1634880628
Python - это язык программирования без BS. Читаемость и простота дизайна - две основные причины его огромной популярности.
Вот почему стоит запомнить некоторые общие приемы Python, которые помогут улучшить дизайн кода. Это избавит вас от необходимости просматривать Stack Overflow каждый раз, когда вам нужно что-то сделать.
Следующие приемы пригодятся вам в повседневных упражнениях по программированию.
Следующий фрагмент кода можно использовать для поиска всех уникальных элементов в строке. Мы используем то свойство, что все элементы в наборе уникальны.
my_string = "aavvccccddddeee"
# converting the string to a set
temp_set = set(my_string)
# stitching set into a string using join
new_string = ''.join(temp_set)
print(new_string)
Следующий фрагмент можно использовать для преобразования строки в регистр заголовка. Это делается с помощью title()
метода строкового класса.
my_string = "my name is chaitanya baweja"
# using the title() function of string class
new_string = my_string.title()
print(new_string)
# Output
# My Name Is Chaitanya Baweja
Следующий фрагмент кода меняет строку с помощью операции нарезки Python.
# Reversing a string using slicing
my_string = "ABCDE"
reversed_string = my_string[::-1]
print(reversed_string)
# Output
# EDCBA
Вы можете прочитать об этом здесь .
Вы можете использовать умножение (*) со строками или списками. Это позволяет нам умножать их сколько угодно раз.
n = 3 # number of repetitions
my_string = "abcd"
my_list = [1,2,3]
print(my_string*n)
# abcdabcdabcd
print(my_list*n)
# [1,2,3,1,2,3,1,2,3]
Интересным вариантом использования этого может быть определение списка с постоянным значением - скажем, нулем.
n = 4
my_list = [0]*n # n denotes the length of the required list
# [0, 0, 0, 0]
Метод join () объединяет список строк, переданных в качестве аргумента, в одну строку. В нашем случае мы разделяем их запятыми.
list_of_strings = ['My', 'name', 'is', 'Chaitanya', 'Baweja']
# Using join with the comma separator
print(','.join(list_of_strings))
# Output
# My,name,is,Chaitanya,Baweja
Python упрощает обмен значениями между двумя переменными без использования другой переменной.
a = 1
b = 2
a, b = b, a
print(a) # 2
print(b) # 1
Мы можем разбить строку на список подстрок, используя метод .split () в классе строк. Вы также можете передать в качестве аргумента разделитель, который хотите разделить.
string_1 = "My name is Chaitanya Baweja"
string_2 = "sample/ string 2"
# default separator ' '
print(string_1.split())
# ['My', 'name', 'is', 'Chaitanya', 'Baweja']
# defining separator as '/'
print(string_2.split('/'))
# ['sample', ' string 2']
Понимание списков предоставляет нам элегантный способ создания списков на основе других списков.
Следующий фрагмент кода создает новый список, умножая каждый элемент старого списка на два.
# Multiplying each element in a list by 2
original_list = [1,2,3,4]
new_list = [2*x for x in original_list]
print(new_list)
# [2,4,6,8]
Вы можете прочитать об этом здесь.
Мы уже обсуждали, как перевернуть строку. Таким образом, палиндромы превратились в простую программу на Python.
my_string = "abcba"
if my_string == my_string[::-1]:
print("palindrome")
else:
print("not palindrome")
# Output
# palindrome
Следующий скрипт использует enumerate для перебора значений в списке вместе с их индексами.
my_list = ['a', 'b', 'c', 'd', 'e']
for index, value in enumerate(my_list):
print('{0}: {1}'.format(index, value))
# 0: a
# 1: b
# 2: c
# 3: d
# 4: e
Интересное приложение этого Counter
класса - поиск анаграмм.
Анаграмма - это слово или фраза, образованная перестановкой букв другого слова или фразы.
Если Counter
объекты двух строк равны, то они анаграммы.
from collections import Counter
str_1, str_2, str_3 = "acbde", "abced", "abcda"
cnt_1, cnt_2, cnt_3 = Counter(str_1), Counter(str_2), Counter(str_3)
if cnt_1 == cnt_2:
print('1 and 2 anagram')
if cnt_1 == cnt_3:
print('1 and 3 anagram')
Обработку ошибок в Python можно легко выполнить с помощью блока try / except. Может быть полезно добавить в этот блок инструкцию else. Он запускается, когда в блоке try не возникает исключения.
