test following queries:

-- check all nontrigger plpgsql functions
SELECT p.oid, p.proname, plpgsql_check_function(p.oid)
   FROM pg_catalog.pg_namespace n
   JOIN pg_catalog.pg_proc p ON pronamespace = n.oid
   JOIN pg_catalog.pg_language l ON p.prolang = l.oid
  WHERE l.lanname = 'plpgsql' AND p.prorettype <> 2279;

or

SELECT p.proname, tgrelid::regclass, cf.*
   FROM pg_proc p
        JOIN pg_trigger t ON t.tgfoid = p.oid 
        JOIN pg_language l ON p.prolang = l.oid
        JOIN pg_namespace n ON p.pronamespace = n.oid,
        LATERAL plpgsql_check_function(p.oid, t.tgrelid) cf
  WHERE n.nspname = 'public' and l.lanname = 'plpgsql'

or

-- check all plpgsql functions (functions or trigger functions with defined triggers)
SELECT
    (pcf).functionid::regprocedure, (pcf).lineno, (pcf).statement,
    (pcf).sqlstate, (pcf).message, (pcf).detail, (pcf).hint, (pcf).level,
    (pcf)."position", (pcf).query, (pcf).context
FROM
(
    SELECT
        plpgsql_check_function_tb(pg_proc.oid, COALESCE(pg_trigger.tgrelid, 0)) AS pcf
    FROM pg_proc
    LEFT JOIN pg_trigger
        ON (pg_trigger.tgfoid = pg_proc.oid)
    WHERE
        prolang = (SELECT lang.oid FROM pg_language lang WHERE lang.lanname = 'plpgsql') AND
        pronamespace <> (SELECT nsp.oid FROM pg_namespace nsp WHERE nsp.nspname = 'pg_catalog') AND
        -- ignore unused triggers
        (pg_proc.prorettype <> (SELECT typ.oid FROM pg_type typ WHERE typ.typname = 'trigger') OR
         pg_trigger.tgfoid IS NOT NULL)
    OFFSET 0
) ss
ORDER BY (pcf).functionid::regprocedure::text, (pcf).lineno

Passive mode

Functions should be checked on start - plpgsql_check module must be loaded.

Configuration

plpgsql_check.mode = [ disabled | by_function | fresh_start | every_start ]
plpgsql_check.fatal_errors = [ yes | no ]

plpgsql_check.show_nonperformance_warnings = false
plpgsql_check.show_performance_warnings = false

Default mode is by_function, that means that the enhanced check is done only in active mode - by plpgsql_check_function. fresh_start means cold start.

You can enable passive mode by

load 'plpgsql'; -- 1.1 and higher doesn't need it
load 'plpgsql_check';
set plpgsql_check.mode = 'every_start';

SELECT fx(10); -- run functions - function is checked before runtime starts it

Limits

plpgsql_check should find almost all errors on really static code. When developer use some PLpgSQL's dynamic features like dynamic SQL or record data type, then false positives are possible. These should be rare - in well written code - and then the affected function should be redesigned or plpgsql_check should be disabled for this function.

CREATE OR REPLACE FUNCTION f1()
RETURNS void AS $$
DECLARE r record;
BEGIN
  FOR r IN EXECUTE 'SELECT * FROM t1'
  LOOP
    RAISE NOTICE '%', r.c;
  END LOOP;
END;
$$ LANGUAGE plpgsql SET plpgsql.enable_check TO false;

A usage of plpgsql_check adds a small overhead (in enabled passive mode) and you should use it only in develop or preprod environments.

Dynamic SQL

This module doesn't check queries that are assembled in runtime. It is not possible to identify results of dynamic queries - so plpgsql_check cannot to set correct type to record variables and cannot to check a dependent SQLs and expressions.

When type of record's variable is not know, you can assign it explicitly with pragma type:

DECLARE r record;
BEGIN
  EXECUTE format('SELECT * FROM %I', _tablename) INTO r;
  PERFORM plpgsql_check_pragma('type: r (id int, processed bool)');
  IF NOT r.processed THEN
    ...

Attention: The SQL injection check can detect only some SQL injection vulnerabilities. This tool cannot be used for security audit! Some issues should not be detected. This check can raise false alarms too - probably when variable is sanitized by other command or when value is of some compose type. 

Refcursors

plpgsql_check should not to detect structure of referenced cursors. A reference on cursor in PLpgSQL is implemented as name of global cursor. In check time, the name is not known (not in all possibilities), and global cursor doesn't exist. It is significant break for any static analyse. PLpgSQL cannot to set correct type for record variables and cannot to check a dependent SQLs and expressions. A solution is same like dynamic SQL. Don't use record variable as target when you use refcursor type or disable plpgsql_check for these functions.

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var record;
BEGIN
  FETCH refcur_var INTO rec_var; -- this is STOP for plpgsql_check
  RAISE NOTICE '%', rec_var;     -- record rec_var is not assigned yet error

In this case a record type should not be used (use known rowtype instead):

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var some_rowtype;
BEGIN
  FETCH refcur_var INTO rec_var;
  RAISE NOTICE '%', rec_var;

Temporary tables

plpgsql_check cannot verify queries over temporary tables that are created in plpgsql's function runtime. For this use case it is necessary to create a fake temp table or disable plpgsql_check for this function.

In reality temp tables are stored in own (per user) schema with higher priority than persistent tables. So you can do (with following trick safetly):

CREATE OR REPLACE FUNCTION public.disable_dml()
RETURNS trigger
LANGUAGE plpgsql AS $function$
BEGIN
  RAISE EXCEPTION SQLSTATE '42P01'
     USING message = format('this instance of %I table doesn''t allow any DML operation', TG_TABLE_NAME),
           hint = format('you should to run "CREATE TEMP TABLE %1$I(LIKE %1$I INCLUDING ALL);" statement',
                         TG_TABLE_NAME);
  RETURN NULL;
END;
$function$;

CREATE TABLE foo(a int, b int); -- doesn't hold data ever
CREATE TRIGGER foo_disable_dml
   BEFORE INSERT OR UPDATE OR DELETE ON foo
   EXECUTE PROCEDURE disable_dml();

postgres=# INSERT INTO  foo VALUES(10,20);
ERROR:  this instance of foo table doesn't allow any DML operation
HINT:  you should to run "CREATE TEMP TABLE foo(LIKE foo INCLUDING ALL);" statement
postgres=# 

CREATE TABLE
postgres=# INSERT INTO  foo VALUES(10,20);
INSERT 0 1

This trick emulates GLOBAL TEMP tables partially and it allows a statical validation. Other possibility is using a [template foreign data wrapper] (https://github.com/okbob/template_fdw)

You can use pragma table and create ephemeral table:

BEGIN
   CREATE TEMP TABLE xxx(a int);
   PERFORM plpgsql_check_pragma('table: xxx(a int)');
   INSERT INTO xxx VALUES(10);

Dependency list

A function plpgsql_show_dependency_tb can show all functions, operators and relations used inside processed function:

postgres=# select * from plpgsql_show_dependency_tb('testfunc(int,float)');
┌──────────┬───────┬────────┬─────────┬────────────────────────────┐
│   type   │  oid  │ schema │  name   │           params           │
╞══════════╪═══════╪════════╪═════════╪════════════════════════════╡
│ FUNCTION │ 36008 │ public │ myfunc1 │ (integer,double precision) │
│ FUNCTION │ 35999 │ public │ myfunc2 │ (integer,double precision) │
│ OPERATOR │ 36007 │ public │ **      │ (integer,integer)          │
│ RELATION │ 36005 │ public │ myview  │                            │
│ RELATION │ 36002 │ public │ mytable │                            │
└──────────┴───────┴────────┴─────────┴────────────────────────────┘
(4 rows)

Profiler

The plpgsql_check contains simple profiler of plpgsql functions and procedures. It can work with/without a access to shared memory. It depends on shared_preload_libraries config. When plpgsql_check was initialized by shared_preload_libraries, then it can allocate shared memory, and function's profiles are stored there. When plpgsql_check cannot to allocate shared momory, the profile is stored in session memory.

Due dependencies, shared_preload_libraries should to contains plpgsql first

postgres=# show shared_preload_libraries ;
┌──────────────────────────┐
│ shared_preload_libraries │
╞══════════════════════════╡
│ plpgsql,plpgsql_check    │
└──────────────────────────┘
(1 row)

The profiler is active when GUC plpgsql_check.profiler is on. The profiler doesn't require shared memory, but if there are not shared memory, then the profile is limmitted just to active session.

When plpgsql_check is initialized by shared_preload_libraries, another GUC is available to configure the amount of shared memory used by the profiler: plpgsql_check.profiler_max_shared_chunks. This defines the maximum number of statements chunk that can be stored in shared memory. For each plpgsql function (or procedure), the whole content is split into chunks of 30 statements. If needed, multiple chunks can be used to store the whole content of a single function. A single chunk is 1704 bytes. The default value for this GUC is 15000, which should be enough for big projects containing hundred of thousands of statements in plpgsql, and will consume about 24MB of memory. If your project doesn't require that much number of chunks, you can set this parameter to a smaller number in order to decrease the memory usage. The minimum value is 50 (which should consume about 83kB of memory), and the maximum value is 100000 (which should consume about 163MB of memory). Changing this parameter requires a PostgreSQL restart.

