Madisyn  Lakin

Madisyn Lakin

1626958860

DISPLAY YOUR FORM ERRORS

Control the error state of your form by displaying form errors from an external source like your app, a domain checker, or one of your APIs.

#react #javascript #errors

What is GEEK

Buddha Community

DISPLAY YOUR FORM ERRORS

Face Recognition with OpenCV and Python

Introduction

What is face recognition? Or what is recognition? When you look at an apple fruit, your mind immediately tells you that this is an apple fruit. This process, your mind telling you that this is an apple fruit is recognition in simple words. So what is face recognition then? I am sure you have guessed it right. When you look at your friend walking down the street or a picture of him, you recognize that he is your friend Paulo. Interestingly when you look at your friend or a picture of him you look at his face first before looking at anything else. Ever wondered why you do that? This is so that you can recognize him by looking at his face. Well, this is you doing face recognition.

But the real question is how does face recognition works? It is quite simple and intuitive. Take a real life example, when you meet someone first time in your life you don't recognize him, right? While he talks or shakes hands with you, you look at his face, eyes, nose, mouth, color and overall look. This is your mind learning or training for the face recognition of that person by gathering face data. Then he tells you that his name is Paulo. At this point your mind knows that the face data it just learned belongs to Paulo. Now your mind is trained and ready to do face recognition on Paulo's face. Next time when you will see Paulo or his face in a picture you will immediately recognize him. This is how face recognition work. The more you will meet Paulo, the more data your mind will collect about Paulo and especially his face and the better you will become at recognizing him.

Now the next question is how to code face recognition with OpenCV, after all this is the only reason why you are reading this article, right? OK then. You might say that our mind can do these things easily but to actually code them into a computer is difficult? Don't worry, it is not. Thanks to OpenCV, coding face recognition is as easier as it feels. The coding steps for face recognition are same as we discussed it in real life example above.

  • Training Data Gathering: Gather face data (face images in this case) of the persons you want to recognize
  • Training of Recognizer: Feed that face data (and respective names of each face) to the face recognizer so that it can learn.
  • Recognition: Feed new faces of the persons and see if the face recognizer you just trained recognizes them.

OpenCV comes equipped with built in face recognizer, all you have to do is feed it the face data. It's that simple and this how it will look once we are done coding it.

visualization

OpenCV Face Recognizers

OpenCV has three built in face recognizers and thanks to OpenCV's clean coding, you can use any of them by just changing a single line of code. Below are the names of those face recognizers and their OpenCV calls.

  1. EigenFaces Face Recognizer Recognizer - cv2.face.createEigenFaceRecognizer()
  2. FisherFaces Face Recognizer Recognizer - cv2.face.createFisherFaceRecognizer()
  3. Local Binary Patterns Histograms (LBPH) Face Recognizer - cv2.face.createLBPHFaceRecognizer()

We have got three face recognizers but do you know which one to use and when? Or which one is better? I guess not. So why not go through a brief summary of each, what you say? I am assuming you said yes :) So let's dive into the theory of each.

EigenFaces Face Recognizer

This algorithm considers the fact that not all parts of a face are equally important and equally useful. When you look at some one you recognize him/her by his distinct features like eyes, nose, cheeks, forehead and how they vary with respect to each other. So you are actually focusing on the areas of maximum change (mathematically speaking, this change is variance) of the face. For example, from eyes to nose there is a significant change and same is the case from nose to mouth. When you look at multiple faces you compare them by looking at these parts of the faces because these parts are the most useful and important components of a face. Important because they catch the maximum change among faces, change the helps you differentiate one face from the other. This is exactly how EigenFaces face recognizer works.

EigenFaces face recognizer looks at all the training images of all the persons as a whole and try to extract the components which are important and useful (the components that catch the maximum variance/change) and discards the rest of the components. This way it not only extracts the important components from the training data but also saves memory by discarding the less important components. These important components it extracts are called principal components. Below is an image showing the principal components extracted from a list of faces.

Principal Components eigenfaces_opencv source

You can see that principal components actually represent faces and these faces are called eigen faces and hence the name of the algorithm.

So this is how EigenFaces face recognizer trains itself (by extracting principal components). Remember, it also keeps a record of which principal component belongs to which person. One thing to note in above image is that Eigenfaces algorithm also considers illumination as an important component.

Later during recognition, when you feed a new image to the algorithm, it repeats the same process on that image as well. It extracts the principal component from that new image and compares that component with the list of components it stored during training and finds the component with the best match and returns the person label associated with that best match component.

Easy peasy, right? Next one is easier than this one.

FisherFaces Face Recognizer

This algorithm is an improved version of EigenFaces face recognizer. Eigenfaces face recognizer looks at all the training faces of all the persons at once and finds principal components from all of them combined. By capturing principal components from all the of them combined you are not focusing on the features that discriminate one person from the other but the features that represent all the persons in the training data as a whole.

This approach has drawbacks, for example, images with sharp changes (like light changes which is not a useful feature at all) may dominate the rest of the images and you may end up with features that are from external source like light and are not useful for discrimination at all. In the end, your principal components will represent light changes and not the actual face features.

Fisherfaces algorithm, instead of extracting useful features that represent all the faces of all the persons, it extracts useful features that discriminate one person from the others. This way features of one person do not dominate over the others and you have the features that discriminate one person from the others.

Below is an image of features extracted using Fisherfaces algorithm.

Fisher Faces eigenfaces_opencv source

You can see that features extracted actually represent faces and these faces are called fisher faces and hence the name of the algorithm.

One thing to note here is that even in Fisherfaces algorithm if multiple persons have images with sharp changes due to external sources like light they will dominate over other features and affect recognition accuracy.

Getting bored with this theory? Don't worry, only one face recognizer is left and then we will dive deep into the coding part.

Local Binary Patterns Histograms (LBPH) Face Recognizer

I wrote a detailed explaination on Local Binary Patterns Histograms in my previous article on face detection using local binary patterns histograms. So here I will just give a brief overview of how it works.

We know that Eigenfaces and Fisherfaces are both affected by light and in real life we can't guarantee perfect light conditions. LBPH face recognizer is an improvement to overcome this drawback.

Idea is to not look at the image as a whole instead find the local features of an image. LBPH alogrithm try to find the local structure of an image and it does that by comparing each pixel with its neighboring pixels.

Take a 3x3 window and move it one image, at each move (each local part of an image), compare the pixel at the center with its neighbor pixels. The neighbors with intensity value less than or equal to center pixel are denoted by 1 and others by 0. Then you read these 0/1 values under 3x3 window in a clockwise order and you will have a binary pattern like 11100011 and this pattern is local to some area of the image. You do this on whole image and you will have a list of local binary patterns.

LBP Labeling LBP labeling

Now you get why this algorithm has Local Binary Patterns in its name? Because you get a list of local binary patterns. Now you may be wondering, what about the histogram part of the LBPH? Well after you get a list of local binary patterns, you convert each binary pattern into a decimal number (as shown in above image) and then you make a histogram of all of those values. A sample histogram looks like this.

Sample Histogram LBP labeling

I guess this answers the question about histogram part. So in the end you will have one histogram for each face image in the training data set. That means if there were 100 images in training data set then LBPH will extract 100 histograms after training and store them for later recognition. Remember, algorithm also keeps track of which histogram belongs to which person.