Если вам нужно запустить что-то независимо от исключения, используйте finally
.
a, b = 1,0
try:
print(a/b)
# exception raised when b is 0
except ZeroDivisionError:
print("division by zero")
else:
print("no exceptions raised")
finally:
print("Run this always")
Есть несколько способов сделать это, но мне больше всего нравится использовать Counter
класс Python .
Счетчик Python отслеживает частоту каждого элемента в контейнере. Counter()
возвращает словарь с элементами в качестве ключей и частотой в качестве значений.
Мы также используем most_common()
функцию для получения most_frequent
элемента в списке.
# finding frequency of each element in a list
from collections import Counter
my_list = ['a','a','b','b','b','c','d','d','d','d','d']
count = Counter(my_list) # defining a counter object
print(count) # Of all elements
# Counter({'d': 5, 'b': 3, 'a': 2, 'c': 1})
print(count['b']) # of individual element
# 3
print(count.most_common(1)) # most frequent element
# [('d', 5)]
Следующий сценарий можно использовать для проверки использования памяти объектом. Подробнее об этом читайте здесь .
import sys
num = 21
print(sys.getsizeof(num))
# In Python 2, 24
# In Python 3, 28
Следующий фрагмент кода генерирует n
количество случайных выборок из заданного списка с помощью random
библиотеки.
import random
my_list = ['a', 'b', 'c', 'd', 'e']
num_samples = 2
samples = random.sample(my_list,num_samples)
print(samples)
# [ 'a', 'e'] this will have any 2 random values
Мне порекомендовали библиотеку секретов для генерации случайных выборок для целей криптографии. Следующий фрагмент будет работать
только на Python 3.
import secrets # imports secure module.
secure_random = secrets.SystemRandom() # creates a secure random object.
my_list = ['a','b','c','d','e']
num_samples = 2
samples = secure_random.sample(my_list, num_samples)
print(samples)
# [ 'e', 'd'] this will have any 2 random values
В следующем фрагменте time
кода библиотека используется для расчета времени, необходимого для выполнения фрагмента кода.
import time
start_time = time.time()
# Code to check follows
a, b = 1,2
c = a+ b
# Code to check ends
end_time = time.time()
time_taken_in_micro = (end_time- start_time)*(10**6)
print(" Time taken in micro_seconds: {0} ms").format(time_taken_in_micro)
Иногда вы не уверены в глубине вложенности вашего списка и просто хотите, чтобы все элементы были в одном плоском списке.
Вот как это сделать:
from iteration_utilities import deepflatten
# if you only have one depth nested_list, use this
def flatten(l):
return [item for sublist in l for item in sublist]
l = [[1,2,3],[3]]
print(flatten(l))
# [1, 2, 3, 3]
# if you don't know how deep the list is nested
l = [[1,2,3],[4,[5],[6,7]],[8,[9,[10]]]]
print(list(deepflatten(l, depth=3)))
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Numpy flatten - лучший способ сделать это, если у вас есть правильно отформатированный массив.
В Python 2 мы использовали этот update()
метод для объединения двух словарей; Python 3.5 сделал процесс еще проще.
В приведенном ниже скрипте два словаря объединены. В случае пересечений используются значения из второго словаря.
dict_1 = {'apple': 9, 'banana': 6}
dict_2 = {'banana': 4, 'orange': 8}
combined_dict = {**dict_1, **dict_2}
print(combined_dict)
# Output
# {'apple': 9, 'banana': 4, 'orange': 8}
Спасибо за прочтение !
1626775355
No programming language is pretty much as diverse as Python. It enables building cutting edge applications effortlessly. Developers are as yet investigating the full capability of end-to-end Python development services in various areas.
By areas, we mean FinTech, HealthTech, InsureTech, Cybersecurity, and that's just the beginning. These are New Economy areas, and Python has the ability to serve every one of them. The vast majority of them require massive computational abilities. Python's code is dynamic and powerful - equipped for taking care of the heavy traffic and substantial algorithmic capacities.
