Micheal  Emard

Micheal Emard

1643402940

How to Validate Data and Show Errors To form in Laravel

Hello friends, in this video we are going to validate data and show errors to form.

Going to learn:
Laravel Validate form
Laravel show errors to form
Form Validation & Errors
laravel validation
 

#laravel 

What is GEEK

Buddha Community

How to Validate Data and Show Errors To form in Laravel

Yogi Gurjar

1600308055

Laravel 8 Form Validation Tutorial

Laravel 8 form validation example. In this tutorial, i will show you how to submit form with validation in laravel 8.

And you will learn how to store form data in laravel 8. Also validate form data before store to db.

How to Validate Form Data in Laravel 8

  1. Step 1 – Install Laravel 8 Application
  2. Step 2 – Configuring Database using Env File
  3. Step 3 – Create Model & Migration File For Form
  4. Step 4 – Create Routes
  5. Step 5 – Creating Controller
  6. Step 6 – Create Blade File For Form
  7. Step 7 – Start Development Server
  8. Step 8 – Run Laravel 8 Form Validation App On Browser

https://laratutorials.com/laravel-8-form-validation-example-tutorial/

#laravel 8 form validation #laravel 8 form validation tutorial #laravel 8 form validation - google search #how to validate form data in laravel 8 #form validation in laravel 8

Callum Slater

Callum Slater

1653465344

PySpark Cheat Sheet: Spark DataFrames in Python

This PySpark SQL cheat sheet is your handy companion to Apache Spark DataFrames in Python and includes code samples.

You'll probably already know about Apache Spark, the fast, general and open-source engine for big data processing; It has built-in modules for streaming, SQL, machine learning and graph processing. Spark allows you to speed analytic applications up to 100 times faster compared to other technologies on the market today. Interfacing Spark with Python is easy with PySpark: this Spark Python API exposes the Spark programming model to Python. 

Now, it's time to tackle the Spark SQL module, which is meant for structured data processing, and the DataFrame API, which is not only available in Python, but also in Scala, Java, and R.

Without further ado, here's the cheat sheet:

PySpark SQL cheat sheet

This PySpark SQL cheat sheet covers the basics of working with the Apache Spark DataFrames in Python: from initializing the SparkSession to creating DataFrames, inspecting the data, handling duplicate values, querying, adding, updating or removing columns, grouping, filtering or sorting data. You'll also see that this cheat sheet also on how to run SQL Queries programmatically, how to save your data to parquet and JSON files, and how to stop your SparkSession.

Spark SGlL is Apache Spark's module for working with structured data.

Initializing SparkSession 
 

A SparkSession can be used create DataFrame, register DataFrame as tables, execute SGL over tables, cache tables, and read parquet files.

>>> from pyspark.sql import SparkSession
>>> spark a SparkSession \
     .builder\
     .appName("Python Spark SQL basic example") \
     .config("spark.some.config.option", "some-value") \
     .getOrCreate()

Creating DataFrames
 

Fromm RDDs

>>> from pyspark.sql.types import*

Infer Schema

>>> sc = spark.sparkContext
>>> lines = sc.textFile(''people.txt'')
>>> parts = lines.map(lambda l: l.split(","))
>>> people = parts.map(lambda p: Row(nameap[0],ageaint(p[l])))
>>> peopledf = spark.createDataFrame(people)

Specify Schema

>>> people = parts.map(lambda p: Row(name=p[0],
               age=int(p[1].strip())))
>>>  schemaString = "name age"
>>> fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
>>> schema = StructType(fields)
>>> spark.createDataFrame(people, schema).show()

 

From Spark Data Sources
JSON

>>>  df = spark.read.json("customer.json")
>>> df.show()

>>>  df2 = spark.read.load("people.json", format="json")

Parquet files

>>> df3 = spark.read.load("users.parquet")

TXT files

>>> df4 = spark.read.text("people.txt")

Filter 

#Filter entries of age, only keep those records of which the values are >24
>>> df.filter(df["age"]>24).show()

Duplicate Values 

>>> df = df.dropDuplicates()