The profiler will also retrieve the query identifier for each instruction that contains an expression or optimizable statement. Note that this requires pg_stat_statements, or another similar third-party extension), to be installed. There are some limitations to the query identifier retrieval:

  • if a plpgsql expression contains underlying statements, only the top level query identifier will be retrieved
  • the profiler doesn't compute query identifier by itself but relies on external extension, such as pg_stat_statements, for that. It means that depending on the external extension behavior, you may not be able to see a query identifier for some statements. That's for instance the case with DDL statements, as pg_stat_statements doesn't expose the query identifier for such queries.
  • a query identifier is retrieved only for instructions containing expressions. This means that plpgsql_profiler_function_tb() function can report less query identifier than instructions on a single line.

Attention: A update of shared profiles can decrease performance on servers under higher load.

The profile can be displayed by function plpgsql_profiler_function_tb:

postgres=# select lineno, avg_time, source from plpgsql_profiler_function_tb('fx(int)');
┌────────┬──────────┬───────────────────────────────────────────────────────────────────┐
│ lineno │ avg_time │                              source                               │
╞════════╪══════════╪═══════════════════════════════════════════════════════════════════╡
│      1 │          │                                                                   │
│      2 │          │ declare result int = 0;                                           │
│      3 │    0.075 │ begin                                                             │
│      4 │    0.202 │   for i in 1..$1 loop                                             │
│      5 │    0.005 │     select result + i into result; select result + i into result; │
│      6 │          │   end loop;                                                       │
│      7 │        0 │   return result;                                                  │
│      8 │          │ end;                                                              │
└────────┴──────────┴───────────────────────────────────────────────────────────────────┘
(9 rows)

The profile per statements (not per line) can be displayed by function plpgsql_profiler_function_statements_tb:

        CREATE OR REPLACE FUNCTION public.fx1(a integer)
         RETURNS integer
         LANGUAGE plpgsql
1       AS $function$
2       begin
3         if a > 10 then
4           raise notice 'ahoj';
5           return -1;
6         else
7           raise notice 'nazdar';
8           return 1;
9         end if;
10      end;
11      $function$

postgres=# select stmtid, parent_stmtid, parent_note, lineno, exec_stmts, stmtname
             from plpgsql_profiler_function_statements_tb('fx1');
┌────────┬───────────────┬─────────────┬────────┬────────────┬─────────────────┐
│ stmtid │ parent_stmtid │ parent_note │ lineno │ exec_stmts │    stmtname     │
╞════════╪═══════════════╪═════════════╪════════╪════════════╪═════════════════╡
│      0 │             ∅ │ ∅           │      2 │          0 │ statement block │
│      1 │             0 │ body        │      3 │          0 │ IF              │
│      2 │             1 │ then body   │      4 │          0 │ RAISE           │
│      3 │             1 │ then body   │      5 │          0 │ RETURN          │
│      4 │             1 │ else body   │      7 │          0 │ RAISE           │
│      5 │             1 │ else body   │      8 │          0 │ RETURN          │
└────────┴───────────────┴─────────────┴────────┴────────────┴─────────────────┘
(6 rows)

All stored profiles can be displayed by calling function plpgsql_profiler_functions_all:

postgres=# select * from plpgsql_profiler_functions_all();
┌───────────────────────┬────────────┬────────────┬──────────┬─────────────┬──────────┬──────────┐
│        funcoid        │ exec_count │ total_time │ avg_time │ stddev_time │ min_time │ max_time │
╞═══════════════════════╪════════════╪════════════╪══════════╪═════════════╪══════════╪══════════╡
│ fxx(double precision) │          1 │       0.01 │     0.01 │        0.00 │     0.01 │     0.01 │
└───────────────────────┴────────────┴────────────┴──────────┴─────────────┴──────────┴──────────┘
(1 row)

There are two functions for cleaning stored profiles: plpgsql_profiler_reset_all() and plpgsql_profiler_reset(regprocedure).

Coverage metrics

plpgsql_check provides two functions:

  • plpgsql_coverage_statements(name)
  • plpgsql_coverage_branches(name)

Note

There is another very good PLpgSQL profiler - https://bitbucket.org/openscg/plprofiler

My extension is designed to be simple for use and practical. Nothing more or less.

plprofiler is more complex. It build call graphs and from this graph it can creates flame graph of execution times.

Both extensions can be used together with buildin PostgreSQL's feature - tracking functions.

set track_functions to 'pl';
...
select * from pg_stat_user_functions;

Tracer

plpgsql_check provides a tracing possibility - in this mode you can see notices on start or end functions (terse and default verbosity) and start or end statements (verbose verbosity). For default and verbose verbosity the content of function arguments is displayed. The content of related variables are displayed when verbosity is verbose.

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 ->> start of inline_code_block (Oid=0)
NOTICE:  #2   ->> start of function fx(integer,integer,date,text) (Oid=16405)
NOTICE:  #2        call by inline_code_block line 1 at PERFORM
NOTICE:  #2       "a" => '10', "b" => null, "c" => '2020-08-03', "d" => 'stěhule'
NOTICE:  #4     ->> start of function fx(integer) (Oid=16404)
NOTICE:  #4          call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4         "a" => '10'
NOTICE:  #4     <<- end of function fx (elapsed time=0.098 ms)
NOTICE:  #2   <<- end of function fx (elapsed time=0.399 ms)
NOTICE:  #0 <<- end of block (elapsed time=0.754 ms)

The number after # is a execution frame counter (this number is related to deep of error context stack). It allows to pair start end and of function.

Tracing is enabled by setting plpgsql_check.tracer to on. Attention - enabling this behaviour has significant negative impact on performance (unlike the profiler). You can set a level for output used by tracer plpgsql_check.tracer_errlevel (default is notice). The output content is limited by length specified by plpgsql_check.tracer_variable_max_length configuration variable.

In terse verbose mode the output is reduced:

postgres=# set plpgsql_check.tracer_verbosity TO terse;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 start of inline code block (oid=0)
NOTICE:  #2 start of fx (oid=16405)
NOTICE:  #4 start of fx (oid=16404)
NOTICE:  #4 end of fx
NOTICE:  #2 end of fx
NOTICE:  #0 end of inline code block

In verbose mode the output is extended about statement details:

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0            ->> start of block inline_code_block (oid=0)
NOTICE:  #0.1       1  --> start of PERFORM
NOTICE:  #2              ->> start of function fx(integer,integer,date,text) (oid=16405)
NOTICE:  #2                   call by inline_code_block line 1 at PERFORM
NOTICE:  #2                  "a" => '10', "b" => null, "c" => '2020-08-04', "d" => 'stěhule'
NOTICE:  #2.1       1    --> start of PERFORM
NOTICE:  #2.1                "a" => '10'
NOTICE:  #4                ->> start of function fx(integer) (oid=16404)
NOTICE:  #4                     call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4                    "a" => '10'
NOTICE:  #4.1       6      --> start of assignment
NOTICE:  #4.1                  "a" => '10', "b" => '20'
NOTICE:  #4.1              <-- end of assignment (elapsed time=0.076 ms)
NOTICE:  #4.1                  "res" => '130'
NOTICE:  #4.2       7      --> start of RETURN
NOTICE:  #4.2                  "res" => '130'
NOTICE:  #4.2              <-- end of RETURN (elapsed time=0.054 ms)
NOTICE:  #4                <<- end of function fx (elapsed time=0.373 ms)
NOTICE:  #2.1            <-- end of PERFORM (elapsed time=0.589 ms)
NOTICE:  #2              <<- end of function fx (elapsed time=0.727 ms)
NOTICE:  #0.1          <-- end of PERFORM (elapsed time=1.147 ms)
NOTICE:  #0            <<- end of block (elapsed time=1.286 ms)

Special feature of tracer is tracing of ASSERT statement when plpgsql_check.trace_assert is on. When plpgsql_check.trace_assert_verbosity is DEFAULT, then all function's or procedure's variables are displayed when assert expression is false. When this configuration is VERBOSE then all variables from all plpgsql frames are displayed. This behaviour is independent on plpgsql.check_asserts value. It can be used, although the assertions are disabled in plpgsql runtime.

postgres=# set plpgsql_check.tracer to off;
postgres=# set plpgsql_check.trace_assert_verbosity TO verbose;

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
ERROR:  assertion failed
CONTEXT:  PL/pgSQL function fx(integer) line 12 at ASSERT
SQL statement "SELECT fx(a)"
PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
SQL statement "SELECT fx(10,null, 'now', e'stěhule')"
PL/pgSQL function inline_code_block line 1 at PERFORM

postgres=# set plpgsql.check_asserts to off;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
DO

Attention - SECURITY

Tracer prints content of variables or function arguments. For security definer function, this content can hold security sensitive data. This is reason why tracer is disabled by default and should be enabled only with super user rights plpgsql_check.enable_tracer.