Later during recognition, when you will feed a new image to the recognizer for recognition it will generate a histogram for that new image, compare that histogram with the histograms it already has, find the best match histogram and return the person label associated with that best match histogram. 

Below is a list of faces and their respective local binary patterns images. You can see that the LBP images are not affected by changes in light conditions.

LBP Faces LBP faces source

The theory part is over and now comes the coding part! Ready to dive into coding? Let's get into it then.

Coding Face Recognition with OpenCV

The Face Recognition process in this tutorial is divided into three steps.

  1. Prepare training data: In this step we will read training images for each person/subject along with their labels, detect faces from each image and assign each detected face an integer label of the person it belongs to.
  2. Train Face Recognizer: In this step we will train OpenCV's LBPH face recognizer by feeding it the data we prepared in step 1.
  3. Testing: In this step we will pass some test images to face recognizer and see if it predicts them correctly.

[There should be a visualization diagram for above steps here]

To detect faces, I will use the code from my previous article on face detection. So if you have not read it, I encourage you to do so to understand how face detection works and its Python coding.

Import Required Modules

Before starting the actual coding we need to import the required modules for coding. So let's import them first.

  • cv2: is OpenCV module for Python which we will use for face detection and face recognition.
  • os: We will use this Python module to read our training directories and file names.
  • numpy: We will use this module to convert Python lists to numpy arrays as OpenCV face recognizers accept numpy arrays.
#import OpenCV module
import cv2
#import os module for reading training data directories and paths
import os
#import numpy to convert python lists to numpy arrays as 
#it is needed by OpenCV face recognizers
import numpy as np

#matplotlib for display our images
import matplotlib.pyplot as plt
%matplotlib inline 

Training Data

The more images used in training the better. Normally a lot of images are used for training a face recognizer so that it can learn different looks of the same person, for example with glasses, without glasses, laughing, sad, happy, crying, with beard, without beard etc. To keep our tutorial simple we are going to use only 12 images for each person.

So our training data consists of total 2 persons with 12 images of each person. All training data is inside training-data folder. training-data folder contains one folder for each person and each folder is named with format sLabel (e.g. s1, s2) where label is actually the integer label assigned to that person. For example folder named s1 means that this folder contains images for person 1. The directory structure tree for training data is as follows:

training-data
|-------------- s1
|               |-- 1.jpg
|               |-- ...
|               |-- 12.jpg
|-------------- s2
|               |-- 1.jpg
|               |-- ...
|               |-- 12.jpg

The test-data folder contains images that we will use to test our face recognizer after it has been successfully trained.

As OpenCV face recognizer accepts labels as integers so we need to define a mapping between integer labels and persons actual names so below I am defining a mapping of persons integer labels and their respective names.

Note: As we have not assigned label 0 to any person so the mapping for label 0 is empty.

#there is no label 0 in our training data so subject name for index/label 0 is empty
subjects = ["", "Tom Cruise", "Shahrukh Khan"]

Prepare training data

You may be wondering why data preparation, right? Well, OpenCV face recognizer accepts data in a specific format. It accepts two vectors, one vector is of faces of all the persons and the second vector is of integer labels for each face so that when processing a face the face recognizer knows which person that particular face belongs too.

For example, if we had 2 persons and 2 images for each person.

PERSON-1    PERSON-2   

img1        img1         
img2        img2

Then the prepare data step will produce following face and label vectors.

FACES                        LABELS

person1_img1_face              1
person1_img2_face              1
person2_img1_face              2
person2_img2_face              2

Preparing data step can be further divided into following sub-steps.

  1. Read all the folder names of subjects/persons provided in training data folder. So for example, in this tutorial we have folder names: s1, s2.
  2. For each subject, extract label number. Do you remember that our folders have a special naming convention? Folder names follow the format sLabel where Label is an integer representing the label we have assigned to that subject. So for example, folder name s1 means that the subject has label 1, s2 means subject label is 2 and so on. The label extracted in this step is assigned to each face detected in the next step.
  3. Read all the images of the subject, detect face from each image.
  4. Add each face to faces vector with corresponding subject label (extracted in above step) added to labels vector.

[There should be a visualization for above steps here]

Did you read my last article on face detection? No? Then you better do so right now because to detect faces, I am going to use the code from my previous article on face detection. So if you have not read it, I encourage you to do so to understand how face detection works and its coding. Below is the same code.

#function to detect face using OpenCV
def detect_face(img):
    #convert the test image to gray image as opencv face detector expects gray images
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    #load OpenCV face detector, I am using LBP which is fast
    #there is also a more accurate but slow Haar classifier
    face_cascade = cv2.CascadeClassifier('opencv-files/lbpcascade_frontalface.xml')

    #let's detect multiscale (some images may be closer to camera than others) images
    #result is a list of faces
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5);
    
    #if no faces are detected then return original img
    if (len(faces) == 0):
        return None, None
    
    #under the assumption that there will be only one face,
    #extract the face area
    (x, y, w, h) = faces[0]
    
    #return only the face part of the image
    return gray[y:y+w, x:x+h], faces[0]

I am using OpenCV's LBP face detector. On line 4, I convert the image to grayscale because most operations in OpenCV are performed in gray scale, then on line 8 I load LBP face detector using cv2.CascadeClassifier class. After that on line 12 I use cv2.CascadeClassifier class' detectMultiScale method to detect all the faces in the image. on line 20, from detected faces I only pick the first face because in one image there will be only one face (under the assumption that there will be only one prominent face). As faces returned by detectMultiScale method are actually rectangles (x, y, width, height) and not actual faces images so we have to extract face image area from the main image. So on line 23 I extract face area from gray image and return both the face image area and face rectangle.

Now you have got a face detector and you know the 4 steps to prepare the data, so are you ready to code the prepare data step? Yes? So let's do it.

#this function will read all persons' training images, detect face from each image
#and will return two lists of exactly same size, one list 
# of faces and another list of labels for each face
def prepare_training_data(data_folder_path):
    
    #------STEP-1--------
    #get the directories (one directory for each subject) in data folder
    dirs = os.listdir(data_folder_path)
    
    #list to hold all subject faces
    faces = []
    #list to hold labels for all subjects
    labels = []
    
    #let's go through each directory and read images within it
    for dir_name in dirs:
        
        #our subject directories start with letter 's' so
        #ignore any non-relevant directories if any
        if not dir_name.startswith("s"):
            continue;
            
        #------STEP-2--------
        #extract label number of subject from dir_name
        #format of dir name = slabel
        #, so removing letter 's' from dir_name will give us label
        label = int(dir_name.replace("s", ""))
        
        #build path of directory containin images for current subject subject
        #sample subject_dir_path = "training-data/s1"
        subject_dir_path = data_folder_path + "/" + dir_name
        
        #get the images names that are inside the given subject directory
        subject_images_names = os.listdir(subject_dir_path)
        
        #------STEP-3--------
        #go through each image name, read image, 
        #detect face and add face to list of faces
        for image_name in subject_images_names:
            
            #ignore system files like .DS_Store
            if image_name.startswith("."):
                continue;
            
            #build image path
            #sample image path = training-data/s1/1.pgm
            image_path = subject_dir_path + "/" + image_name

            #read image
            image = cv2.imread(image_path)
            
            #display an image window to show the image 
            cv2.imshow("Training on image...", image)
            cv2.waitKey(100)
            
            #detect face
            face, rect = detect_face(image)
            
            #------STEP-4--------
            #for the purpose of this tutorial
            #we will ignore faces that are not detected
            if face is not None:
                #add face to list of faces
                faces.append(face)
                #add label for this face
                labels.append(label)
            
    cv2.destroyAllWindows()
    cv2.waitKey(1)
    cv2.destroyAllWindows()
    
    return faces, labels

I have defined a function that takes the path, where training subjects' folders are stored, as parameter. This function follows the same 4 prepare data substeps mentioned above.