Queries 
 

>>> from pyspark.sql import functions as F

Select

>>> df.select("firstName").show() #Show all entries in firstName column
>>> df.select("firstName","lastName") \
      .show()
>>> df.select("firstName", #Show all entries in firstName, age and type
              "age",
              explode("phoneNumber") \
              .alias("contactInfo")) \
      .select("contactInfo.type",
              "firstName",
              "age") \
      .show()
>>> df.select(df["firstName"],df["age"]+ 1) #Show all entries in firstName and age, .show() add 1 to the entries of age
>>> df.select(df['age'] > 24).show() #Show all entries where age >24

When

>>> df.select("firstName", #Show firstName and 0 or 1 depending on age >30
               F.when(df.age > 30, 1) \
              .otherwise(0)) \
      .show()
>>> df[df.firstName.isin("Jane","Boris")] #Show firstName if in the given options
.collect()

Like 

>>> df.select("firstName", #Show firstName, and lastName is TRUE if lastName is like Smith
              df.lastName.like("Smith")) \
     .show()

Startswith - Endswith 

>>> df.select("firstName", #Show firstName, and TRUE if lastName starts with Sm
              df.lastName \
                .startswith("Sm")) \
      .show()
>>> df.select(df.lastName.endswith("th"))\ #Show last names ending in th
      .show()

Substring 

>>> df.select(df.firstName.substr(1, 3) \ #Return substrings of firstName
                          .alias("name")) \
        .collect()

Between 

>>> df.select(df.age.between(22, 24)) \ #Show age: values are TRUE if between 22 and 24
          .show()

Add, Update & Remove Columns 

Adding Columns

 >>> df = df.withColumn('city',df.address.city) \
            .withColumn('postalCode',df.address.postalCode) \
            .withColumn('state',df.address.state) \
            .withColumn('streetAddress',df.address.streetAddress) \
            .withColumn('telePhoneNumber', explode(df.phoneNumber.number)) \
            .withColumn('telePhoneType', explode(df.phoneNumber.type)) 

Updating Columns

>>> df = df.withColumnRenamed('telePhoneNumber', 'phoneNumber')

Removing Columns

  >>> df = df.drop("address", "phoneNumber")
 >>> df = df.drop(df.address).drop(df.phoneNumber)
 

Missing & Replacing Values 
 

>>> df.na.fill(50).show() #Replace null values
 >>> df.na.drop().show() #Return new df omitting rows with null values
 >>> df.na \ #Return new df replacing one value with another
       .replace(10, 20) \
       .show()

GroupBy 

>>> df.groupBy("age")\ #Group by age, count the members in the groups
      .count() \
      .show()

Sort 
 

>>> peopledf.sort(peopledf.age.desc()).collect()
>>> df.sort("age", ascending=False).collect()
>>> df.orderBy(["age","city"],ascending=[0,1])\
     .collect()

Repartitioning 

>>> df.repartition(10)\ #df with 10 partitions
      .rdd \
      .getNumPartitions()
>>> df.coalesce(1).rdd.getNumPartitions() #df with 1 partition

Running Queries Programmatically 
 

Registering DataFrames as Views

>>> peopledf.createGlobalTempView("people")
>>> df.createTempView("customer")
>>> df.createOrReplaceTempView("customer")

Query Views

>>> df5 = spark.sql("SELECT * FROM customer").show()
>>> peopledf2 = spark.sql("SELECT * FROM global_temp.people")\
               .show()

Inspect Data 
 

>>> df.dtypes #Return df column names and data types
>>> df.show() #Display the content of df
>>> df.head() #Return first n rows
>>> df.first() #Return first row
>>> df.take(2) #Return the first n rows >>> df.schema Return the schema of df
>>> df.describe().show() #Compute summary statistics >>> df.columns Return the columns of df
>>> df.count() #Count the number of rows in df
>>> df.distinct().count() #Count the number of distinct rows in df
>>> df.printSchema() #Print the schema of df
>>> df.explain() #Print the (logical and physical) plans

Output

Data Structures 
 

 >>> rdd1 = df.rdd #Convert df into an RDD
 >>> df.toJSON().first() #Convert df into a RDD of string
 >>> df.toPandas() #Return the contents of df as Pandas DataFrame

Write & Save to Files 

>>> df.select("firstName", "city")\
       .write \
       .save("nameAndCity.parquet")
 >>> df.select("firstName", "age") \
       .write \
       .save("namesAndAges.json",format="json")

Stopping SparkSession 

>>> spark.stop()

Have this Cheat Sheet at your fingertips

Original article source at https://www.datacamp.com

#pyspark #cheatsheet #spark #dataframes #python #bigdata

Laravel 8 Form Validation Example

In this tutorial we will see laravel 8 form validation example, form validation in laravel is very common functionalities and it is use in each and every website to validate form field.