Pragma

You can configure plpgsql_check behave inside checked function with "pragma" function. This is a analogy of PL/SQL or ADA language of PRAGMA feature. PLpgSQL doesn't support PRAGMA, but plpgsql_check detects function named plpgsql_check_pragma and get options from parameters of this function. These plpgsql_check options are valid to end of group of statements.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
BEGIN
  ...
  -- for following statements disable check
  PERFORM plpgsql_check_pragma('disable:check');
  ...
  -- enable check again
  PERFORM plpgsql_check_pragma('enable:check');
  ...
END;
$$ LANGUAGE plpgsql;

The function plpgsql_check_pragma is immutable function that returns one. It is defined by plpgsql_check extension. You can declare alternative plpgsql_check_pragma function like:

CREATE OR REPLACE FUNCTION plpgsql_check_pragma(VARIADIC args[])
RETURNS int AS $$
SELECT 1
$$ LANGUAGE sql IMMUTABLE;

Using pragma function in declaration part of top block sets options on function level too.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE
  aux int := plpgsql_check_pragma('disable:extra_warnings');
  ...

Shorter syntax for pragma is supported too:

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE r record;
BEGIN
  PERFORM 'PRAGMA:TYPE:r (a int, b int)';
  PERFORM 'PRAGMA:TABLE: x (like pg_class)';
  ...

Supported pragmas

echo:str - print string (for testing)

status:check,status:tracer, status:other_warnings, status:performance_warnings, status:extra_warnings,status:security_warnings

enable:check,enable:tracer, enable:other_warnings, enable:performance_warnings, enable:extra_warnings,enable:security_warnings

disable:check,disable:tracer, disable:other_warnings, disable:performance_warnings, disable:extra_warnings,disable:security_warnings

type:varname typename or type:varname (fieldname type, ...) - set type to variable of record type

table: name (column_name type, ...) or table: name (like tablename) - create ephereal table

Pragmas enable:tracer and disable:tracerare active for Postgres 12 and higher

Compilation

You need a development environment for PostgreSQL extensions:

make clean
make install

result:

[pavel@localhost plpgsql_check]$ make USE_PGXS=1 clean
rm -f plpgsql_check.so   libplpgsql_check.a  libplpgsql_check.pc
rm -f plpgsql_check.o
rm -rf results/ regression.diffs regression.out tmp_check/ log/
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 all
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -I. -I./ -I/usr/local/pgsql/include/server -I/usr/local/pgsql/include/internal -D_GNU_SOURCE   -c -o plpgsql_check.o plpgsql_check.c
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -shared -o plpgsql_check.so plpgsql_check.o -L/usr/local/pgsql/lib -Wl,--as-needed -Wl,-rpath,'/usr/local/pgsql/lib',--enable-new-dtags  
[pavel@localhost plpgsql_check]$ su root
Password: *******
[root@localhost plpgsql_check]# make USE_PGXS=1 install
/usr/bin/mkdir -p '/usr/local/pgsql/lib'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/install -c -m 755  plpgsql_check.so '/usr/local/pgsql/lib/plpgsql_check.so'
/usr/bin/install -c -m 644 plpgsql_check.control '/usr/local/pgsql/share/extension/'
/usr/bin/install -c -m 644 plpgsql_check--0.9.sql '/usr/local/pgsql/share/extension/'
[root@localhost plpgsql_check]# exit
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 installcheck
/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/test/regress/pg_regress --inputdir=./ --psqldir='/usr/local/pgsql/bin'    --dbname=pl_regression --load-language=plpgsql --dbname=contrib_regression plpgsql_check_passive plpgsql_check_active plpgsql_check_active-9.5
(using postmaster on Unix socket, default port)
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing plpgsql                     ==============
CREATE LANGUAGE
============== running regression test queries        ==============
test plpgsql_check_passive    ... ok
test plpgsql_check_active     ... ok
test plpgsql_check_active-9.5 ... ok

=====================
 All 3 tests passed. 
=====================

Compilation on Ubuntu

Sometimes successful compilation can require libicu-dev package (PostgreSQL 10 and higher - when pg was compiled with ICU support)

sudo apt install libicu-dev

Compilation plpgsql_check on Windows

You can check precompiled dll libraries http://okbob.blogspot.cz/2015/02/plpgsqlcheck-is-available-for-microsoft.html

or compile by self:

  1. Download and install PostgreSQL for Win32 from http://www.enterprisedb.com
  2. Download and install Microsoft Visual C++ Express
  3. Lern tutorial http://blog.2ndquadrant.com/compiling-postgresql-extensions-visual-studio-windows
  4. Build plpgsql_check.dll
  5. Install plugin
  6. copy plpgsql_check.dll to PostgreSQL\14\lib
  7. copy plpgsql_check.control and plpgsql_check--2.1.sql to PostgreSQL\14\share\extension

Checked on

  • gcc on Linux (against all supported PostgreSQL)
  • clang 3.4 on Linux (against PostgreSQL 10)
  • for success regress tests the PostgreSQL 10 or higher is required

Compilation against PostgreSQL 10 requires libICU!

Licence

Copyright (c) Pavel Stehule (pavel.stehule@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

If you like it, send a postcard to address

Pavel Stehule
Skalice 12
256 01 Benesov u Prahy
Czech Republic

I invite any questions, comments, bug reports, patches on mail address pavel.stehule@gmail.com


Author: okbob
Source Code: https://github.com/okbob/plpgsql_check
License: View license

#postgresql 

Plpgsql Check: Extension That Allows to Check Plpgsql Source Code.

plpgsql_check

I founded this project, because I wanted to publish the code I wrote in the last two years, when I tried to write enhanced checking for PostgreSQL upstream. It was not fully successful - integration into upstream requires some larger plpgsql refactoring - probably it will not be done in next years (now is Dec 2013). But written code is fully functional and can be used in production (and it is used in production). So, I created this extension to be available for all plpgsql developers.

If you like it and if you would to join to development of this extension, register yourself to postgresql extension hacking google group.

Features

  • check fields of referenced database objects and types inside embedded SQL
  • using correct types of function parameters
  • unused variables and function argumens, unmodified OUT argumens
  • partially detection of dead code (due RETURN command)
  • detection of missing RETURN command in function
  • try to identify unwanted hidden casts, that can be performance issue like unused indexes
  • possibility to collect relations and functions used by function
  • possibility to check EXECUTE stmt agaist SQL injection vulnerability

I invite any ideas, patches, bugreports.

plpgsql_check is next generation of plpgsql_lint. It allows to check source code by explicit call plpgsql_check_function.

PostgreSQL PostgreSQL 10, 11, 12, 13 and 14 are supported.

The SQL statements inside PL/pgSQL functions are checked by validator for semantic errors. These errors can be found by plpgsql_check_function:

Active mode

postgres=# CREATE EXTENSION plpgsql_check;
LOAD
postgres=# CREATE TABLE t1(a int, b int);
CREATE TABLE

postgres=#
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
AS $function$
DECLARE r record;
BEGIN
  FOR r IN SELECT * FROM t1
  LOOP
    RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
  END LOOP;
END;
$function$;

CREATE FUNCTION

postgres=# select f1(); -- execution doesn't find a bug due to empty table t1
  f1 
 ────
   
 (1 row)

postgres=# \x
Expanded display is on.
postgres=# select * from plpgsql_check_function_tb('f1()');
─[ RECORD 1 ]───────────────────────────
functionid │ f1
lineno     │ 6
statement  │ RAISE
sqlstate   │ 42703
message    │ record "r" has no field "c"
detail     │ [null]
hint       │ [null]
level      │ error
position   │ 0
query      │ [null]

postgres=# \sf+ f1
    CREATE OR REPLACE FUNCTION public.f1()
     RETURNS void
     LANGUAGE plpgsql
1       AS $function$
2       DECLARE r record;
3       BEGIN
4         FOR r IN SELECT * FROM t1
5         LOOP
6           RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
7         END LOOP;
8       END;
9       $function$

Function plpgsql_check_function() has three possible formats: text, json or xml

select * from plpgsql_check_function('f1()', fatal_errors := false);
                         plpgsql_check_function                         
------------------------------------------------------------------------
 error:42703:4:SQL statement:column "c" of relation "t1" does not exist
 Query: update t1 set c = 30
 --                   ^
 error:42P01:7:RAISE:missing FROM-clause entry for table "r"
 Query: SELECT r.c
 --            ^
 error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)

postgres=# select * from plpgsql_check_function('fx()', format:='xml');
                 plpgsql_check_function                     
────────────────────────────────────────────────────────────────
 <Function oid="16400">                                        ↵
   <Issue>                                                     ↵
     <Level>error</level>                                      ↵
     <Sqlstate>42P01</Sqlstate>                                ↵
     <Message>relation "foo111" does not exist</Message>       ↵
     <Stmt lineno="3">RETURN</Stmt>                            ↵
     <Query position="23">SELECT (select a from foo111)</Query>↵
   </Issue>                                                    ↵
  </Function>
 (1 row)

Arguments

You can set level of warnings via function's parameters:

Mandatory arguments

  • function name or function signature - these functions requires function specification. Any function in PostgreSQL can be specified by Oid or by name or by signature. When you know oid or complete function's signature, you can use a regprocedure type parameter like 'fx()'::regprocedure or 16799::regprocedure. Possible alternative is using a name only, when function's name is unique - like 'fx'. When the name is not unique or the function doesn't exists it raises a error.

