aaron silva

aaron silva

1616836319

Secure more users by including in Million Money Clone Software

Infinite Block Tech could be a driving player in Million Money clone software. It incorporates a well-defined matrix scheme, peer-to-peer execution of exchanges, coordinates with the driving crypto wallets like MetaMask and Trust wallet, completely hack-proof, the most elevated level of data security, and unvarying remuneration plan, end of third parties, and real-time traceability of assets.

#million money mlm clone #million money mlm clone script #mlm like million money #million money clone software

What is GEEK

Buddha Community

Secure more users by including in Million Money Clone Software
aaron silva

aaron silva

1616836319

Secure more users by including in Million Money Clone Software

Infinite Block Tech could be a driving player in Million Money clone software. It incorporates a well-defined matrix scheme, peer-to-peer execution of exchanges, coordinates with the driving crypto wallets like MetaMask and Trust wallet, completely hack-proof, the most elevated level of data security, and unvarying remuneration plan, end of third parties, and real-time traceability of assets.

#million money mlm clone #million money mlm clone script #mlm like million money #million money clone software

Wilford  Pagac

Wilford Pagac

1596789120

Best Custom Web & Mobile App Development Company

Everything around us has become smart, like smart infrastructures, smart cities, autonomous vehicles, to name a few. The innovation of smart devices makes it possible to achieve these heights in science and technology. But, data is vulnerable, there is a risk of attack by cybercriminals. To get started, let’s know about IoT devices.

What are IoT devices?

The Internet Of Things(IoT) is a system that interrelates computer devices like sensors, software, and actuators, digital machines, etc. They are linked together with particular objects that work through the internet and transfer data over devices without humans interference.

Famous examples are Amazon Alexa, Apple SIRI, Interconnected baby monitors, video doorbells, and smart thermostats.

How could your IoT devices be vulnerable?

When technologies grow and evolve, risks are also on the high stakes. Ransomware attacks are on the continuous increase; securing data has become the top priority.

When you think your smart home won’t fudge a thing against cybercriminals, you should also know that they are vulnerable. When cybercriminals access our smart voice speakers like Amazon Alexa or Apple Siri, it becomes easy for them to steal your data.

Cybersecurity report 2020 says popular hacking forums expose 770 million email addresses and 21 million unique passwords, 620 million accounts have been compromised from 16 hacked websites.

The attacks are likely to increase every year. To help you secure your data of IoT devices, here are some best tips you can implement.

Tips to secure your IoT devices

1. Change Default Router Name

Your router has the default name of make and model. When we stick with the manufacturer name, attackers can quickly identify our make and model. So give the router name different from your addresses, without giving away personal information.

2. Know your connected network and connected devices

If your devices are connected to the internet, these connections are vulnerable to cyber attacks when your devices don’t have the proper security. Almost every web interface is equipped with multiple devices, so it’s hard to track the device. But, it’s crucial to stay aware of them.

3. Change default usernames and passwords

When we use the default usernames and passwords, it is attackable. Because the cybercriminals possibly know the default passwords come with IoT devices. So use strong passwords to access our IoT devices.

4. Manage strong, Unique passwords for your IoT devices and accounts

Use strong or unique passwords that are easily assumed, such as ‘123456’ or ‘password1234’ to protect your accounts. Give strong and complex passwords formed by combinations of alphabets, numeric, and not easily bypassed symbols.

Also, change passwords for multiple accounts and change them regularly to avoid attacks. We can also set several attempts to wrong passwords to set locking the account to safeguard from the hackers.

5. Do not use Public WI-FI Networks

Are you try to keep an eye on your IoT devices through your mobile devices in different locations. I recommend you not to use the public WI-FI network to access them. Because they are easily accessible through for everyone, you are still in a hurry to access, use VPN that gives them protection against cyber-attacks, giving them privacy and security features, for example, using Express VPN.