(step-1) On line 8 I am using os.listdir method to read names of all folders stored on path passed to function as parameter. On line 10-13 I am defining labels and faces vectors.

(step-2) After that I traverse through all subjects' folder names and from each subject's folder name on line 27 I am extracting the label information. As folder names follow the sLabel naming convention so removing the letter s from folder name will give us the label assigned to that subject.

(step-3) On line 34, I read all the images names of of the current subject being traversed and on line 39-66 I traverse those images one by one. On line 53-54 I am using OpenCV's imshow(window_title, image) along with OpenCV's waitKey(interval) method to display the current image being traveresed. The waitKey(interval) method pauses the code flow for the given interval (milliseconds), I am using it with 100ms interval so that we can view the image window for 100ms. On line 57, I detect face from the current image being traversed.

(step-4) On line 62-66, I add the detected face and label to their respective vectors.

But a function can't do anything unless we call it on some data that it has to prepare, right? Don't worry, I have got data of two beautiful and famous celebrities. I am sure you will recognize them!

training-data

Let's call this function on images of these beautiful celebrities to prepare data for training of our Face Recognizer. Below is a simple code to do that.

#let's first prepare our training data
#data will be in two lists of same size
#one list will contain all the faces
#and other list will contain respective labels for each face
print("Preparing data...")
faces, labels = prepare_training_data("training-data")
print("Data prepared")

#print total faces and labels
print("Total faces: ", len(faces))
print("Total labels: ", len(labels))
Preparing data...
Data prepared
Total faces:  23
Total labels:  23

This was probably the boring part, right? Don't worry, the fun stuff is coming up next. It's time to train our own face recognizer so that once trained it can recognize new faces of the persons it was trained on. Read? Ok then let's train our face recognizer.

Train Face Recognizer

As we know, OpenCV comes equipped with three face recognizers.

  1. EigenFace Recognizer: This can be created with cv2.face.createEigenFaceRecognizer()
  2. FisherFace Recognizer: This can be created with cv2.face.createFisherFaceRecognizer()
  3. Local Binary Patterns Histogram (LBPH): This can be created with cv2.face.LBPHFisherFaceRecognizer()

I am going to use LBPH face recognizer but you can use any face recognizer of your choice. No matter which of the OpenCV's face recognizer you use the code will remain the same. You just have to change one line, the face recognizer initialization line given below.

#create our LBPH face recognizer 
face_recognizer = cv2.face.createLBPHFaceRecognizer()

#or use EigenFaceRecognizer by replacing above line with 
#face_recognizer = cv2.face.createEigenFaceRecognizer()

#or use FisherFaceRecognizer by replacing above line with 
#face_recognizer = cv2.face.createFisherFaceRecognizer()

Now that we have initialized our face recognizer and we also have prepared our training data, it's time to train the face recognizer. We will do that by calling the train(faces-vector, labels-vector) method of face recognizer.

#train our face recognizer of our training faces
face_recognizer.train(faces, np.array(labels))

Did you notice that instead of passing labels vector directly to face recognizer I am first converting it to numpy array? This is because OpenCV expects labels vector to be a numpy array.

Still not satisfied? Want to see some action? Next step is the real action, I promise!

Prediction

Now comes my favorite part, the prediction part. This is where we actually get to see if our algorithm is actually recognizing our trained subjects's faces or not. We will take two test images of our celeberities, detect faces from each of them and then pass those faces to our trained face recognizer to see if it recognizes them.

Below are some utility functions that we will use for drawing bounding box (rectangle) around face and putting celeberity name near the face bounding box.

#function to draw rectangle on image 
#according to given (x, y) coordinates and 
#given width and heigh
def draw_rectangle(img, rect):
    (x, y, w, h) = rect
    cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
    
#function to draw text on give image starting from
#passed (x, y) coordinates. 
def draw_text(img, text, x, y):
    cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)

First function draw_rectangle draws a rectangle on image based on passed rectangle coordinates. It uses OpenCV's built in function cv2.rectangle(img, topLeftPoint, bottomRightPoint, rgbColor, lineWidth) to draw rectangle. We will use it to draw a rectangle around the face detected in test image.

Second function draw_text uses OpenCV's built in function cv2.putText(img, text, startPoint, font, fontSize, rgbColor, lineWidth) to draw text on image.

Now that we have the drawing functions, we just need to call the face recognizer's predict(face) method to test our face recognizer on test images. Following function does the prediction for us.

#this function recognizes the person in image passed
#and draws a rectangle around detected face with name of the 
#subject
def predict(test_img):
    #make a copy of the image as we don't want to chang original image
    img = test_img.copy()
    #detect face from the image
    face, rect = detect_face(img)

    #predict the image using our face recognizer 
    label= face_recognizer.predict(face)
    #get name of respective label returned by face recognizer
    label_text = subjects[label]
    
    #draw a rectangle around face detected
    draw_rectangle(img, rect)
    #draw name of predicted person
    draw_text(img, label_text, rect[0], rect[1]-5)
    
    return img
  • line-6 read the test image
  • line-7 detect face from test image
  • line-11 recognize the face by calling face recognizer's predict(face) method. This method will return a lable
  • line-12 get the name associated with the label
  • line-16 draw rectangle around the detected face
  • line-18 draw name of predicted subject above face rectangle

Now that we have the prediction function well defined, next step is to actually call this function on our test images and display those test images to see if our face recognizer correctly recognized them. So let's do it. This is what we have been waiting for.

print("Predicting images...")

#load test images
test_img1 = cv2.imread("test-data/test1.jpg")
test_img2 = cv2.imread("test-data/test2.jpg")

#perform a prediction
predicted_img1 = predict(test_img1)
predicted_img2 = predict(test_img2)
print("Prediction complete")

#create a figure of 2 plots (one for each test image)
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))

#display test image1 result
ax1.imshow(cv2.cvtColor(predicted_img1, cv2.COLOR_BGR2RGB))

#display test image2 result
ax2.imshow(cv2.cvtColor(predicted_img2, cv2.COLOR_BGR2RGB))

#display both images
cv2.imshow("Tom cruise test", predicted_img1)
cv2.imshow("Shahrukh Khan test", predicted_img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()
Predicting images...
Prediction complete

wohooo! Is'nt it beautiful? Indeed, it is!

End Notes

Face Recognition is a fascinating idea to work on and OpenCV has made it extremely simple and easy for us to code it. It just takes a few lines of code to have a fully working face recognition application and we can switch between all three face recognizers with a single line of code change. It's that simple.

Although EigenFaces, FisherFaces and LBPH face recognizers are good but there are even better ways to perform face recognition like using Histogram of Oriented Gradients (HOGs) and Neural Networks. So the more advanced face recognition algorithms are now a days implemented using a combination of OpenCV and Machine learning. I have plans to write some articles on those more advanced methods as well, so stay tuned!

