Build your own Video Chat Service using JavaScript, WebRTC & OKTA

Do you want to build your own Google Meet in 3 steps? Then here is how to do it!

Video Chat WebRTC is the cutting edge communications technology that everyone wants to use nowadays. Google Meet is one such on-the-browser video chat app. The demand for Do-It-Yourself (DIY) video chat sdk is hot and that’s why we show you how an API can be built easily when you use JavaScript and Okta!  

For the tech-dabbler in you, the following section provides the perfect overview of  building a web app which allows users to broadcast video and voice in their room. Viewers will be able to join and interact in the room using a chat feature to deliver messages to the entire room.   

Read on, for a hands-on tutorial on the most simplified video chat application building process…

Video Chat Application Building for the WebRTC

While JavaScript needs no introduction, Okta is familiar cloud software that developers use to build identity control into apps and web services.

You will use:

  • Node.JS and Express as server framework
  • Web sockets for peer communication
  • Okta for authentication and user identification
  • WebRTC for management and broadcasting of voice and video

Inventor of JavaScript, Brendan Eich says,

 “WebRTC is a new front in the long war for an open and unencumbered web.”

Simply described it is real-time communication that needs no-plugins and enables video and audio communication that works via the web pages itself. This Free OpenSource Software (FOSS) is maintained by Mozilla, Google and Opera, eliminating the need for expensive codec’s like Flash.

Web Real-Time Communications (WebRTC) is at core a HTML5 specification for communication in real-time between browsers directly and not  involving a third-party plugin. WebRTC is able to do so because it allows access to devices, using microphones, cameras and sharing screens. But these complexities are overrun by using JS APIs,  that is, using JavaScript.  Therefore, using bare bone, 20 line JS, an entire video chat app can be developed, easily. The elements of such API is

  • RTC Peer Connection
  • RTC Session Description
  • Navigator .get User Media

The process to connect devices is to use servers. But real-time communication can be handled by scalable applications using Node.js. Two-way connection apps will free data exchange and use WebSockets for open communication between server and client. The ‘non-blocking’ feature of Node.js processes loop, or event loop to help in serving requests and considering lower latency and high throughput.

Building the Video Chat Application

 1.Open a New Web Page

  • Create the node application in the folder where the project will live. Create the dependencies with Express as the backbone of the app
  • Use markup and CSS for style
  • Create the Node server
  • Add the code for Client-side

 2.Add Public Folder. Add Two More Folders Here

  • Views folder
  • Js folder

3.Install Okta for User Authentication Handling

  • Setup User login, using Okta developer account
  • Create new Okta application
  • Plug Okta into your web app

4.Configure State Management

  • Registered users have own chat rooms for sharing for non-registered users also
  • So when they join dedicated chat room video chat their query string value will send them to the right room or login form
  • User login is handled by using the library followed by enabling video function on call.

5.Running your Real-time Video Chat With WebRTC

  • Run the node file
  • use Okta login button

The above steps will let you build a real-time video chat app with video being powered by WebRTC and Okta authenticating users. 

Testing and Debugging

To test the video call app, the files can be uploaded to a web server such as Github pages or more simply setup a local simple server using Python.

1. HTML5  core

HTML using div for videos, login field for well – styled HTML file

2.Importing in JavaScript

Three libraries for inclusion to build WebRTC as calling functions at login and make call

3.Checking for  Receiving Calls

Facilitate video calls for publishing and subscription. End-call logic is installed here, followed by clearing the video holder’s inner HTML.

4.Making Calls

Make call function is used to create this. But errors occurring due to users’ not logging in from the device first have to be handled using functions like phone.dial where an optional list of servers for placing calls is available.

 You could experiment with a local host too using the Okta+WebRTC app. Some providers you can explore are Netlify.

 ## Why Okta is your Solution for Handling User Authentication?

Okta is a free authentication service for handling user login, WebRTC and access control for the app.

One of the key concerns with video call app is knowing who is online when you are using the app. Using Okta’s features a record of online members is available and this is used against the public channels that are used otherwise. Hence using Orkta’s channel subscriptions, authentication can always be controlled and is added to the index-file of the app you are building.

How to Configure State Management

In this step, the configuration of the state management is completed. The logic for the management is to allow external users into registered users’ dedicated chat rooms.  To understand the nature of such access, the ‘query string’ function is used. The value will return to the right room they are seeking address. When there is no query string, and the homepage is being visited, then a login form is offered, since it is obvious that the user is trying to log into the app. Helper functions are also used to determine the chat room name and URL of the qualified room. For other escape issues, handler – On click- at the button element for homepage app redirection is used.