Optional arguments

relid DEFAULT 0 - oid of relation assigned with trigger function. It is necessary for check of any trigger function.

fatal_errors boolean DEFAULT true - stop on first error

other_warnings boolean DEFAULT true - show warnings like different attributes number in assignmenet on left and right side, variable overlaps function's parameter, unused variables, unwanted casting, ..

extra_warnings boolean DEFAULT true - show warnings like missing RETURN, shadowed variables, dead code, never read (unused) function's parameter, unmodified variables, modified auto variables, ..

performance_warnings boolean DEFAULT false - performance related warnings like declared type with type modificator, casting, implicit casts in where clause (can be reason why index is not used), ..

security_warnings boolean DEFAULT false - security related checks like SQL injection vulnerability detection

anyelementtype regtype DEFAULT 'int' - a real type used instead anyelement type

anyenumtype regtype DEFAULT '-' - a real type used instead anyenum type

anyrangetype regtype DEFAULT 'int4range' - a real type used instead anyrange type

anycompatibletype DEFAULT 'int' - a real type used instead anycompatible type

anycompatiblerangetype DEFAULT 'int4range' - a real type used instead anycompatible range type

without_warnings DEFAULT false - disable all warnings

all_warnings DEFAULT false - enable all warnings

newtable DEFAULT NULL, oldtable DEFAULT NULL - the names of NEW or OLD transitive tables. These parameters are required when transitive tables are used.

Triggers

When you want to check any trigger, you have to enter a relation that will be used together with trigger function

CREATE TABLE bar(a int, b int);

postgres=# \sf+ foo_trg
    CREATE OR REPLACE FUNCTION public.foo_trg()
         RETURNS trigger
         LANGUAGE plpgsql
1       AS $function$
2       BEGIN
3         NEW.c := NEW.a + NEW.b;
4         RETURN NEW;
5       END;
6       $function$

Missing relation specification

postgres=# select * from plpgsql_check_function('foo_trg()');
ERROR:  missing trigger relation
HINT:  Trigger relation oid must be valid

Correct trigger checking (with specified relation)

postgres=# select * from plpgsql_check_function('foo_trg()', 'bar');
                 plpgsql_check_function                 
--------------------------------------------------------
 error:42703:3:assignment:record "new" has no field "c"
(1 row)

For triggers with transitive tables you can set a oldtable or newtable parameters:

create or replace function footab_trig_func()
returns trigger as $$
declare x int;
begin
  if false then
    -- should be ok;
    select count(*) from newtab into x; 

    -- should fail;
    select count(*) from newtab where d = 10 into x;
  end if;
  return null;
end;
$$ language plpgsql;

select * from plpgsql_check_function('footab_trig_func','footab', newtable := 'newtab');

Mass check

You can use the plpgsql_check_function for mass check functions and mass check triggers. Please, test following queries:

-- check all nontrigger plpgsql functions
SELECT p.oid, p.proname, plpgsql_check_function(p.oid)
   FROM pg_catalog.pg_namespace n
   JOIN pg_catalog.pg_proc p ON pronamespace = n.oid
   JOIN pg_catalog.pg_language l ON p.prolang = l.oid
  WHERE l.lanname = 'plpgsql' AND p.prorettype <> 2279;

or

SELECT p.proname, tgrelid::regclass, cf.*
   FROM pg_proc p
        JOIN pg_trigger t ON t.tgfoid = p.oid 
        JOIN pg_language l ON p.prolang = l.oid
        JOIN pg_namespace n ON p.pronamespace = n.oid,
        LATERAL plpgsql_check_function(p.oid, t.tgrelid) cf
  WHERE n.nspname = 'public' and l.lanname = 'plpgsql'

or

-- check all plpgsql functions (functions or trigger functions with defined triggers)
SELECT
    (pcf).functionid::regprocedure, (pcf).lineno, (pcf).statement,
    (pcf).sqlstate, (pcf).message, (pcf).detail, (pcf).hint, (pcf).level,
    (pcf)."position", (pcf).query, (pcf).context
FROM
(
    SELECT
        plpgsql_check_function_tb(pg_proc.oid, COALESCE(pg_trigger.tgrelid, 0)) AS pcf
    FROM pg_proc
    LEFT JOIN pg_trigger
        ON (pg_trigger.tgfoid = pg_proc.oid)
    WHERE
        prolang = (SELECT lang.oid FROM pg_language lang WHERE lang.lanname = 'plpgsql') AND
        pronamespace <> (SELECT nsp.oid FROM pg_namespace nsp WHERE nsp.nspname = 'pg_catalog') AND
        -- ignore unused triggers
        (pg_proc.prorettype <> (SELECT typ.oid FROM pg_type typ WHERE typ.typname = 'trigger') OR
         pg_trigger.tgfoid IS NOT NULL)
    OFFSET 0
) ss
ORDER BY (pcf).functionid::regprocedure::text, (pcf).lineno

Passive mode

Functions should be checked on start - plpgsql_check module must be loaded.

Configuration

plpgsql_check.mode = [ disabled | by_function | fresh_start | every_start ]
plpgsql_check.fatal_errors = [ yes | no ]

plpgsql_check.show_nonperformance_warnings = false
plpgsql_check.show_performance_warnings = false

Default mode is by_function, that means that the enhanced check is done only in active mode - by plpgsql_check_function. fresh_start means cold start.

You can enable passive mode by

load 'plpgsql'; -- 1.1 and higher doesn't need it
load 'plpgsql_check';
set plpgsql_check.mode = 'every_start';

SELECT fx(10); -- run functions - function is checked before runtime starts it

Limits

plpgsql_check should find almost all errors on really static code. When developer use some PLpgSQL's dynamic features like dynamic SQL or record data type, then false positives are possible. These should be rare - in well written code - and then the affected function should be redesigned or plpgsql_check should be disabled for this function.

CREATE OR REPLACE FUNCTION f1()
RETURNS void AS $$
DECLARE r record;
BEGIN
  FOR r IN EXECUTE 'SELECT * FROM t1'
  LOOP
    RAISE NOTICE '%', r.c;
  END LOOP;
END;
$$ LANGUAGE plpgsql SET plpgsql.enable_check TO false;

A usage of plpgsql_check adds a small overhead (in enabled passive mode) and you should use it only in develop or preprod environments.

Dynamic SQL

This module doesn't check queries that are assembled in runtime. It is not possible to identify results of dynamic queries - so plpgsql_check cannot to set correct type to record variables and cannot to check a dependent SQLs and expressions.

When type of record's variable is not know, you can assign it explicitly with pragma type:

DECLARE r record;
BEGIN
  EXECUTE format('SELECT * FROM %I', _tablename) INTO r;
  PERFORM plpgsql_check_pragma('type: r (id int, processed bool)');
  IF NOT r.processed THEN
    ...

Attention: The SQL injection check can detect only some SQL injection vulnerabilities. This tool cannot be used for security audit! Some issues should not be detected. This check can raise false alarms too - probably when variable is sanitized by other command or when value is of some compose type. 

Refcursors

plpgsql_check should not to detect structure of referenced cursors. A reference on cursor in PLpgSQL is implemented as name of global cursor. In check time, the name is not known (not in all possibilities), and global cursor doesn't exist. It is significant break for any static analyse. PLpgSQL cannot to set correct type for record variables and cannot to check a dependent SQLs and expressions. A solution is same like dynamic SQL. Don't use record variable as target when you use refcursor type or disable plpgsql_check for these functions.

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var record;
BEGIN
  FETCH refcur_var INTO rec_var; -- this is STOP for plpgsql_check
  RAISE NOTICE '%', rec_var;     -- record rec_var is not assigned yet error

In this case a record type should not be used (use known rowtype instead):

CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
  rec_var some_rowtype;
BEGIN
  FETCH refcur_var INTO rec_var;
  RAISE NOTICE '%', rec_var;

Temporary tables

plpgsql_check cannot verify queries over temporary tables that are created in plpgsql's function runtime. For this use case it is necessary to create a fake temp table or disable plpgsql_check for this function.