Download Details:
Author: informramiz
Source Code: https://github.com/informramiz/opencv-face-recognition-python
License: MIT License

#opencv  #python #facerecognition 

Rylan  Becker

Rylan Becker

1668563924

Machine Learning Tutorial: Step By Step for Beginners

In this Machine Learning article, we learn about Machine Learning Tutorial: step by step for beginners. This Machine Learning tutorial provides both intermediate and basics of machine learning. It is designed for students and working professionals who are complete beginners. At the end of this tutorial, you will be able to make machine learning models that can perform complex tasks such as predicting the price of a house or recognizing the species of an Iris from the dimensions of its petal and sepal lengths. If you are not a complete beginner and are a bit familiar with Machine Learning, I would suggest starting with subtopic eight i.e, Types of Machine Learning.

Before we deep dive further, if you are keen to explore a course in Artificial Intelligence & Machine Learning do check out our Artificial Intelligence Courses available at Great Learning. Anyone could expect an average Salary Hike of 48% from this course. Participate in Great Learning’s career accelerate programs and placement drives and get hired by our pool of 500+ Hiring companies through our programs.

Before jumping into the tutorial, you should be familiar with Pandas and NumPy. This is important to understand the implementation part. There are no prerequisites for understanding the theory. Here are the subtopics that we are going to discuss in this tutorial:

What is Machine Learning?

Arthur Samuel coined the term Machine Learning in the year 1959. He was a pioneer in Artificial Intelligence and computer gaming, and defined Machine Learning as “Field of study that gives computers the capability to learn without being explicitly programmed”.

In simple terms, Machine Learning is an application of Artificial Intelligence (AI) which enables a program(software) to learn from the experiences and improve their self at a task without being explicitly programmed. For example, how would you write a program that can identify fruits based on their various properties, such as colour, shape, size or any other property?

One approach is to hardcode everything, make some rules and use them to identify the fruits. This may seem the only way and work but one can never make perfect rules that apply on all cases. This problem can be easily solved using machine learning without any rules which makes it more robust and practical. You will see how we will use machine learning to do this task in the coming sections.

Thus, we can say that Machine Learning is the study of making machines more human-like in their behaviour and decision making by giving them the ability to learn with minimum human intervention, i.e., no explicit programming. Now the question arises, how can a program attain any experience and from where does it learn? The answer is data. Data is also called the fuel for Machine Learning and we can safely say that there is no machine learning without data.

You may be wondering that the term Machine Learning has been introduced in 1959 which is a long way back, then why haven’t there been any mention of it till recent years? You may want to note that Machine Learning needs a huge computational power, a lot of data and devices which are capable of storing such vast data. We have only recently reached a point where we now have all these requirements and can practice Machine Learning.

How is it different from traditional programming?

Are you wondering how is Machine Learning different from traditional programming? Well, in traditional programming, we would feed the input data and a well written and tested program into a machine to generate output. When it comes to machine learning, input data along with the output associated with the data is fed into the machine during the learning phase, and it works out a program for itself.

Why do we need Machine Learning?

Machine Learning today has all the attention it needs. Machine Learning can automate many tasks, especially the ones that only humans can perform with their innate intelligence. Replicating this intelligence to machines can be achieved only with the help of machine learning. 

With the help of Machine Learning, businesses can automate routine tasks. It also helps in automating and quickly create models for data analysis. Various industries depend on vast quantities of data to optimize their operations and make intelligent decisions. Machine Learning helps in creating models that can process and analyze large amounts of complex data to deliver accurate results. These models are precise and scalable and function with less turnaround time. By building such precise Machine Learning models, businesses can leverage profitable opportunities and avoid unknown risks.

Image recognition, text generation, and many other use-cases are finding applications in the real world. This is increasing the scope for machine learning experts to shine as a sought after professionals. 

How Does Machine Learning Work?

A machine learning model learns from the historical data fed to it and then builds prediction algorithms to predict the output for the new set of data the comes in as input to the system. The accuracy of these models would depend on the quality and amount of input data. A large amount of data will help build a better model which predicts the output more accurately.

Suppose we have a complex problem at hand that requires to perform some predictions. Now, instead of writing a code, this problem could be solved by feeding the given data to generic machine learning algorithms. With the help of these algorithms, the machine will develop logic and predict the output. Machine learning has transformed the way we approach business and social problems. Below is a diagram that briefly explains the working of a machine learning model/ algorithm. our way of thinking about the problem.

History of Machine Learning

Nowadays, we can see some amazing applications of ML such as in self-driving cars, Natural Language Processing and many more. But Machine learning has been here for over 70 years now. It all started in 1943, when neurophysiologist Warren McCulloch and mathematician Walter Pitts wrote a paper about neurons, and how they work. They decided to create a model of this using an electrical circuit, and therefore, the neural network was born.

In 1950, Alan Turing created the “Turing Test” to determine if a computer has real intelligence. To pass the test, a computer must be able to fool a human into believing it is also human. In 1952, Arthur Samuel wrote the first computer learning program. The program was the game of checkers, and the IBM computer improved at the game the more it played, studying which moves made up winning strategies and incorporating those moves into its program.

Just after a few years, in 1957, Frank Rosenblatt designed the first neural network for computers (the perceptron), which simulates the thought processes of the human brain. Later, in 1967, the “nearest neighbor” algorithm was written, allowing computers to begin using very basic pattern recognition. This could be used to map a route for travelling salesmen, starting at a random city but ensuring they visit all cities during a short tour.

But we can say that in the 1990s we saw a big change. Now work on machine learning shifted from a knowledge-driven approach to a data-driven approach.  Scientists began to create programs for computers to analyze large amounts of data and draw conclusions or “learn” from the results.

In 1997, IBM’s Deep Blue became the first computer chess-playing system to beat a reigning world chess champion. Deep Blue used the computing power in the 1990s to perform large-scale searches of potential moves and select the best move. Just a decade before this, in 2006, Geoffrey Hinton created the term “deep learning” to explain new algorithms that help computers distinguish objects and text in images and videos.

Machine Learning at Present

The year 2012 saw the publication of an influential research paper by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever, describing a model that can dramatically reduce the error rate in image recognition systems. Meanwhile, Google’s X Lab developed a machine learning algorithm capable of autonomously browsing YouTube videos to identify the videos that contain cats. In 2016 AlphaGo (created by researchers at Google DeepMind to play the ancient Chinese game of Go) won four out of five matches against Lee Sedol, who has been the world’s top Go player for over a decade.

And now in 2020, OpenAI released GPT-3 which is the most powerful language model ever. It can write creative fiction, generate functioning code, compose thoughtful business memos and much more. Its possible use cases are limited only by our imaginations.

Features of Machine Learning

1. Automation: Nowadays in your Gmail account, there is a spam folder that contains all the spam emails. You might be wondering how does Gmail know that all these emails are spam? This is the work of Machine Learning. It recognizes the spam emails and thus, it is easy to automate this process. The ability to automate repetitive tasks is one of the biggest characteristics of machine learning. A huge number of organizations are already using machine learning-powered paperwork and email automation. In the financial sector, for example, a huge number of repetitive, data-heavy and predictable tasks are needed to be performed. Because of this, this sector uses different types of machine learning solutions to a great extent.