6. Establish firewalls to discover the vulnerabilities

There are software and firewalls like intrusion detection system/intrusion prevention system in the market. This will be useful to screen and analyze the wire traffic of a network. You can identify the security weakness by the firewall scanners within the network structure. Use these firewalls to get rid of unwanted security issues and vulnerabilities.

7. Reconfigure your device settings

Every smart device comes with the insecure default settings, and sometimes we are not able to change these default settings configurations. These conditions need to be assessed and need to reconfigure the default settings.

8. Authenticate the IoT applications

Nowadays, every smart app offers authentication to secure the accounts. There are many types of authentication methods like single-factor authentication, two-step authentication, and multi-factor authentication. Use any one of these to send a one time password (OTP) to verify the user who logs in the smart device to keep our accounts from falling into the wrong hands.

9. Update the device software up to date

Every smart device manufacturer releases updates to fix bugs in their software. These security patches help us to improve our protection of the device. Also, update the software on the smartphone, which we are used to monitoring the IoT devices to avoid vulnerabilities.

10. Track the smartphones and keep them safe

When we connect the smart home to the smartphone and control them via smartphone, you need to keep them safe. If you miss the phone almost, every personal information is at risk to the cybercriminals. But sometimes it happens by accident, makes sure that you can clear all the data remotely.

However, securing smart devices is essential in the world of data. There are still cybercriminals bypassing the securities. So make sure to do the safety measures to avoid our accounts falling out into the wrong hands. I hope these steps will help you all to secure your IoT devices.

If you have any, feel free to share them in the comments! I’d love to know them.

Are you looking for more? Subscribe to weekly newsletters that can help your stay updated IoT application developments.

#iot #enterprise iot security #how iot can be used to enhance security #how to improve iot security #how to protect iot devices from hackers #how to secure iot devices #iot security #iot security devices #iot security offerings #iot security technologies iot security plus #iot vulnerable devices #risk based iot security program

Software Security Primer

As a developer, when you think of security, what comes to mind? Is it clear what are different aspects that need to be handled to make a software secure? And why you need to do that?

The objective of this article is to provide that view and articulate what controls should be in place and how. Details of how to apply those controls are not covered as they would require separate articles - and lot of content is available on the web anyway.

What is Software Security?

Security implementation of a software application can be classified in two parts:

  1. Pre-deployment - building a secure software
  2. Post-deployment - security of the environment where the software is running

Software Security is pre-deployment. It is the process of identifying risks and building controls (or Countermeasures as it is called in security terminology) in the software itself while it is being built.

Software Security is the focus of this post. We will see controls commonly used and what risks they mitigate.

For more details, see What is Software Security by Gary McGraw

Nature of security

A software application would generally have two aspects:

a. Services that provide some functionality

b. Data generated and consumed by the services

Security can be defined as defending the services and the data from unauthorized and malicious usage at all times.

Defending is the key word here. Defense literally means an act of resisting an attack. That means attacks can happen anytime and any number of times, and we need to keep protecting the system from these attacks.

That’s what makes security of a software application very difficult because it is not easy to get it right all the time.

Also, there is no room for error. One incident may be enough to destroy the reputation and business built over the years.

#security #programming #software-engineering #web-development #software-architecture #web-security #cyber-security #software-development

Joel  Hawkins

Joel Hawkins

1632538163

Elk: A Low Footprint JavaScript Engine for Embedded Systems

Elk: a tiny JS engine for embedded systems

Elk is a tiny embeddable JavaScript engine that implements a small but usable subset of ES6. It is designed for microcontroller development. Instead of writing firmware code in C/C++, Elk allows to develop in JavaScript. Another use case is providing customers with a secure, protected scripting environment for product customisation.