Real-time Video Chat: WebRTC Solutions

Simple WebRTC library includes several types of other APIs making it the best to use for real-time video chat work. This is done by setting up the needed adapter library in the “head” section of the app. The div related to the video container should also be configured for disabled live video, adding good default volume numbers for video display works.  This is handled by adding updated HTML. The on the context menu, load simple webRTC( ) will add more features for allowing camera, mic access, render video feed, automate chat room joining using URL, and handling errors due to dropped video feeds, disconnected calls.

Running the App

For one, it is the most convenient the best live video chat api to use, as it does not need a plugin or a framework but a simple browser to run full-fledged video call chatting features. Hence, using a live chat app is as intuitive as using a browser, which is one of the most commonly used online tools.  Added bonus is that, with a bit of exploration and tool tweaks, you can build your own video chat service. 

What is GEEK

Buddha Community

 Build your own Video Chat Service using JavaScript, WebRTC & OKTA
Chloe  Butler

Chloe Butler


Pdf2gerb: Perl Script Converts PDF Files to Gerber format


Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.

#Pdf2Gerb config settings:
#Put this file in same folder/directory as itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)

#configurable settings:
#change values here instead of in main file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)} ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .030,  #heavy-current traces; be careful with these ones!
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
#number of elements in each shape type:
use constant
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,

#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#use Package::Constants;
#use Exporter qw(import); #

#my $caller = "pdf2gerb::";

#sub cfg
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code:

License: GPL-3.0 license


Zachary Palmer

Zachary Palmer


CSS Flexbox Tutorial | Build a Chat Application

Creating the conversation sidebar and main chat section

In this article we are going to focus on building a basic sidebar, and the main chat window inside our chat shell. See below.

Chat shell with a fixed width sidebar and expanded chat window

This is the second article in this series. You can check out the previous article for setting up the shell OR you can just check out the chat-shell branch from the following repository.

Open up the chat.html file. You should have the following HTML.

<!DOCTYPE html>
    <meta charset="utf-8" />
    <title>Chat App</title>
    <link rel="stylesheet" type="text/css" media="screen" href="css/chat.css" />
    <div id="chat-container">

Now inside of the chat-container div add the following HTML.

<div id="side-bar">
<div id="chat-window">

Now let’s also add the following CSS under the #chat-container selector in the chat.css file.

#side-bar {
    background: #0048AA;
    border-radius: 10px 0 0 10px;
#chat-window {
    background: #999;
    border-radius: 0 10px 10px 0;

Now reload the page. You should see the following:-

So what happened? Where is our sidebar and where is our chat window? I expected to see a blue side bar and a grey chat window, but it’s no where to be found. Well it’s all good. This is because we have no content inside of either element, so it can be 0 pixels wide.

Sizing Flex Items

So now that we know that our items are 0 pixels wide, let’s attempt to size them. We’ll attempt to try this first using explicit widths.

Add the following width property to the #side-bar rule, then reload the page.

width: 275px;

Hmm. Same result. It’s still a blank shell. Oh wait I have to make sure the height is 100% too. So we better do that too. Once again add the following property to the #side-bar rule, then reload the page.

height: 100%;

So now we have our sidebar that has grown to be exactly 275 pixels wide, and is 100% high. So that’s it. We’re done right? Wrong. Let me ask you a question. How big is the chat window? Let’s test that by adding some text to it. Try this yourself just add some text. You should see something similar to this.

So as you can see the chat window is only as big as the text that’s inside of it, and it is not next to the side bar. And this makes sense because up until now the chat shell is not a flex container, and just a regular block level element.

So let’s make our chat shell a flex container. Set the following display property for the #chat-window selector. Then reload the page.

display: flex;

So as you can see by the above illustration, we can see it’s now next to the side bar, and not below it. But as you can see currently it’s only as wide as the text that’s inside of it.

But we want it to take up the remaining space of the chat shell. Well we know how to do this, as we did it in the previous article. Set the flex-grow property to 1 on the #chat-window selector. Basically copy and paste the property below and reload the page.

flex-grow: 1;

So now we have the chat window taking up the remaining space of the chat shell. Next, let’s remove the background property, and also remove all text inside the chat-window div if any still exists. You should now see the result below.

But are we done? Technically yes, but before we move on, let’s improve things a little bit.