2. Improved customer experience: For any business, one of the most crucial ways to drive engagement, promote brand loyalty and establish long-lasting customer relationships is by providing a customized experience and providing better services. Machine Learning helps us to achieve both of them. Have you ever noticed that whenever you open any shopping site or see any ads on the internet, they are mostly about something that you recently searched for? This is because machine learning has enabled us to make amazing recommendation systems that are accurate. They help us customize the user experience. Now coming to the service, most of the companies nowadays have a chatting bot with them that are available 24×7. An example of this is Eva from AirAsia airlines. These bots provide intelligent answers and sometimes you might even not notice that you are having a conversation with a bot. These bots use Machine Learning, which helps them to provide a good user experience.

3. Automated data visualization: In the past, we have seen a huge amount of data being generated by companies and individuals. Take an example of companies like Google, Twitter, Facebook. How much data are they generating per day? We can use this data and visualize the notable relationships, thus giving businesses the ability to make better decisions that can actually benefit both companies as well as customers. With the help of user-friendly automated data visualization platforms such as AutoViz, businesses can obtain a wealth of new insights in an effort to increase productivity in their processes.

4. Business intelligence: Machine learning characteristics, when merged with big data analytics can help companies to find solutions to the problems that can help the businesses to grow and generate more profit. From retail to financial services to healthcare, and many more, ML has already become one of the most effective technologies to boost business operations.

Python provides flexibility in choosing between object-oriented programming or scripting. There is also no need to recompile the code; developers can implement any changes and instantly see the results. You can use Python along with other languages to achieve the desired functionality and results.

Python is a versatile programming language and can run on any platform including Windows, MacOS, Linux, Unix, and others. While migrating from one platform to another, the code needs some minor adaptations and changes, and it is ready to work on the new platform. To build strong foundation and cover basic concepts you can enroll in a python machine learning course that will help you power ahead your career.

Here is a summary of the benefits of using Python for Machine Learning problems:

machine learning tutorial

Types of Machine Learning

Machine learning has been broadly categorized into three categories

  1. Supervised Learning
  2. Unsupervised Learning
  3. Reinforcement Learning

What is Supervised Learning?

Let us start with an easy example, say you are teaching a kid to differentiate dogs from cats. How would you do it? 

You may show him/her a dog and say “here is a dog” and when you encounter a cat you would point it out as a cat. When you show the kid enough dogs and cats, he may learn to differentiate between them. If he is trained well, he may be able to recognize different breeds of dogs which he hasn’t even seen. 

Similarly, in Supervised Learning, we have two sets of variables. One is called the target variable, or labels (the variable we want to predict) and features(variables that help us to predict target variables). We show the program(model) the features and the label associated with these features and then the program is able to find the underlying pattern in the data. Take this example of the dataset where we want to predict the price of the house given its size. The price which is a target variable depends upon the size which is a feature.

Number of roomsPrice
1$100
3$300
5$500

In a real dataset, we will have a lot more rows and more than one features like size, location, number of floors and many more.

Thus, we can say that the supervised learning model has a set of input variables (x), and an output variable (y). An algorithm identifies the mapping function between the input and output variables. The relationship is y = f(x).

The learning is monitored or supervised in the sense that we already know the output and the algorithm are corrected each time to optimize its results. The algorithm is trained over the data set and amended until it achieves an acceptable level of performance.

We can group the supervised learning problems as:

Regression problems – Used to predict future values and the model is trained with the historical data. E.g., Predicting the future price of a house.

Classification problems – Various labels train the algorithm to identify items within a specific category. E.g., Dog or cat( as mentioned in the above example), Apple or an orange, Beer or wine or water.

What is Unsupervised Learning?

This approach is the one where we have no target variables, and we have only the input variable(features) at hand. The algorithm learns by itself and discovers an impressive structure in the data. 

The goal is to decipher the underlying distribution in the data to gain more knowledge about the data. 

We can group the unsupervised learning problems as:

Clustering: This means bundling the input variables with the same characteristics together. E.g., grouping users based on search history

Association: Here, we discover the rules that govern meaningful associations among the data set. E.g., People who watch ‘X’ will also watch ‘Y’.

What is Reinforcement Learning?

In this approach, machine learning models are trained to make a series of decisions based on the rewards and feedback they receive for their actions. The machine learns to achieve a goal in complex and uncertain situations and is rewarded each time it achieves it during the learning period. 

Reinforcement learning is different from supervised learning in the sense that there is no answer available, so the reinforcement agent decides the steps to perform a task. The machine learns from its own experiences when there is no training data set present.

In this tutorial, we are going to mainly focus on Supervised Learning and Unsupervised learning as these are quite easy to understand and implement.

Machine learning Algorithms

This may be the most time-consuming and difficult process in your journey of Machine Learning. There are many algorithms in Machine Learning and you don’t need to know them all in order to get started. But I would suggest, once you start practising Machine Learning, start learning about the most popular algorithms out there such as:

Here, I am going to give a brief overview of one of the simplest algorithms in Machine learning, the K-nearest neighbor Algorithm (which is a Supervised learning algorithm) and show how we can use it for Regression as well as for classification. I would highly recommend checking the Linear Regression and Logistic Regression as we are going to implement them and compare the results with KNN(K-nearest neighbor) algorithm in the implementation part.

You may want to note that there are usually separate algorithms for regression problems and classification problems. But by modifying an algorithm, we can use it for both classifications as well as regression as you will see below

K-Nearest Neighbor Algorithm

KNN belongs to a group of lazy learners. As opposed to eager learners such as logistic regression, SVM, neural nets, lazy learners just store the training data in memory. During the training phase, KNN arranges the data (sort of indexing process) in order to find the closest neighbours efficiently during the inference phase. Otherwise, it would have to compare each new case during inference with the whole dataset making it quite inefficient.

So if you are wondering what is a training phase, eager learners and lazy learners, for now just remember that training phase is when an algorithm learns from the data provided to it. For example, if you have gone through the Linear Regression algorithm linked above, during the training phase the algorithm tries to find the best fit line which is a process that includes a lot of computations and hence takes a lot of time and this type of algorithm is called eager learners. On the other hand, lazy learners are just like KNN which do not involve many computations and hence train faster.

K-NN for Classification Problem

Now let us see how we can use K-NN for classification. Here a hypothetical dataset which tries to predict if a person is male or female (labels) on the base of the height and weight (features).

Height(cm) -featureWeight(kg) -feature.Gender(label)
18780Male
16550Female
19999Male
14570Female
18087Male
17865Female
18760Male

Now let us plot these points:

K-NN algorithm

Now we have a new point that we want to classify, given that its height is 190 cm and weight is 100 Kg. Here is how K-NN will classify this point:

  1. Select the value of K, which the user selects which he thinks will be best after analysing the data.
  2. Measure the distance of new points from its nearest K number of points. There are various methods for calculating this distance, of which the most commonly known methods are – Euclidian, Manhattan (for continuous data points i.e regression problems) and Hamming distance (for categorical i.e for classification problems).
  3. Identify the class of the points that are more closer to the new point and label the new point accordingly. So if the majority of points closer to our new point belong to a certain “a” class than our new point is predicted to be from class “a”.

Now let us apply this algorithm to our own dataset. Let us first plot the new data point.

K-NN algorithm

Now let us take k=3 i.e, we will see the three closest points to the new point:

K-NN algorithm

Therefore, it is classified as Male:

K-NN algorithm

Now let us take the value of k=5 and see what happens:

K-NN algorithm

As we can see four of the points closest to our new data point are males and just one point is female, so we go with the majority and classify it as Male again. You must always select the value of K as an odd number when doing classification.