Elk features include:

  • Cross platform. Works anywhere from 8-bit microcontrollers to 64-bit servers
  • Zero dependencies. Builds cleanly by ISO C or ISO C++ compilers
  • Easy to embed: just copy elk.c and elk.h to your source tree
  • Very small and simple embedding API
  • Can call native C/C++ functions from JavaScript and vice versa
  • Does not use malloc. Operates with a given memory buffer only
  • Small footprint: about 20KB on flash/disk, about 100 bytes RAM for core VM
  • No bytecode. Interprets JS code directly

Below is a demonstration on a classic Arduino Nano board which has 2K RAM and 30K flash (see full sketch):

Elk on Arduino Nano

JavaScript on ESP32

The Esp32JS Arduino sketch is an example of Elk integration with ESP32. Flash this sketch on your ESP32 board, go to http://elk-js.com, and get a JavaScript development environment instantly! Reloading your script takes a fraction of a second - compare that with a regular reflashing.. Here how it looks like:

The example JS firmware implements:

  • Blinks an LED periodically
  • Connects to the HiveMQ MQTT server
  • Subscribes to the elk/rx topic
  • When an MQTT message is received, sends some stats to the elk/tx topic:

That's screenshot is taken from the MQTT server which shows that we sent a hello JS! message and received stats in response:

Call JavaScript from C

#include <stdio.h>
#include "elk.h"

int main(void) {
  char mem[200];
  struct js *js = js_create(mem, sizeof(mem));  // Create JS instance
  jsval_t v = js_eval(js, "1 + 2 * 3", ~0);     // Execute JS code
  printf("result: %s\n", js_str(js, v));        // result: 7
  return 0;
}

Call C from JavaScript

This demonstrates how JS code can import and call existing C functions:

#include <stdio.h>
#include "elk.h"

// C function that adds two numbers. Will be called from JS
int sum(int a, int b) {
  return a + b;
}

int main(void) {
  char mem[200];
  struct js *js = js_create(mem, sizeof(mem));  // Create JS instance
  jsval_t v = js_import(js, sum, "iii");        // Import C function "sum"
  js_set(js, js_glob(js), "f", v);              // Under the name "f"
  jsval_t result = js_eval(js, "f(3, 4);", ~0); // Call "f"
  printf("result: %s\n", js_str(js, result));   // result: 7
  return 0;
}

Supported features

  • Operations: all standard JS operations except:
    • !=, ==. Use strict comparison !==, ===
    • No ternary operator a ? b : c
    • No computed member access a[b]
  • Typeof: typeof('a') === 'string'
  • While: while (...) { ... }
  • Conditional: if (...) ... else ...
  • Simple types: let a, b, c = 12.3, d = 'a', e = null, f = true, g = false;
  • Functions: let f = function(x, y) { return x + y; };
  • Objects: let obj = {f: function(x) { return x * 2}}; obj.f(3);
  • Every statement must end with a semicolon ;
  • Strings are binary data chunks, not Unicode strings: 'Київ'.length === 8

Not supported features

  • No var, no const. Use let (strict mode only)
  • No do, switch, for. Use while
  • No => functions. Use let f = function(...) {...};
  • No arrays, closures, prototypes, this, new, delete
  • No standard library: no Date, Regexp, Function, String, Number

Performance

Since Elk parses and interprets JS code on the fly, it is not meant to be used in a performance-critical scenarios. For example, below are the numbers for a simple loop code on a different architectures.

let a = 0;        // 97 milliseconds on a 16Mhz 8-bit Atmega328P (Arduino Uno and alike)
while (a < 100)   // 16 milliseconds on a 48Mhz SAMD21
  a++;            //  5 milliseconds on a 133Mhz Raspberry RP2040
                  //  2 milliseconds on a 240Mhz ESP32

Build options

Available preprocessor definitions:

NameDefaultDescription
JS_EXPR_MAX20Maximum tokens in expression. Expression evaluation function declares an on-stack array jsval_t stk[JS_EXPR_MAX];. Increase to allow very long expressions. Reduce to save C stack space.
JS_DUMPundefinedDefine to enable js_dump(struct js *) function which prints JS memory internals to stdout