Programming advancement is multidimensional today. Endeavor programming requires an intelligent application with AI and ML capacities. Shopper based applications require information examination to convey a superior client experience. Netflix, Trello, and Amazon are genuine instances of such applications. Python assists with building them effortlessly.
Python can do such numerous things that developers can't discover enough reasons to admire it. Python application development isn't restricted to web and enterprise applications. It is exceptionally adaptable and superb for a wide range of uses.
Robust frameworks
Python is known for its tools and frameworks. There's a structure for everything. Django is helpful for building web applications, venture applications, logical applications, and mathematical processing. Flask is another web improvement framework with no conditions.
Web2Py, CherryPy, and Falcon offer incredible capabilities to customize Python development services. A large portion of them are open-source frameworks that allow quick turn of events.
Simple to read and compose
Python has an improved sentence structure - one that is like the English language. New engineers for Python can undoubtedly understand where they stand in the development process. The simplicity of composing allows quick application building.
The motivation behind building Python, as said by its maker Guido Van Rossum, was to empower even beginner engineers to comprehend the programming language. The simple coding likewise permits developers to roll out speedy improvements without getting confused by pointless subtleties.
Utilized by the best
Alright - Python isn't simply one more programming language. It should have something, which is the reason the business giants use it. Furthermore, that too for different purposes. Developers at Google use Python to assemble framework organization systems, parallel information pusher, code audit, testing and QA, and substantially more. Netflix utilizes Python web development services for its recommendation algorithm and media player.
Massive community support
Python has a steadily developing community that offers enormous help. From amateurs to specialists, there's everybody. There are a lot of instructional exercises, documentation, and guides accessible for Python web development solutions.
Today, numerous universities start with Python, adding to the quantity of individuals in the community. Frequently, Python designers team up on various tasks and help each other with algorithmic, utilitarian, and application critical thinking.
Progressive applications
Python is the greatest supporter of data science, Machine Learning, and Artificial Intelligence at any enterprise software development company. Its utilization cases in cutting edge applications are the most compelling motivation for its prosperity. Python is the second most well known tool after R for data analytics.
The simplicity of getting sorted out, overseeing, and visualizing information through unique libraries makes it ideal for data based applications. TensorFlow for neural networks and OpenCV for computer vision are two of Python's most well known use cases for Machine learning applications.
Thinking about the advances in programming and innovation, Python is a YES for an assorted scope of utilizations. Game development, web application development services, GUI advancement, ML and AI improvement, Enterprise and customer applications - every one of them uses Python to its full potential.
The disadvantages of Python web improvement arrangements are regularly disregarded by developers and organizations because of the advantages it gives. They focus on quality over speed and performance over blunders. That is the reason it's a good idea to utilize Python for building the applications of the future.
#python development services #python development company #python app development #python development #python in web development #python software development
1602968400
Python is awesome, it’s one of the easiest languages with simple and intuitive syntax but wait, have you ever thought that there might ways to write your python code simpler?
In this tutorial, you’re going to learn a variety of Python tricks that you can use to write your Python code in a more readable and efficient way like a pro.
Swapping value in Python
Instead of creating a temporary variable to hold the value of the one while swapping, you can do this instead
>>> FirstName = "kalebu"
>>> LastName = "Jordan"
>>> FirstName, LastName = LastName, FirstName
>>> print(FirstName, LastName)
('Jordan', 'kalebu')
#python #python-programming #python3 #python-tutorials #learn-python #python-tips #python-skills #python-development
1602666000
Today you’re going to learn how to use Python programming in a way that can ultimately save a lot of space on your drive by removing all the duplicates.
In many situations you may find yourself having duplicates files on your disk and but when it comes to tracking and checking them manually it can tedious.
Heres a solution
Instead of tracking throughout your disk to see if there is a duplicate, you can automate the process using coding, by writing a program to recursively track through the disk and remove all the found duplicates and that’s what this article is about.
But How do we do it?
If we were to read the whole file and then compare it to the rest of the files recursively through the given directory it will take a very long time, then how do we do it?
The answer is hashing, with hashing can generate a given string of letters and numbers which act as the identity of a given file and if we find any other file with the same identity we gonna delete it.