K-NN for a Regression problem

We have seen how we can use K-NN for classification. Now, let us see what changes are made to use it for regression. The algorithm is almost the same there is just one difference. In Classification, we checked for the majority of all nearest points. Here, we are going to take the average of all the nearest points and take that as predicted value. Let us again take the same example but here we have to predict the weight(label) of a person given his height(features).

Height(cm) -featureWeight(kg) -label
18780
16550
19999
14570
18087
17865
18760

Now we have new data point with a height of 160cm, we will predict its weight by taking the values of K as 1,2 and 4.

When K=1: The closest point to 160cm in our data is 165cm which has a weight of 50, so we conclude that the predicted weight is 50 itself.

When K=2: The two closest points are 165 and 145 which have weights equal to 50 and 70 respectively. Taking average we say that the predicted weight is (50+70)/2=60.

When K=4: Repeating the same process, now we take 4 closest points instead and hence we get 70.6 as predicted weight.

You might be thinking that this is really simple and there is nothing so special about Machine learning, it is just basic Mathematics. But remember this is the simplest algorithm and you will see much more complex algorithms once you move ahead in this journey.

At this stage, you must have a vague idea of how machine learning works, don’t worry if you are still confused. Also if you want to go a bit deep now, here is an excellent article – Gradient Descent in Machine Learning, which discusses how we use an optimization technique called as gradient descent to find a best-fit line in linear regression.

How To Choose Machine Learning Algorithm?

There are plenty of machine learning algorithms and it could be a tough task to decide which algorithm to choose for a specific application. The choice of the algorithm will depend on the objective of the problem you are trying to solve.

Let us take an example of a task to predict the type of fruit among three varieties, i.e., apple, banana, and orange. The predictions are based on the colour of the fruit. The picture depicts the results of ten different algorithms. The picture on the top left is the dataset. The data is classified into three categories: red, light blue and dark blue. There are some groupings. For instance, from the second image, everything in the upper left belongs to the red category, in the middle part, there is a mixture of uncertainty and light blue while the bottom corresponds to the dark category. The other images show different algorithms and how they try to classified the data.

Steps in Machine Learning

I wish Machine learning was just applying algorithms on your data and get the predicted values but it is not that simple. There are several steps in Machine Learning which are must for each project.

  1. Gathering Data: This is perhaps the most important and time-consuming process. In this step, we need to collect data that can help us to solve our problem. For example, if you want to predict the prices of the houses, we need an appropriate dataset that contains all the information about past house sales and then form a tabular structure. We are going to solve a similar problem in the implementation part.
  2. Preparing that data: Once we have the data, we need to bring it in proper format and preprocess it. There are various steps involved in pre-processing such as data cleaning, for example, if your dataset has some empty values or abnormal values(e.g, a string instead of a number) how are you going to deal with it? There are various ways in which we can but one simple way is to just drop the rows that have empty values. Also sometimes in the dataset, we might have columns that have no impact on our results such as id’s, we remove those columns as well. We usually use Data Visualization to visualize our data through graphs and diagrams and after analyzing the graphs, we decide which features are important. Data preprocessing is a vast topic and I would suggest checking out this article to know more about it.
  3. Choosing a model: Now our data is ready is to be fed into a Machine Learning algorithm. In case you are wondering what is a Model? Often “machine learning algorithm” is used interchangeably with “machine learning model.” A model is the output of a machine learning algorithm run on data. In simple terms when we implement the algorithm on all our data, we get an output which contains all the rules, numbers, and any other algorithm-specific data structures required to make predictions. For example, after implementing Linear Regression on our data we get an equation of the best fit line and this equation is termed as a model. The next step is usually training the model incase we don’t want to tune hyperparameters and select the default ones.
  4. Hyperparameter Tuning: Hyperparameters are crucial as they control the overall behavior of a machine learning model. The ultimate goal is to find an optimal combination of hyperparameters that gives us the best results. But what are these hyper-parameters? Remember the variable K in our K-NN algorithm. We got different results when we set different values of K. The best value for K is not predefined and is different for different datasets. There is no method to know the best value for K, but you can try different values and check for which value do we get the best results. Here K is a hyperparameter and each algorithm has its own hyperparameters and we need to tune their values to get the best results. To get more information about it, check out this article – Hyperparameter Tuning Explained.
  5. Evaluation: You may be wondering, how can you know if the model is performing good or bad. What better way than testing the model on some data. This data is known as testing data and it must not be a subset of the data (training data) on which we trained the algorithm. The objective of training the model is not for it to learn all the values in the training dataset but to identify the underlying pattern in data and based on that make predictions on data it has never seen before. There are various evaluation methods such as K-fold cross-validation and many more. We are going to discuss this step in detail in the coming section.
  6. Prediction: Now that our model has performed well on the testing set as well, we can use it in real-world and hope it is going to perform well on real-world data.

machine learning tutorial

Evaluation of Machine learning Model

For evaluating the model, we hold out a portion of data called test data and do not use this data to train the model. Later, we use test data to evaluate various metrics.

The results of predictive models can be viewed in various forms such as by using confusion matrix, root-mean-squared error(RMSE), AUC-ROC etc.

TP (True Positive) is the number of values predicted to be positive by the algorithm and was actually positive in the dataset. TN represents the number of values that are expected to not belong to the positive class and actually do not belong to it. FP depicts the number of instances misclassified as belonging to the positive class thus is actually part of the negative class. FN shows the number of instances classified as the negative class but should belong to the positive class. 

Now in Regression problem, we usually use RMSE as evaluation metrics. In this evaluation technique, we use the error term.

Let’s say you feed a model some input X and the model predicts 10, but the actual value is 5. This difference between your prediction (10) and the actual observation (5) is the error term: (f_prediction – i_actual). The formula to calculate RMSE is given by:

machine learning tutorial

Where N is a total number of samples for which we are calculating RMSE.

In a good model, the RMSE should be as low as possible and there should not be much difference between RMSE calculated over training data and RMSE calculated over the testing set. 

Python for Machine Learning

Although there are many languages that can be used for machine learning, according to me, Python is hands down the best programming language for Machine Learning applications. This is due to the various benefits mentioned in the section below. Other programming languages that could to use for Machine Learning Applications are R, C++, JavaScript, Java, C#, Julia, Shell, TypeScript, and Scala. R is also a really good language to get started with machine learning.

Python is famous for its readability and relatively lower complexity as compared to other programming languages. Machine Learning applications involve complex concepts like calculus and linear algebra which take a lot of effort and time to implement. Python helps in reducing this burden with quick implementation for the Machine Learning engineer to validate an idea. You can check out the Python Tutorial to get a basic understanding of the language. Another benefit of using Python in Machine Learning is the pre-built libraries. There are different packages for a different type of applications, as mentioned below:

  1. Numpy, OpenCV, and Scikit are used when working with images
  2. NLTK along with Numpy and Scikit again when working with text
  3. Librosa for audio applications
  4. Matplotlib, Seaborn, and Scikit for data representation
  5. TensorFlow and Pytorch for Deep Learning applications
  6. Scipy for Scientific Computing
  7. Django for integrating web applications
  8. Pandas for high-level data structures and analysis

Implementation of algorithms in Machine Learning with Python

Before moving on to the implementation of machine learning with Python part, you need to download some important software and libraries. Anaconda is an open-source distribution that makes it easy to perform Python/R data science and machine learning on a single machine. It contains all most all the libraries that are needed by us. In this tutorial, we are mostly going to use the scikit-learn library which is a free software machine learning library for the Python programming language.