Note: on ESP32 or ESP8266, compiled functions go into the .text ELF section and subsequently into the IRAM MCU memory. It is possible to save IRAM space by copying Elk code into the irom section before linking. First, compile the object file, then rename .text section, e.g. for ESP32:

$ xtensa-esp32-elf-gcc $CFLAGS elk.c -c elk.tmp
$ xtensa-esp32-elf-objcopy --rename-section .text=.irom0.text elk.tmp elk.o

API reference

js_create()

struct js *js_create(void *buf, size_t len);

Initialize JS engine in a given memory block. Elk will only use that memory block to hold its runtime, and never use any extra memory. Return: a non-NULL opaque pointer on success, or NULL when len is too small. The minimum len is about 100 bytes.

The given memory buffer is laid out in the following way:

  | <-------------------------------- len ------------------------------> |
  | struct js, ~100 bytes  |   runtime vars    |    free memory           | 

js_eval()

jsval_t js_eval(struct js *, const char *buf, size_t len);

Evaluate JS code in buf, len and return result of the evaluation. During the evaluation, Elk stores variables in the "runtime" memory section. When js_eval() returns, Elk does not keep any reference to the evaluated code: all strings, functions, etc, are copied to the runtime.

Important note: the returned result is valid only before the next call to js_eval(). The reason is that js_eval() triggers a garbage collection. A garbage collection is mark-and-sweep, run before every top-level statement gets executed.

The runtime footprint is as follows:

  • An empty object is 8 bytes
  • Each object property is 16 bytes
  • A string is 4 bytes + string length, aligned to 4 byte boundary
  • A C stack usage is ~200 bytes per nested expression evaluation

js_str()

const char *js_str(struct js *, jsval_t val);

Stringify JS value val and return a pointer to a 0-terminated result. The string is allocated in the "free" memory section. If there is no enough space there, an empty string is returned. The returned pointer is valid until the next js_eval() call.

js_import()

jsval_t js_import(struct js *js, uintptr_t funcaddr, const char *signature);

Import an existing C function with address funcaddr and signature signature. Return imported function, suitable for subsequent js_set().

  • js: JS instance
  • funcaddr: C function address: (uintptr_t) &my_function
  • signature: specifies C function signature that tells how JS engine should marshal JS arguments to the C function. First letter specifies return value type, following letters - parameters:
    • b: a C bool type
    • d: a C double type
    • i: a C integer type: char, short, int, long
    • s: a C string, a 0-terminated char *
    • j: a jsval_t
    • m: a current struct js *. In JS, pass null
    • p: any C pointer
    • v: valid only for the return value, means void

The imported C function must satisfy the following requirements:

  • A function must have maximum 6 parameters
  • C double parameters could be only 1st or 2nd. For example, function void foo(double x, double y, struct bar *) could be imported, but void foo(struct bar *, double x, double y) could not
  • C++ functions must be declared as extern "C"
  • Functions with float params cannot be imported. Write wrappers with double

Here are some example of the import specifications:

  • int sum(int) -> js_import(js, (uintptr_t) sum, "ii")
  • double sub(double a, double b) -> js_import(js, (uintptr_t) sub, "ddd")
  • int rand(void) -> js_import(js, (uintptr_t) rand, "i")
  • unsigned long strlen(char *s) -> js_import(js, (uintptr_t) strlen, "is")
  • char *js_str(struct js *, js_val_t) -> js_import(js, (uintptr_t) js_str, "smj")

In some cases, C APIs use callback functions. For example, a timer C API could specify a time interval, a C function to call, and a function parameter. It is possible to marshal JS function as a C callback - in other words, it is possible to pass JS functions as C callbacks.

A C callback function should take between 1 and 6 arguments. One of these arguments must be a void * pointer, that is passed to the C callback by the imported function. We call this void * parameter a "userdata" parameter.