There’s a variety of hashing algorithms out there such as
#python-programming #python-tutorials #learn-python #python-project #python3 #python #python-skills #python-tips
1597751700
Magic Methods are the special methods which gives us the ability to access built in syntactical features such as ‘<’, ‘>’, ‘==’, ‘+’ etc…
You must have worked with such methods without knowing them to be as magic methods. Magic methods can be identified with their names which start with __ and ends with __ like init, call, str etc. These methods are also called Dunder Methods, because of their name starting and ending with Double Underscore (Dunder).
Now there are a number of such special methods, which you might have come across too, in Python. We will just be taking an example of a few of them to understand how they work and how we can use them.
class AnyClass:
def __init__():
print("Init called on its own")
obj = AnyClass()
The first example is _init, _and as the name suggests, it is used for initializing objects. Init method is called on its own, ie. whenever an object is created for the class, the init method is called on its own.
The output of the above code will be given below. Note how we did not call the init method and it got invoked as we created an object for class AnyClass.
Init called on its own
Let’s move to some other example, add gives us the ability to access the built in syntax feature of the character +. Let’s see how,
class AnyClass:
def __init__(self, var):
self.some_var = var
def __add__(self, other_obj):
print("Calling the add method")
return self.some_var + other_obj.some_var
obj1 = AnyClass(5)
obj2 = AnyClass(6)
obj1 + obj2
#python3 #python #python-programming #python-web-development #python-tutorials #python-top-story #python-tips #learn-python
1593156510
At the end of 2019, Python is one of the fastest-growing programming languages. More than 10% of developers have opted for Python development.
In the programming world, Data types play an important role. Each Variable is stored in different data types and responsible for various functions. Python had two different objects, and They are mutable and immutable objects.
Table of Contents hide
III Built-in data types in Python
The Size and declared value and its sequence of the object can able to be modified called mutable objects.
Mutable Data Types are list, dict, set, byte array
The Size and declared value and its sequence of the object can able to be modified.
Immutable data types are int, float, complex, String, tuples, bytes, and frozen sets.
id() and type() is used to know the Identity and data type of the object
a**=25+**85j
type**(a)**
output**:<class’complex’>**
b**={1:10,2:“Pinky”****}**
id**(b)**
output**:**238989244168
a**=str(“Hello python world”)****#str**
b**=int(18)****#int**
c**=float(20482.5)****#float**
d**=complex(5+85j)****#complex**
e**=list((“python”,“fast”,“growing”,“in”,2018))****#list**
f**=tuple((“python”,“easy”,“learning”))****#tuple**
g**=range(10)****#range**
h**=dict(name=“Vidu”,age=36)****#dict**
i**=set((“python”,“fast”,“growing”,“in”,2018))****#set**
j**=frozenset((“python”,“fast”,“growing”,“in”,2018))****#frozenset**
k**=bool(18)****#bool**
l**=bytes(8)****#bytes**
m**=bytearray(8)****#bytearray**
n**=memoryview(bytes(18))****#memoryview**
Numbers are stored in numeric Types. when a number is assigned to a variable, Python creates Number objects.
#signed interger
age**=**18
print**(age)**
Output**:**18
Python supports 3 types of numeric data.
int (signed integers like 20, 2, 225, etc.)
float (float is used to store floating-point numbers like 9.8, 3.1444, 89.52, etc.)
complex (complex numbers like 8.94j, 4.0 + 7.3j, etc.)
A complex number contains an ordered pair, i.e., a + ib where a and b denote the real and imaginary parts respectively).
The string can be represented as the sequence of characters in the quotation marks. In python, to define strings we can use single, double, or triple quotes.
# String Handling
‘Hello Python’
#single (') Quoted String
“Hello Python”
# Double (") Quoted String
“”“Hello Python”“”
‘’‘Hello Python’‘’
# triple (‘’') (“”") Quoted String
In python, string handling is a straightforward task, and python provides various built-in functions and operators for representing strings.
The operator “+” is used to concatenate strings and “*” is used to repeat the string.
“Hello”+“python”
output**:****‘Hello python’**
"python "*****2
'Output : Python python ’
#python web development #data types in python #list of all python data types #python data types #python datatypes #python types #python variable type