Now, we are going to implement all that we learnt till now. We will solve a Regression problem and then a Classification problem using the seven steps mentioned above.

Implementation of a Regression problem

We have a problem of predicting the prices of the house given some features such as size, number of rooms and many more. So let us get started:

  1. Gathering data: We don’t need to manually collect the data for past sales of houses. Luckily there are some good people who do it for us and make these datasets available for us to use. Also let me mention not all datasets are free but for you to practice, you will find most of the datasets free to use on the internet.

The dataset we are using is called the Boston Housing dataset. Each record in the database describes a Boston suburb or town. The data was drawn from the Boston Standard Metropolitan Statistical Area (SMSA) in 1970. The attributes are defined as follows (taken from the UCI Machine Learning Repository).

  1. CRIM: per capita crime rate by town
  2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
  3. INDUS: proportion of non-retail business acres per town
  4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
  5. NOX: nitric oxides concentration (parts per 10 million)
  6. RM: average number of rooms per dwelling
  7. AGE: the proportion of owner-occupied units built prior to 1940
  8. DIS: weighted distances to five Boston employment centers
  9. RAD: index of accessibility to radial highways
  10. TAX: full-value property-tax rate per $10,000
  11. PTRATIO: pupil-teacher ratio by town 
  12. B: 1000(Bk−0.63)2 where Bk is the proportion of blacks by town 
  13. LSTAT: % lower status of the population
  14. MEDV: Median value of owner-occupied homes in $1000s

Here is a link to download this dataset.

Now after opening the file you can see the data about House sales. This dataset is not in a proper tabular form, in fact, there are no column names and each value is separated by spaces. We are going to use Pandas to put it in proper tabular form. We will provide it with a list containing column names and also use delimiter as ‘\s+’ which means that after encounterings a single or multiple spaces, it can differentiate every single entry.

We are going to import all the necessary libraries such as Pandas and NumPy. Next, we will import the data file which is in CSV format into a pandas DataFrame.

import numpy as np
import pandas as pd
column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX','PTRATIO', 'B', 'LSTAT', 'MEDV']
bos1 = pd.read_csv('housing.csv', delimiter=r"\s+", names=column_names)

machine learning tutorial

2. Preprocess Data: The next step is to pre-process the data. Now for this dataset, we can see that there are no NaN (missing) values and also all the data is in numbers rather than strings so we won’t face any errors when training the model. So let us just divide our data into training data and testing data such that 70% of data is training data and the rest is testing data. We could also scale our data to make the predictions much accurate but for now, let us keep it simple.

bos1.isna().sum()

machine learning tutorial

from sklearn.model_selection import train_test_split
X=np.array(bos1.iloc[:,0:13])
Y=np.array(bos1["MEDV"])
#testing data size is of 30% of entire data
x_train, x_test, y_train, y_test =train_test_split(X,Y, test_size = 0.30, random_state =5)

3. Choose a Model: For this particular problem, we are going to use two algorithms of supervised learning that can solve regression problems and later compare their results. One algorithm is K-NN (K-nearest Neighbor) which is explained above and the other is Linear Regression. I would highly recommend to check it out in case you haven’t already.

from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
#load our first model 
lr = LinearRegression()
#train the model on training data
lr.fit(x_train,y_train)
#predict the testing data so that we can later evaluate the model
pred_lr = lr.predict(x_test)
#load the second model
Nn=KNeighborsRegressor(3)
Nn.fit(x_train,y_train)
pred_Nn = Nn.predict(x_test)

4. Hyperparameter Tuning: Since this is a beginners tutorial, here, I am only going to turn the value ok K in the K-NN model. I will just use a for loop and check results of k ranging from 1 to 50. K-NN is extremely fast on small dataset like ours so it won’t take any time. There are much more advanced methods of doing this which you can find linked in the steps of Machine Learning section above.

import sklearn
for i in range(1,50):
    model=KNeighborsRegressor(i)
    model.fit(x_train,y_train)
    pred_y = model.predict(x_test)
    mse = sklearn.metrics.mean_squared_error(y_test, pred_y,squared=False)
    print("{} error for k = {}".format(mse,i))

Output:

machine learning tutorial

From the output, we can see that error is least for k=3, so that should justify why I put the value of K=3 while training the model

5. Evaluating the model: For evaluating the model we are going to use the mean_squared_error() method from the scikit-learn library. Remember to set the parameter ‘squared’ as False, to get the RMSE error.

#error for linear regression
mse_lr= sklearn.metrics.mean_squared_error(y_test, pred_lr,squared=False)
print("error for Linear Regression = {}".format(mse_lr))
#error for linear regression
mse_Nn= sklearn.metrics.mean_squared_error(y_test, pred_Nn,squared=False)
print("error for K-NN = {}".format(mse_Nn))

Now from the results, we can conclude that Linear Regression performs better than K-NN for this particular dataset. But It is not necessary that Linear Regression would always perform better than K-NN as it completely depends upon the data that we are working with.

6. Prediction: Now we can use the models to predict the prices of the houses using the predict function as we did above. Make sure when predicting the prices that we are given all the features that were present when training the model.

Here is the whole script:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
bos1 = pd.read_csv('housing.csv', delimiter=r"\s+", names=column_names)
X=np.array(bos1.iloc[:,0:13])
Y=np.array(bos1["MEDV"])
#testing data size is of 30% of entire data
x_train, x_test, y_train, y_test =train_test_split(X,Y, test_size = 0.30, random_state =54)
#load our first model 
lr = LinearRegression()
#train the model on training data
lr.fit(x_train,y_train)
#predict the testing data so that we can later evaluate the model
pred_lr = lr.predict(x_test)
#load the second model
Nn=KNeighborsRegressor(12)
Nn.fit(x_train,y_train)
pred_Nn = Nn.predict(x_test)
#error for linear regression
mse_lr= sklearn.metrics.mean_squared_error(y_test, pred_lr,squared=False)
print("error for Linear Regression = {}".format(mse_lr))
#error for linear regression
mse_Nn= sklearn.metrics.mean_squared_error(y_test, pred_Nn,squared=False)
print("error for K-NN = {}".format(mse_Nn))

Implementation of a Classification problem

In this section, we will solve the population classification problem known as Iris Classification problem. The Iris dataset was used in R.A. Fisher’s classic 1936 paper, The Use of Multiple Measurements in Taxonomic Problems, and can also be found on the UCI Machine Learning Repository.