Here, We will use has function in session to check error message in laravel 8. using this example you can check simple form validation as well as you can create your own custom validation in laravel 8.

Laravel 8 Form Validation Example

https://websolutionstuff.com/post/laravel-8-form-validation-example


Read Also : Laravel 8 CRUD Operation Example

https://websolutionstuff.com/post/laravel-8-crud-operation-example

#laravel 8 form validation example #form validation #how to validate form in laravel 8 #form validation in laravel #laravel #laravel8

Hertha  Mayer

Hertha Mayer

1594769515

How to validate mobile phone number in laravel with example

Data validation and sanitization is a very important thing from security point of view for a web application. We can not rely on user’s input. In this article i will let you know how to validate mobile phone number in laravel with some examples.

if we take some user’s information in our application, so usually we take phone number too. And if validation on the mobile number field is not done, a user can put anything in the mobile number field and without genuine phone number, this data would be useless.

Since we know that mobile number can not be an alpha numeric or any alphabates aand also it should be 10 digit number. So here in this examples we will add 10 digit number validation in laravel application.

We will aalso see the uses of regex in the validation of mobile number. So let’s do it with two different way in two examples.

Example 1:

In this first example we will write phone number validation in HomeController where we will processs user’s data.

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;
use App\User;

class HomeController extends Controller
{
    /**
     * Show the application dashboard.
     *
     * @return \Illuminate\Http\Response
     */
    public function create()
    {
        return view('createUser');
    }

    /**
     * Show the application dashboard.
     *
     * @return \Illuminate\Http\Response
     */
    public function store(Request $request)
    {
        $request->validate([
                'name' => 'required',
                'phone' => 'required|digits:10',
                'email' => 'required|email|unique:users'
            ]);

        $input = $request->all();
        $user = User::create($input);

        return back()->with('success', 'User created successfully.');
    }
}

Example 2:

In this second example, we will use regex for user’s mobile phone number validation before storing user data in our database. Here, we will write the validation in Homecontroller like below.

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;
use App\User;
use Validator;

class HomeController extends Controller
{
    /**
     * Show the application dashboard.
     *
     * @return \Illuminate\Http\Response
     */
    public function create()
    {
        return view('createUser');
    }

    /**
     * Show the application dashboard.
     *
     * @return \Illuminate\Http\Response
     */
    public function store(Request $request)
    {
        $request->validate([
                'name' => 'required',
                'phone' => 'required|regex:/^([0-9\s\-\+\(\)]*)$/|min:10',
                'email' => 'required|email|unique:users'
            ]);

        $input = $request->all();
        $user = User::create($input);

        return back()->with('success', 'User created successfully.');
    }
}

#laravel #laravel phone number validation #laravel phone validation #laravel validation example #mobile phone validation in laravel #phone validation with regex #validate mobile in laravel

Yogi Gurjar

1600307723

Laravel 8 Form Example Tutorial - Complete Guide

Laravel 8 form example. In this tutorial, i would love to show you how to create form in laravel. And how to insert data into database using form in laravel 8.

How to Submit Form Data into Database in Laravel 8

  1. Step 1 – Install Laravel 8 Application
  2. Step 2 – Configuring Database using Env File
  3. Step 3 – Create Model & Migration File For Add Blog Post Form
  4. Step 4 – Create Routes
  5. Step 5 – Creating Controller
  6. Step 6 – Create Blade File For Add Blog Post Form
  7. Step 7 – Start Development Server
  8. Step 8 – Run Laravel 8 Form App On Browser

https://laratutorials.com/laravel-8-form-example-tutorial/

#insert form data into database using laravel #laravel bootstrap form #laravel post forms #laravel 8 form tutorial #laravel 8 form example #laravel 8 form submit tutorial