In reality temp tables are stored in own (per user) schema with higher priority than persistent tables. So you can do (with following trick safetly):

CREATE OR REPLACE FUNCTION public.disable_dml()
RETURNS trigger
LANGUAGE plpgsql AS $function$
BEGIN
  RAISE EXCEPTION SQLSTATE '42P01'
     USING message = format('this instance of %I table doesn''t allow any DML operation', TG_TABLE_NAME),
           hint = format('you should to run "CREATE TEMP TABLE %1$I(LIKE %1$I INCLUDING ALL);" statement',
                         TG_TABLE_NAME);
  RETURN NULL;
END;
$function$;

CREATE TABLE foo(a int, b int); -- doesn't hold data ever
CREATE TRIGGER foo_disable_dml
   BEFORE INSERT OR UPDATE OR DELETE ON foo
   EXECUTE PROCEDURE disable_dml();

postgres=# INSERT INTO  foo VALUES(10,20);
ERROR:  this instance of foo table doesn't allow any DML operation
HINT:  you should to run "CREATE TEMP TABLE foo(LIKE foo INCLUDING ALL);" statement
postgres=# 

CREATE TABLE
postgres=# INSERT INTO  foo VALUES(10,20);
INSERT 0 1

This trick emulates GLOBAL TEMP tables partially and it allows a statical validation. Other possibility is using a [template foreign data wrapper] (https://github.com/okbob/template_fdw)

You can use pragma table and create ephemeral table:

BEGIN
   CREATE TEMP TABLE xxx(a int);
   PERFORM plpgsql_check_pragma('table: xxx(a int)');
   INSERT INTO xxx VALUES(10);

Dependency list

A function plpgsql_show_dependency_tb can show all functions, operators and relations used inside processed function:

postgres=# select * from plpgsql_show_dependency_tb('testfunc(int,float)');
┌──────────┬───────┬────────┬─────────┬────────────────────────────┐
│   type   │  oid  │ schema │  name   │           params           │
╞══════════╪═══════╪════════╪═════════╪════════════════════════════╡
│ FUNCTION │ 36008 │ public │ myfunc1 │ (integer,double precision) │
│ FUNCTION │ 35999 │ public │ myfunc2 │ (integer,double precision) │
│ OPERATOR │ 36007 │ public │ **      │ (integer,integer)          │
│ RELATION │ 36005 │ public │ myview  │                            │
│ RELATION │ 36002 │ public │ mytable │                            │
└──────────┴───────┴────────┴─────────┴────────────────────────────┘
(4 rows)

Profiler

The plpgsql_check contains simple profiler of plpgsql functions and procedures. It can work with/without a access to shared memory. It depends on shared_preload_libraries config. When plpgsql_check was initialized by shared_preload_libraries, then it can allocate shared memory, and function's profiles are stored there. When plpgsql_check cannot to allocate shared momory, the profile is stored in session memory.

Due dependencies, shared_preload_libraries should to contains plpgsql first

postgres=# show shared_preload_libraries ;
┌──────────────────────────┐
│ shared_preload_libraries │
╞══════════════════════════╡
│ plpgsql,plpgsql_check    │
└──────────────────────────┘
(1 row)

The profiler is active when GUC plpgsql_check.profiler is on. The profiler doesn't require shared memory, but if there are not shared memory, then the profile is limmitted just to active session.

When plpgsql_check is initialized by shared_preload_libraries, another GUC is available to configure the amount of shared memory used by the profiler: plpgsql_check.profiler_max_shared_chunks. This defines the maximum number of statements chunk that can be stored in shared memory. For each plpgsql function (or procedure), the whole content is split into chunks of 30 statements. If needed, multiple chunks can be used to store the whole content of a single function. A single chunk is 1704 bytes. The default value for this GUC is 15000, which should be enough for big projects containing hundred of thousands of statements in plpgsql, and will consume about 24MB of memory. If your project doesn't require that much number of chunks, you can set this parameter to a smaller number in order to decrease the memory usage. The minimum value is 50 (which should consume about 83kB of memory), and the maximum value is 100000 (which should consume about 163MB of memory). Changing this parameter requires a PostgreSQL restart.

The profiler will also retrieve the query identifier for each instruction that contains an expression or optimizable statement. Note that this requires pg_stat_statements, or another similar third-party extension), to be installed. There are some limitations to the query identifier retrieval:

  • if a plpgsql expression contains underlying statements, only the top level query identifier will be retrieved
  • the profiler doesn't compute query identifier by itself but relies on external extension, such as pg_stat_statements, for that. It means that depending on the external extension behavior, you may not be able to see a query identifier for some statements. That's for instance the case with DDL statements, as pg_stat_statements doesn't expose the query identifier for such queries.
  • a query identifier is retrieved only for instructions containing expressions. This means that plpgsql_profiler_function_tb() function can report less query identifier than instructions on a single line.

Attention: A update of shared profiles can decrease performance on servers under higher load.

The profile can be displayed by function plpgsql_profiler_function_tb:

postgres=# select lineno, avg_time, source from plpgsql_profiler_function_tb('fx(int)');
┌────────┬──────────┬───────────────────────────────────────────────────────────────────┐
│ lineno │ avg_time │                              source                               │
╞════════╪══════════╪═══════════════════════════════════════════════════════════════════╡
│      1 │          │                                                                   │
│      2 │          │ declare result int = 0;                                           │
│      3 │    0.075 │ begin                                                             │
│      4 │    0.202 │   for i in 1..$1 loop                                             │
│      5 │    0.005 │     select result + i into result; select result + i into result; │
│      6 │          │   end loop;                                                       │
│      7 │        0 │   return result;                                                  │
│      8 │          │ end;                                                              │
└────────┴──────────┴───────────────────────────────────────────────────────────────────┘
(9 rows)

The profile per statements (not per line) can be displayed by function plpgsql_profiler_function_statements_tb:

        CREATE OR REPLACE FUNCTION public.fx1(a integer)
         RETURNS integer
         LANGUAGE plpgsql
1       AS $function$
2       begin
3         if a > 10 then
4           raise notice 'ahoj';
5           return -1;
6         else
7           raise notice 'nazdar';
8           return 1;
9         end if;
10      end;
11      $function$

postgres=# select stmtid, parent_stmtid, parent_note, lineno, exec_stmts, stmtname
             from plpgsql_profiler_function_statements_tb('fx1');
┌────────┬───────────────┬─────────────┬────────┬────────────┬─────────────────┐
│ stmtid │ parent_stmtid │ parent_note │ lineno │ exec_stmts │    stmtname     │
╞════════╪═══════════════╪═════════════╪════════╪════════════╪═════════════════╡
│      0 │             ∅ │ ∅           │      2 │          0 │ statement block │
│      1 │             0 │ body        │      3 │          0 │ IF              │
│      2 │             1 │ then body   │      4 │          0 │ RAISE           │
│      3 │             1 │ then body   │      5 │          0 │ RETURN          │
│      4 │             1 │ else body   │      7 │          0 │ RAISE           │
│      5 │             1 │ else body   │      8 │          0 │ RETURN          │
└────────┴───────────────┴─────────────┴────────┴────────────┴─────────────────┘
(6 rows)

All stored profiles can be displayed by calling function plpgsql_profiler_functions_all:

postgres=# select * from plpgsql_profiler_functions_all();
┌───────────────────────┬────────────┬────────────┬──────────┬─────────────┬──────────┬──────────┐
│        funcoid        │ exec_count │ total_time │ avg_time │ stddev_time │ min_time │ max_time │
╞═══════════════════════╪════════════╪════════════╪══════════╪═════════════╪══════════╪══════════╡
│ fxx(double precision) │          1 │       0.01 │     0.01 │        0.00 │     0.01 │     0.01 │
└───────────────────────┴────────────┴────────────┴──────────┴─────────────┴──────────┴──────────┘
(1 row)

There are two functions for cleaning stored profiles: plpgsql_profiler_reset_all() and plpgsql_profiler_reset(regprocedure).

Coverage metrics

plpgsql_check provides two functions:

  • plpgsql_coverage_statements(name)
  • plpgsql_coverage_branches(name)

Note

There is another very good PLpgSQL profiler - https://bitbucket.org/openscg/plprofiler

My extension is designed to be simple for use and practical. Nothing more or less.

plprofiler is more complex. It build call graphs and from this graph it can creates flame graph of execution times.

Both extensions can be used together with buildin PostgreSQL's feature - tracking functions.

set track_functions to 'pl';
...
select * from pg_stat_user_functions;

Tracer

plpgsql_check provides a tracing possibility - in this mode you can see notices on start or end functions (terse and default verbosity) and start or end statements (verbose verbosity). For default and verbose verbosity the content of function arguments is displayed. The content of related variables are displayed when verbosity is verbose.

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 ->> start of inline_code_block (Oid=0)
NOTICE:  #2   ->> start of function fx(integer,integer,date,text) (Oid=16405)
NOTICE:  #2        call by inline_code_block line 1 at PERFORM
NOTICE:  #2       "a" => '10', "b" => null, "c" => '2020-08-03', "d" => 'stěhule'
NOTICE:  #4     ->> start of function fx(integer) (Oid=16404)
NOTICE:  #4          call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4         "a" => '10'
NOTICE:  #4     <<- end of function fx (elapsed time=0.098 ms)
NOTICE:  #2   <<- end of function fx (elapsed time=0.399 ms)
NOTICE:  #0 <<- end of block (elapsed time=0.754 ms)

The number after # is a execution frame counter (this number is related to deep of error context stack). It allows to pair start end and of function.