Understanding the default alignment

If you remember, before we had defined our chat shell to be a flex container, we had to make sure we set the height of the side bar to be 100%. Otherwise it was 0 pixels high, and as a result nothing was displayed. With that said, try removing the height property from the #side-bar selector and see what happens when you reload the page. Yes that’s right, it still works. The height of the sidebar is still 100% high.

So what happened here? Why do we no longer have to worry about setting the height to 100%? Well this is one of the cool things Flexbox gives you for free. By default every flex item will stretch vertically to fill in the entire height of the flex container. We can in fact change this behaviour, and we will see how this is done in a future article.

Setting the size of the side bar properly

So another feature of Flexbox is being able to set the size of a flex item by using the flex-basis property. The flex-basis property allows you to specify an initial size of a flex item, before any growing or shrinking takes place. We’ll understand more about this in an upcoming article.

For now I just want you to understand one important thing. And that is using width to specify the size of the sidebar is not a good idea. Let’s see why.

Say that potentially, if the screen is mobile we want the side bar to now appear across the top of the chat shell, acting like a top bar instead. We can do this by changing the direction flex items can flex inside a flex container. For example, add the following CSS to the #chat-container selector. Then reload the page.

flex-direction: column;

So as you can see we are back to a blank shell. So firstly let’s understand what we actually did here. By setting the flex-direction property to column, we changed the direction of how the flex items flex. By default flex items will flex from left to right. However when we set flex-direction to column, it changes this behaviour forcing flex items to flex from top to bottom instead. On top of this, when the direction of flex changes, the sizing and alignment of flex items changes as well.

When flexing from left to right, we get a height of 100% for free as already mentioned, and then we made sure the side bar was set to be 275 pixels wide, by setting the width property.

However now that we a flexing from top to bottom, the width of the flex item by default would be 100% wide, and you would need to specify the height instead. So try this. Add the following property to the #side-bar selector to set the height of the side bar. Then reload the page.

height: 275px;

Now we are seeing the side bar again, as we gave it a fixed height too. But we still have that fixed width. That’s not what we wanted. We want the side bar (ie our new top bar) here to now be 100% wide. Comment out the width for a moment and reload the page again.

So now we were able to move our side bar so it appears on top instead, acting like a top bar. Which as previously mentioned might be suited for mobile device widths. But to do this we had to swap the value of width to be the value of height. Wouldn’t it be great if this size was preserved regardless of which direction our items are flexing.

Try this, remove all widths and height properties from the #side-bar selector and write the following instead. Then reload the page.

flex-basis: 275px;

As you can see we get the same result. Now remove the flex-direction property from the #chat-container selector. Then once again reload the page.

Once again we are back to our final output. But now we also have the flexibility to easily change the side bar to be a top bar if we need to, by just changing the direction items can flow. Regardless of the direction of flex, the size of our side bar / top bar is preserved.


Ok so once again we didn’t build much, but we did cover a lot of concepts about Flexbox around sizing. 

#css #programming #webdev 

Ajay Kapoor


JS Development Company India | JavaScript Development Services

PixelCrayons: Our JavaScript web development service offers you a feature-packed & dynamic web application that effectively caters to your business challenges and provide you the best RoI. Our JavaScript web development company works on all major frameworks & libraries like Angular, React, Nodejs, Vue.js, to name a few.

With 15+ years of domain expertise, we have successfully delivered 13800+ projects and have successfully garnered 6800+ happy customers with 97%+ client retention rate.

Looking for professional JavaScript web app development services? We provide custom JavaScript development services applying latest version frameworks and libraries to propel businesses to the next level. Our well-defined and manageable JS development processes are balanced between cost, time and quality along with clear communication.

Our JavaScript development companies offers you strict NDA, 100% money back guarantee and agile/DevOps approach.

#javascript development company #javascript development services #javascript web development #javascript development #javascript web development services #javascript web development company

CSS Boss

CSS Boss


How to create a calculator using javascript - Pure JS tutorials |Web Tutorials

In this video I will tell you How to create a calculator using javascript very easily.

#how to build a simple calculator in javascript #how to create simple calculator using javascript #javascript calculator tutorial #javascript birthday calculator #calculator using javascript and html

studio52 dubai

studio52 dubai


How to find the best video production company in Dubai?

How to find the best video production company in Dubai?We are the best video production company in Dubai, UAE. We offer Corporate Video, event video, animation video, safety video and timelapse video in most engaging and creative ways.

#video production company #video production dubai #video production services #video production services dubai #video production #video production house