The C callback specification is enclosed into the square brackets [...]. In addition to the signature letters above, a new letter u is available that specifies userdata parameter. In JS, pass null for u param. Here is a complete example:

#include <stdio.h>
#include "elk.h"

// C function that invokes a callback and returns the result of invocation
int f(int (*fn)(int a, int b, void *userdata), void *userdata) {
  return fn(1, 2, userdata);
}

int main(void) {
  char mem[500];
  struct js *js = js_create(mem, sizeof(mem));
  js_set(js, js_glob(js), "f", js_import(js, f, "i[iiiu]u"));
  jsval_t v = js_eval(js, "f(function(a,b,c){return a + b;}, 0);", ~0);
  printf("result: %s\n", js_str(js, v));  // result: 3
  return 0;
}

js_set(), js_glob(), js_mkobj()

jsval_t js_glob(struct js *);   // Return global object
jsval_t js_mkobj(struct js *);  // Create a new object
void js_set(struct js *, jsval_t obj, const char *key, jsval_t val);  // Assign property to an object

These are helper functions for assigning properties to objects. The anticipated use case is to give names to imported C functions.

Importing a C function sum into the global namespace:

  jsval_t global_namespace = js_glob(js);
  jsval_t imported_function = js_import(js, (uintptr_t) sum, "iii");
  js_set(js, global_namespace, "f", imported_function);

Use js_mkobj() to create a dedicated object to hold groups of functions and keep a global namespace tidy. For example, all GPIO related functions can go into the gpio object:

  jsval_t gpio = js_mkobj(js);              // Equivalent to:
  js_set(js, js_glob(js), "gpio", gpio);    // let gpio = {};

  js_set(js, gpio, "mode",  js_import(js, (uintptr_t) func1, "iii");  // Create gpio.mode(pin, mode)
  js_set(js, gpio, "read",  js_import(js, (uintptr_t) func2, "ii");   // Create gpio.read(pin)
  js_set(js, gpio, "write", js_import(js, (uintptr_t) func3, "iii");  // Create gpio.write(pin, value)

js_usage()

int js_usage(struct js *);

Return memory usage percentage - a number between 0 and 100.

Download Details:
Author: cesanta
Download Link: Download The Source Code
Official Website: https://github.com/cesanta/elk 
License: GPLv2

#javascript

 

Marcus Anthony

1609310382

Letgo Clone | Letgo Clone App | Buy and Sell Classified Marketplace Script

The reseller e-commerce business has become the talk of the town. The reason for the huge eminence of reseller e-commerce in today’s world is due to the benefits it assures. With a robust and user-friendly app, your reseller e-commerce business is sure to take you places.

Before stepping out to invest in the reseller e-commerce business, consider launching an app like Letgo that is armed with several rich features. In this blog, you will get to know the list of features of the app that will make your reseller business a sure-shot success.

Inventory management- Sellers can restock and manage the inventory without any hassles.

Catalog management- Sellers can sort and group their products under categories. Also, sellers can add or remove products from the catalog in just a few taps.

Diverse payment options- The app offers users with multiple payment options with which they can make their payments by choosing the convenient payment option.

Push notifications- The push notifications are integral in keeping users up-to-date with your app. Alerts regarding new product arrival, offers, updates, etc. can be sent via push notifications.

These are the features that will give an extraordinary user experience. Let us next learn about the revenue model of the app.

Commission fees- Sellers who get orders via your app will pay commission fees. Associating with multiple sellers will amplify the revenue through commission fees.

Promotional content- You can promote sellers’ products on your app under the digital banner section.

Premium services- You can allow access to certain advanced features on a paid basis to users. Formulate monthly or yearly subscription plans so that users can choose their convenient plan.

Conclusion

The Letgo clone script is the best reseller e-commerce app to invest in. Head towards to find the app developer who has experience in building clone apps with robust functional models.

##letgo clone ##letgo clone app ##letgo clone script ##letgo clone app development ##letgo clone software ##letgo clone open source