Tracing is enabled by setting plpgsql_check.tracer to on. Attention - enabling this behaviour has significant negative impact on performance (unlike the profiler). You can set a level for output used by tracer plpgsql_check.tracer_errlevel (default is notice). The output content is limited by length specified by plpgsql_check.tracer_variable_max_length configuration variable.

In terse verbose mode the output is reduced:

postgres=# set plpgsql_check.tracer_verbosity TO terse;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0 start of inline code block (oid=0)
NOTICE:  #2 start of fx (oid=16405)
NOTICE:  #4 start of fx (oid=16404)
NOTICE:  #4 end of fx
NOTICE:  #2 end of fx
NOTICE:  #0 end of inline code block

In verbose mode the output is extended about statement details:

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #0            ->> start of block inline_code_block (oid=0)
NOTICE:  #0.1       1  --> start of PERFORM
NOTICE:  #2              ->> start of function fx(integer,integer,date,text) (oid=16405)
NOTICE:  #2                   call by inline_code_block line 1 at PERFORM
NOTICE:  #2                  "a" => '10', "b" => null, "c" => '2020-08-04', "d" => 'stěhule'
NOTICE:  #2.1       1    --> start of PERFORM
NOTICE:  #2.1                "a" => '10'
NOTICE:  #4                ->> start of function fx(integer) (oid=16404)
NOTICE:  #4                     call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:  #4                    "a" => '10'
NOTICE:  #4.1       6      --> start of assignment
NOTICE:  #4.1                  "a" => '10', "b" => '20'
NOTICE:  #4.1              <-- end of assignment (elapsed time=0.076 ms)
NOTICE:  #4.1                  "res" => '130'
NOTICE:  #4.2       7      --> start of RETURN
NOTICE:  #4.2                  "res" => '130'
NOTICE:  #4.2              <-- end of RETURN (elapsed time=0.054 ms)
NOTICE:  #4                <<- end of function fx (elapsed time=0.373 ms)
NOTICE:  #2.1            <-- end of PERFORM (elapsed time=0.589 ms)
NOTICE:  #2              <<- end of function fx (elapsed time=0.727 ms)
NOTICE:  #0.1          <-- end of PERFORM (elapsed time=1.147 ms)
NOTICE:  #0            <<- end of block (elapsed time=1.286 ms)

Special feature of tracer is tracing of ASSERT statement when plpgsql_check.trace_assert is on. When plpgsql_check.trace_assert_verbosity is DEFAULT, then all function's or procedure's variables are displayed when assert expression is false. When this configuration is VERBOSE then all variables from all plpgsql frames are displayed. This behaviour is independent on plpgsql.check_asserts value. It can be used, although the assertions are disabled in plpgsql runtime.

postgres=# set plpgsql_check.tracer to off;
postgres=# set plpgsql_check.trace_assert_verbosity TO verbose;

postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
ERROR:  assertion failed
CONTEXT:  PL/pgSQL function fx(integer) line 12 at ASSERT
SQL statement "SELECT fx(a)"
PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
SQL statement "SELECT fx(10,null, 'now', e'stěhule')"
PL/pgSQL function inline_code_block line 1 at PERFORM

postgres=# set plpgsql.check_asserts to off;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE:  #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE:   "a" => '10', "res" => null, "b" => '20'
NOTICE:  #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE:   "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE:  #0 PL/pgSQL function inline_code_block line 1 at PERFORM
DO

Attention - SECURITY

Tracer prints content of variables or function arguments. For security definer function, this content can hold security sensitive data. This is reason why tracer is disabled by default and should be enabled only with super user rights plpgsql_check.enable_tracer.

Pragma

You can configure plpgsql_check behave inside checked function with "pragma" function. This is a analogy of PL/SQL or ADA language of PRAGMA feature. PLpgSQL doesn't support PRAGMA, but plpgsql_check detects function named plpgsql_check_pragma and get options from parameters of this function. These plpgsql_check options are valid to end of group of statements.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
BEGIN
  ...
  -- for following statements disable check
  PERFORM plpgsql_check_pragma('disable:check');
  ...
  -- enable check again
  PERFORM plpgsql_check_pragma('enable:check');
  ...
END;
$$ LANGUAGE plpgsql;

The function plpgsql_check_pragma is immutable function that returns one. It is defined by plpgsql_check extension. You can declare alternative plpgsql_check_pragma function like:

CREATE OR REPLACE FUNCTION plpgsql_check_pragma(VARIADIC args[])
RETURNS int AS $$
SELECT 1
$$ LANGUAGE sql IMMUTABLE;

Using pragma function in declaration part of top block sets options on function level too.

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE
  aux int := plpgsql_check_pragma('disable:extra_warnings');
  ...

Shorter syntax for pragma is supported too:

CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE r record;
BEGIN
  PERFORM 'PRAGMA:TYPE:r (a int, b int)';
  PERFORM 'PRAGMA:TABLE: x (like pg_class)';
  ...

Supported pragmas

echo:str - print string (for testing)

status:check,status:tracer, status:other_warnings, status:performance_warnings, status:extra_warnings,status:security_warnings

enable:check,enable:tracer, enable:other_warnings, enable:performance_warnings, enable:extra_warnings,enable:security_warnings

disable:check,disable:tracer, disable:other_warnings, disable:performance_warnings, disable:extra_warnings,disable:security_warnings

type:varname typename or type:varname (fieldname type, ...) - set type to variable of record type

table: name (column_name type, ...) or table: name (like tablename) - create ephereal table

Pragmas enable:tracer and disable:tracerare active for Postgres 12 and higher

Compilation

You need a development environment for PostgreSQL extensions:

make clean
make install

result:

[pavel@localhost plpgsql_check]$ make USE_PGXS=1 clean
rm -f plpgsql_check.so   libplpgsql_check.a  libplpgsql_check.pc
rm -f plpgsql_check.o
rm -rf results/ regression.diffs regression.out tmp_check/ log/
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 all
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -I. -I./ -I/usr/local/pgsql/include/server -I/usr/local/pgsql/include/internal -D_GNU_SOURCE   -c -o plpgsql_check.o plpgsql_check.c
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -shared -o plpgsql_check.so plpgsql_check.o -L/usr/local/pgsql/lib -Wl,--as-needed -Wl,-rpath,'/usr/local/pgsql/lib',--enable-new-dtags  
[pavel@localhost plpgsql_check]$ su root
Password: *******
[root@localhost plpgsql_check]# make USE_PGXS=1 install
/usr/bin/mkdir -p '/usr/local/pgsql/lib'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/install -c -m 755  plpgsql_check.so '/usr/local/pgsql/lib/plpgsql_check.so'
/usr/bin/install -c -m 644 plpgsql_check.control '/usr/local/pgsql/share/extension/'
/usr/bin/install -c -m 644 plpgsql_check--0.9.sql '/usr/local/pgsql/share/extension/'
[root@localhost plpgsql_check]# exit
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 installcheck
/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/test/regress/pg_regress --inputdir=./ --psqldir='/usr/local/pgsql/bin'    --dbname=pl_regression --load-language=plpgsql --dbname=contrib_regression plpgsql_check_passive plpgsql_check_active plpgsql_check_active-9.5
(using postmaster on Unix socket, default port)
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing plpgsql                     ==============
CREATE LANGUAGE
============== running regression test queries        ==============
test plpgsql_check_passive    ... ok
test plpgsql_check_active     ... ok
test plpgsql_check_active-9.5 ... ok

=====================
 All 3 tests passed. 
=====================

Compilation on Ubuntu

Sometimes successful compilation can require libicu-dev package (PostgreSQL 10 and higher - when pg was compiled with ICU support)

sudo apt install libicu-dev

Compilation plpgsql_check on Windows

You can check precompiled dll libraries http://okbob.blogspot.cz/2015/02/plpgsqlcheck-is-available-for-microsoft.html

or compile by self:

  1. Download and install PostgreSQL for Win32 from http://www.enterprisedb.com
  2. Download and install Microsoft Visual C++ Express
  3. Lern tutorial http://blog.2ndquadrant.com/compiling-postgresql-extensions-visual-studio-windows
  4. Build plpgsql_check.dll
  5. Install plugin
  6. copy plpgsql_check.dll to PostgreSQL\14\lib
  7. copy plpgsql_check.control and plpgsql_check--2.1.sql to PostgreSQL\14\share\extension

Checked on

  • gcc on Linux (against all supported PostgreSQL)
  • clang 3.4 on Linux (against PostgreSQL 10)
  • for success regress tests the PostgreSQL 10 or higher is required

Compilation against PostgreSQL 10 requires libICU!

Licence

Copyright (c) Pavel Stehule (pavel.stehule@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

If you like it, send a postcard to address

Pavel Stehule
Skalice 12
256 01 Benesov u Prahy
Czech Republic

I invite any questions, comments, bug reports, patches on mail address pavel.stehule@gmail.com


Author: okbob
Source Code: https://github.com/okbob/plpgsql_check
License: View license

#postgresql 

Autumn  Blick

Autumn Blick

1598839687

How native is React Native? | React Native vs Native App Development

If you are undertaking a mobile app development for your start-up or enterprise, you are likely wondering whether to use React Native. As a popular development framework, React Native helps you to develop near-native mobile apps. However, you are probably also wondering how close you can get to a native app by using React Native. How native is React Native?

In the article, we discuss the similarities between native mobile development and development using React Native. We also touch upon where they differ and how to bridge the gaps. Read on.

A brief introduction to React Native

Let’s briefly set the context first. We will briefly touch upon what React Native is and how it differs from earlier hybrid frameworks.

React Native is a popular JavaScript framework that Facebook has created. You can use this open-source framework to code natively rendering Android and iOS mobile apps. You can use it to develop web apps too.

Facebook has developed React Native based on React, its JavaScript library. The first release of React Native came in March 2015. At the time of writing this article, the latest stable release of React Native is 0.62.0, and it was released in March 2020.

Although relatively new, React Native has acquired a high degree of popularity. The “Stack Overflow Developer Survey 2019” report identifies it as the 8th most loved framework. Facebook, Walmart, and Bloomberg are some of the top companies that use React Native.

The popularity of React Native comes from its advantages. Some of its advantages are as follows:

  • Performance: It delivers optimal performance.
  • Cross-platform development: You can develop both Android and iOS apps with it. The reuse of code expedites development and reduces costs.
  • UI design: React Native enables you to design simple and responsive UI for your mobile app.
  • 3rd party plugins: This framework supports 3rd party plugins.
  • Developer community: A vibrant community of developers support React Native.

Why React Native is fundamentally different from earlier hybrid frameworks

Are you wondering whether React Native is just another of those hybrid frameworks like Ionic or Cordova? It’s not! React Native is fundamentally different from these earlier hybrid frameworks.

React Native is very close to native. Consider the following aspects as described on the React Native website:

  • Access to many native platforms features: The primitives of React Native render to native platform UI. This means that your React Native app will use many native platform APIs as native apps would do.
  • Near-native user experience: React Native provides several native components, and these are platform agnostic.
  • The ease of accessing native APIs: React Native uses a declarative UI paradigm. This enables React Native to interact easily with native platform APIs since React Native wraps existing native code.

Due to these factors, React Native offers many more advantages compared to those earlier hybrid frameworks. We now review them.

#android app #frontend #ios app #mobile app development #benefits of react native #is react native good for mobile app development #native vs #pros and cons of react native #react mobile development #react native development #react native experience #react native framework #react native ios vs android #react native pros and cons #react native vs android #react native vs native #react native vs native performance #react vs native #why react native #why use react native

Veronica  Roob

Veronica Roob

1653475560

A Pure PHP Implementation Of The MessagePack Serialization Format

msgpack.php

A pure PHP implementation of the MessagePack serialization format.

Features

Installation

The recommended way to install the library is through Composer:

composer require rybakit/msgpack

Usage

Packing

To pack values you can either use an instance of a Packer:

$packer = new Packer();
$packed = $packer->pack($value);

or call a static method on the MessagePack class:

$packed = MessagePack::pack($value);

In the examples above, the method pack automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map and array types, which are represented by a single array type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0 and as a MessagePack map otherwise:

$mpArr1 = $packer->pack([1, 2]);               // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]);     // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]);     // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]);     // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}

However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap method:

$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}

Here is a list of type-specific packing methods:

$packer->packNil();           // MP nil
$packer->packBool(true);      // MP bool
$packer->packInt(42);         // MP int
$packer->packFloat(M_PI);     // MP float (32 or 64)
$packer->packFloat32(M_PI);   // MP float 32
$packer->packFloat64(M_PI);   // MP float 64
$packer->packStr('foo');      // MP str
$packer->packBin("\x80");     // MP bin
$packer->packArray([1, 2]);   // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa");  // MP ext

Check the "Custom types" section below on how to pack custom types.

Packing options

The Packer object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):

NameDescription
FORCE_STRForces PHP strings to be packed as MessagePack UTF-8 strings
FORCE_BINForces PHP strings to be packed as MessagePack binary data
DETECT_STR_BINDetects MessagePack str/bin type automatically
  
FORCE_ARRForces PHP arrays to be packed as MessagePack arrays
FORCE_MAPForces PHP arrays to be packed as MessagePack maps
DETECT_ARR_MAPDetects MessagePack array/map type automatically
  
FORCE_FLOAT32Forces PHP floats to be packed as 32-bits MessagePack floats
FORCE_FLOAT64Forces PHP floats to be packed as 64-bits MessagePack floats

The type detection mode (DETECT_STR_BIN/DETECT_ARR_MAP) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this, Map and Bin. Check the "Custom types" section below for details.

Examples:

// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);

// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);

Unpacking

To unpack data you can either use an instance of a BufferUnpacker:

$unpacker = new BufferUnpacker();

$unpacker->reset($packed);
$value = $unpacker->unpack();

or call a static method on the MessagePack class:

$value = MessagePack::unpack($packed);

If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException:

while ($chunk = ...) {
    $unpacker->append($chunk);
    if ($messages = $unpacker->tryUnpack()) {
        return $messages;
    }
}

If you want to unpack from a specific position in a buffer, use seek:

$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer

To skip bytes from the current position, use skip:

$unpacker->skip(10); // set position to 10 bytes ahead of the current position

To get the number of remaining (unread) bytes in the buffer:

$unreadBytesCount = $unpacker->getRemainingCount();

To check whether the buffer has unread data:

$hasUnreadBytes = $unpacker->hasRemaining();

If needed, you can remove already read data from the buffer by calling:

$releasedBytesCount = $unpacker->release();

With the read method you can read raw (packed) data:

$packedData = $unpacker->read(2); // read 2 bytes

Besides the above methods BufferUnpacker provides type-specific unpacking methods, namely:

$unpacker->unpackNil();   // PHP null
$unpacker->unpackBool();  // PHP bool
$unpacker->unpackInt();   // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr();   // PHP UTF-8 string
$unpacker->unpackBin();   // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap();   // PHP associative array
$unpacker->unpackExt();   // PHP MessagePack\Type\Ext object

Unpacking options

The BufferUnpacker object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):

NameDescription
BIGINT_AS_STRConverts overflowed integers to strings [1]
BIGINT_AS_GMPConverts overflowed integers to GMP objects [2]
BIGINT_AS_DECConverts overflowed integers to Decimal\Decimal objects [3]

1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.

2. Make sure the GMP extension is enabled.

3. Make sure the Decimal extension is enabled.

Examples:

$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";

$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}

$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}

Custom types

In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.

Type objects

If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:

$packer = new Packer();

$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);

More type examples can be found in the src/Type directory.

Type transformers

As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.

A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin format type using one of the supplied transformers, StreamTransformer:

$packer = new Packer(null, [new StreamTransformer()]);

$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));

More type transformer examples can be found in the src/TypeTransformer directory.

Extensions

In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).

An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.

The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.

Timestamp

The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension class. This class is responsible for handling Timestamp objects, which represent the number of seconds and optional adjustment in nanoseconds:

$timestampExtension = new TimestampExtension();

$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);

$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);

$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();

$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();

When using the MessagePack class, the Timestamp extension is already registered:

$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);

Application-specific extensions

In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0 to 127).

More extension examples can be found in the examples/MessagePack directory.

To learn more about how extension types can be useful, check out this article.

Exceptions

If an error occurs during packing/unpacking, a PackingFailedException or an UnpackingFailedException will be thrown, respectively. In addition, an InsufficientDataException can be thrown during unpacking.

An InvalidOptionException will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.

Tests

Run tests as follows:

vendor/bin/phpunit

Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:

./dockerfile.sh | docker build -t msgpack -

The command above will create a container named msgpack with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE environment variable:

PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -

See a list of various images here.

Then run the unit tests:

docker run --rm -v $PWD:/msgpack -w /msgpack msgpack

Fuzzing

To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:

php-fuzzer fuzz tests/fuzz_buffer_unpacker.php

Performance

To check performance, run:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total                  2.7618          4.0820
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

With JIT:

php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

=============================================
Test/Target            Packer  BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total                  1.6432          1.9674
Skipped                     4               4
Failed                      0               0
Ignored                     0               0

You may change default benchmark settings by defining the following environment variables:

NameDefault
MP_BENCH_TARGETSpure_p,pure_u, see a list of available targets
MP_BENCH_ITERATIONS100_000
MP_BENCH_DURATIONnot set
MP_BENCH_ROUNDS3
MP_BENCH_TESTS-@slow, see a list of available tests

For example:

export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'

Another example, benchmarking both the library and the PECL extension:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  1.5625          2.3866        0.7735          0.7243
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

With JIT:

MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php

Example output

Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000

===========================================================================
Test/Target            Packer  BufferUnpacker  msgpack_pack  msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total                  0.9642          1.0909        0.8224          0.7213
Skipped                     4               4             4               4
Failed                      0               0            24              17
Ignored                    24              24             0               7

Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.

License

The library is released under the MIT License. See the bundled LICENSE file for details.

Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License

#php 

Carmen  Grimes

Carmen Grimes

1595491178

Best Electric Bikes and Scooters for Rental Business or Campus Facility

The electric scooter revolution has caught on super-fast taking many cities across the globe by storm. eScooters, a renovated version of old-school scooters now turned into electric vehicles are an environmentally friendly solution to current on-demand commute problems. They work on engines, like cars, enabling short traveling distances without hassle. The result is that these groundbreaking electric machines can now provide faster transport for less — cheaper than Uber and faster than Metro.

Since they are durable, fast, easy to operate and maintain, and are more convenient to park compared to four-wheelers, the eScooters trend has and continues to spike interest as a promising growth area. Several companies and universities are increasingly setting up shop to provide eScooter services realizing a would-be profitable business model and a ready customer base that is university students or residents in need of faster and cheap travel going about their business in school, town, and other surrounding areas.

Electric Scooters Trends and Statistics

In many countries including the U.S., Canada, Mexico, U.K., Germany, France, China, Japan, India, Brazil and Mexico and more, a growing number of eScooter users both locals and tourists can now be seen effortlessly passing lines of drivers stuck in the endless and unmoving traffic.

A recent report by McKinsey revealed that the E-Scooter industry will be worth― $200 billion to $300 billion in the United States, $100 billion to $150 billion in Europe, and $30 billion to $50 billion in China in 2030. The e-Scooter revenue model will also spike and is projected to rise by more than 20% amounting to approximately $5 billion.

And, with a necessity to move people away from high carbon prints, traffic and congestion issues brought about by car-centric transport systems in cities, more and more city planners are developing more bike/scooter lanes and adopting zero-emission plans. This is the force behind the booming electric scooter market and the numbers will only go higher and higher.

Companies that have taken advantage of the growing eScooter trend develop an appthat allows them to provide efficient eScooter services. Such an app enables them to be able to locate bike pick-up and drop points through fully integrated google maps.

List of Best Electric Bikes for Rental Business or Campus Facility 2020:

It’s clear that e scooters will increasingly become more common and the e-scooter business model will continue to grab the attention of manufacturers, investors, entrepreneurs. All this should go ahead with a quest to know what are some of the best electric bikes in the market especially for anyone who would want to get started in the electric bikes/scooters rental business.

We have done a comprehensive list of the best electric bikes! Each bike has been reviewed in depth and includes a full list of specs and a photo.

Billy eBike

mobile-best-electric-bikes-scooters https://www.kickstarter.com/projects/enkicycles/billy-were-redefining-joyrides

To start us off is the Billy eBike, a powerful go-anywhere urban electric bike that’s specially designed to offer an exciting ride like no other whether you want to ride to the grocery store, cafe, work or school. The Billy eBike comes in 4 color options – Billy Blue, Polished aluminium, Artic white, and Stealth black.

Price: $2490

Available countries

Available in the USA, Europe, Asia, South Africa and Australia.This item ships from the USA. Buyers are therefore responsible for any taxes and/or customs duties incurred once it arrives in your country.

Features

  • Control – Ride with confidence with our ultra-wide BMX bars and a hyper-responsive twist throttle.
  • Stealth- Ride like a ninja with our Gates carbon drive that’s as smooth as butter and maintenance-free.
  • Drive – Ride further with our high torque fat bike motor, giving a better climbing performance.
  • Accelerate – Ride quicker with our 20-inch lightweight cutout rims for improved acceleration.
  • Customize – Ride your own way with 5 levels of power control. Each level determines power and speed.
  • Flickable – Ride harder with our BMX /MotoX inspired geometry and lightweight aluminum package

Specifications

  • Maximum speed: 20 mph (32 km/h)
  • Range per charge: 41 miles (66 km)
  • Maximum Power: 500W
  • Motor type: Fat Bike Motor: Bafang RM G060.500.DC
  • Load capacity: 300lbs (136kg)
  • Battery type: 13.6Ah Samsung lithium-ion,
  • Battery capacity: On/off-bike charging available
  • Weight: w/o batt. 48.5lbs (22kg), w/ batt. 54lbs (24.5kg)
  • Front Suspension: Fully adjustable air shock, preload/compression damping /lockout
  • Rear Suspension: spring, preload adjustment
  • Built-in GPS

Why Should You Buy This?

  • Riding fun and excitement
  • Better climbing ability and faster acceleration.
  • Ride with confidence
  • Billy folds for convenient storage and transportation.
  • Shorty levers connect to disc brakes ensuring you stop on a dime
  • belt drives are maintenance-free and clean (no oil or lubrication needed)

**Who Should Ride Billy? **

Both new and experienced riders

**Where to Buy? **Local distributors or ships from the USA.

Genze 200 series e-Bike

genze-best-electric-bikes-scooters https://www.genze.com/fleet/

Featuring a sleek and lightweight aluminum frame design, the 200-Series ebike takes your riding experience to greater heights. Available in both black and white this ebike comes with a connected app, which allows you to plan activities, map distances and routes while also allowing connections with fellow riders.

Price: $2099.00

Available countries

The Genze 200 series e-Bike is available at GenZe retail locations across the U.S or online via GenZe.com website. Customers from outside the US can ship the product while incurring the relevant charges.

Features

  • 2 Frame Options
  • 2 Sizes
  • Integrated/Removable Battery
  • Throttle and Pedal Assist Ride Modes
  • Integrated LCD Display
  • Connected App
  • 24 month warranty
  • GPS navigation
  • Bluetooth connectivity

Specifications

  • Maximum speed: 20 mph with throttle
  • Range per charge: 15-18 miles w/ throttle and 30-50 miles w/ pedal assist
  • Charging time: 3.5 hours
  • Motor type: Brushless Rear Hub Motor
  • Gears: Microshift Thumb Shifter
  • Battery type: Removable Samsung 36V, 9.6AH Li-Ion battery pack
  • Battery capacity: 36V and 350 Wh
  • Weight: 46 pounds
  • Derailleur: 8-speed Shimano
  • Brakes: Dual classic
  • Wheels: 26 x 20 inches
  • Frame: 16, and 18 inches
  • Operating Mode: Analog mode 5 levels of Pedal Assist Thrott­le Mode

Norco from eBikestore

norco-best-electric-bikes-scooters https://ebikestore.com/shop/norco-vlt-s2/

The Norco VLT S2 is a front suspension e-Bike with solid components alongside the reliable Bosch Performance Line Power systems that offer precise pedal assistance during any riding situation.

Price: $2,699.00

Available countries

This item is available via the various Norco bikes international distributors.

Features

  • VLT aluminum frame- for stiffness and wheel security.
  • Bosch e-bike system – for their reliability and performance.
  • E-bike components – for added durability.
  • Hydraulic disc brakes – offer riders more stopping power for safety and control at higher speeds.
  • Practical design features – to add convenience and versatility.

Specifications

  • Maximum speed: KMC X9 9spd
  • Motor type: Bosch Active Line
  • Gears: Shimano Altus RD-M2000, SGS, 9 Speed
  • Battery type: Power Pack 400
  • Battery capacity: 396Wh
  • Suspension: SR Suntour suspension fork
  • Frame: Norco VLT, Aluminum, 12x142mm TA Dropouts

Bodo EV

bodo-best-electric-bikes-scootershttp://www.bodoevs.com/bodoev/products_show.asp?product_id=13

Manufactured by Bodo Vehicle Group Limited, the Bodo EV is specially designed for strong power and extraordinary long service to facilitate super amazing rides. The Bodo Vehicle Company is a striking top in electric vehicles brand field in China and across the globe. Their Bodo EV will no doubt provide your riders with high-level riding satisfaction owing to its high-quality design, strength, breaking stability and speed.

Price: $799

Available countries

This item ships from China with buyers bearing the shipping costs and other variables prior to delivery.

Features

  • Reliable
  • Environment friendly
  • Comfortable riding
  • Fashionable
  • Economical
  • Durable – long service life
  • Braking stability
  • LED lighting technology

Specifications

  • Maximum speed: 45km/h
  • Range per charge: 50km per person
  • Charging time: 8 hours
  • Maximum Power: 3000W
  • Motor type: Brushless DC Motor
  • Load capacity: 100kg
  • Battery type: Lead-acid battery
  • Battery capacity: 60V 20AH
  • Weight: w/o battery 47kg

#android app #autorent #entrepreneurship #ios app #minimum viable product (mvp) #mobile app development #news #app like bird #app like bounce #app like lime #autorent #best electric bikes 2020 #best electric bikes for rental business #best electric kick scooters 2020 #best electric kickscooters for rental business #best electric scooters 2020 #best electric scooters for rental business #bird scooter business model #bird scooter rental #bird scooter rental cost #bird scooter rental price #clone app like bird #clone app like bounce #clone app like lime #electric rental scooters #electric scooter company #electric scooter rental business #how do you start a moped #how to start a moped #how to start a scooter rental business #how to start an electric company #how to start electric scooterrental business #lime scooter business model #scooter franchise #scooter rental business #scooter rental business for sale #scooter rental business insurance #scooters franchise cost #white label app like bird #white label app like bounce #white label app like lime