It includes three iris species with 50 samples each as well as some properties about each flower. One flower species is linearly separable from the other two, but the other two are not linearly separable from each other. The columns in this dataset are:

speicies of iris

Different species of iris

  • SepalLengthCm
  • SepalWidthCm
  • PetalLengthCm
  • PetalWidthCm
  • Species

We don’t need to download this dataset as scikit-learn library already contains this dataset and we can simply import it from there. So let us start coding this up:

from sklearn.datasets import load_iris
iris = load_iris()
X=iris.data
Y=iris.target
print(X)
print(Y)

As we can see, the features are in a list containing four items which are the features and at the bottom, we got a list containing labels which have been transformed into numbers as the model cannot understand names that are strings, so we encode each name as a number. This has already done by the scikit learn developers.

from sklearn.model_selection import train_test_split
#testing data size is of 30% of entire data
x_train, x_test, y_train, y_test =train_test_split(X,Y, test_size = 0.3, random_state =5)
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
#fitting our model to train and test
Nn = KNeighborsClassifier(8)
Nn.fit(x_train,y_train)
#the score() method calculates the accuracy of model.
print("Accuracy for K-NN is ",Nn.score(x_test,y_test))
Lr = LogisticRegression()
Lr.fit(x_train,y_train)
print("Accuracy for Logistic Regression is ",Lr.score(x_test,y_test))

Advantages of Machine Learning

1. Easily identifies trends and patterns

Machine Learning can review large volumes of data and discover specific trends and patterns that would not be apparent to humans. For instance, for e-commerce websites like Amazon and Flipkart, it serves to understand the browsing behaviors and purchase histories of its users to help cater to the right products, deals, and reminders relevant to them. It uses the results to reveal relevant advertisements to them.

2. Continuous Improvement

We are continuously generating new data and when we provide this data to the Machine Learning model which helps it to upgrade with time and increase its performance and accuracy. We can say it is like gaining experience as they keep improving in accuracy and efficiency. This lets them make better decisions.

3. Handling multidimensional and multi-variety data

Machine Learning algorithms are good at handling data that are multidimensional and multi-variety, and they can do this in dynamic or uncertain environments.

4. Wide Applications

You could be an e-tailer or a healthcare provider and make Machine Learning work for you. Where it does apply, it holds the capability to help deliver a much more personal experience to customers while also targeting the right customers.

Disadvantages of Machine Learning

1. Data Acquisition

Machine Learning requires a massive amount of data sets to train on, and these should be inclusive/unbiased, and of good quality. There can also be times where we must wait for new data to be generated.

2. Time and Resources

Machine Learning needs enough time to let the algorithms learn and develop enough to fulfill their purpose with a considerable amount of accuracy and relevancy. It also needs massive resources to function. This can mean additional requirements of computer power for you.

3. Interpretation of Results

Another major challenge is the ability to accurately interpret results generated by the algorithms. You must also carefully choose the algorithms for your purpose. Sometimes, based on some analysis you might select an algorithm but it is not necessary that this model is best for the problem.

4. High error-susceptibility

Machine Learning is autonomous but highly susceptible to errors. Suppose you train an algorithm with data sets small enough to not be inclusive. You end up with biased predictions coming from a biased training set. This leads to irrelevant advertisements being displayed to customers. In the case of Machine Learning, such blunders can set off a chain of errors that can go undetected for long periods of time. And when they do get noticed, it takes quite some time to recognize the source of the issue, and even longer to correct it.

Future of Machine Learning

Machine Learning can be a competitive advantage to any company, be it a top MNC or a startup. As things that are currently being done manually will be done tomorrow by machines. With the introduction of projects such as self-driving cars, Sophia(a humanoid robot developed by Hong Kong-based company Hanson Robotics) we have already started a glimpse of what the future can be. The Machine Learning revolution will stay with us for long and so will be the future of Machine Learning.

Machine Learning Tutorial FAQs

How do I start learning Machine Learning?

You first need to start with the basics. You need to understand the prerequisites, which include learning Linear Algebra and Multivariate Calculus, Statistics, and Python. Then you need to learn several ML concepts, which include terminology of Machine Learning, types of Machine Learning, and Resources of Machine Learning. The third step is taking part in competitions. You can also take up a free online statistics for machine learning course and understand the foundational concepts.

Is Machine Learning easy for beginners? 

Machine Learning is not the easiest. The difficulty in learning Machine Learning is the debugging problem. However, if you study the right resources, you will be able to learn Machine Learning without any hassles.

What is a simple example of Machine Learning? 

Recommendation Engines (Netflix); Sorting, tagging and categorizing photos (Yelp); Customer Lifetime Value (Asos); Self-Driving Cars (Waymo); Education (Duolingo); Determining Credit Worthiness (Deserve); Patient Sickness Predictions (KenSci); and Targeted Emails (Optimail).

Can I learn Machine Learning in 3 months? 

Machine Learning is vast and consists of several things. Therefore, it will take you around six months to learn it, provided you spend at least 5-6 days every day. Also, the time taken to learn Machine Learning depends a lot on your mathematical and analytical skills.

Does Machine Learning require coding? 

If you are learning traditional Machine Learning, it would require you to know software programming as it will help you to write machine learning algorithms. However, through some online educational platforms, you do not need to know coding to learn Machine Learning.

Is Machine Learning a good career? 

Machine Learning is one of the best careers at present. Whether it is for the current demand, job, and salary growth, Machine Learning Engineer is one of the best profiles. You need to be very good at data, automation, and algorithms.

Can I learn Machine Learning without Python? 

To learn Machine Learning, you need to have some basic knowledge of Python. A version of Python that is supported by all Operating Systems such as Windows, Linux, etc., is Anaconda. It offers an overall package for machine learning, including matplotlib, scikit-learn, and NumPy.

Where can I practice Machine Learning? 

The online platforms where you can practice Machine Learning include CloudXLab, Google Colab, Kaggle, MachineHack, and OpenML.

Where can I learn Machine Learning for free?

You can learn the basics of Machine Learning from online platforms like Great Learning. You can enroll in the Beginners Machine Learning course and get the certificate for free. The course is easy and perfect for beginners to start with.


Original article source at: https://www.mygreatlearning.com

#machine-learning 

Yogi Gurjar

1600307723

Laravel 8 Form Example Tutorial - Complete Guide

Laravel 8 form example. In this tutorial, i would love to show you how to create form in laravel. And how to insert data into database using form in laravel 8.

How to Submit Form Data into Database in Laravel 8

  1. Step 1 – Install Laravel 8 Application
  2. Step 2 – Configuring Database using Env File
  3. Step 3 – Create Model & Migration File For Add Blog Post Form
  4. Step 4 – Create Routes
  5. Step 5 – Creating Controller
  6. Step 6 – Create Blade File For Add Blog Post Form
  7. Step 7 – Start Development Server
  8. Step 8 – Run Laravel 8 Form App On Browser

https://laratutorials.com/laravel-8-form-example-tutorial/

#insert form data into database using laravel #laravel bootstrap form #laravel post forms #laravel 8 form tutorial #laravel 8 form example #laravel 8 form submit tutorial

How to Design Login Page using Xamarin Forms C# | Login Form | Sign In UI Design

#xamarin
#aspdotnetexplorer
https://www.youtube.com/watch?v=2tehSdX897E

#xamarin forms #xamarin forms bangla tutorials for beginners #xamarin forms tutorials for beginners #xamarin #xamarin.forms #xamarin.forms ui

Ethen Ellen

1619519725

Immediate $olution to Fix AOL Blerk Error Code 5 with easy instructions

This is image title

AOL Email is one of the leading web email services. It has a number of features who access easily at any place. Through this, you can easily share messages, documents or files, etc.AOL Blerk Error is not a big issue. It is a temporary error and it occurs when there is an issue in loading messages from the AOL server. If your mind is stuck, How to Resolve or Fix AOL Blerk Error Code 5? Here, In this article, we mentioned troubleshooting steps to fix AOL Blerk Error Code 5.

What are the causes of AOL Blerk Error Code 5?

AOL mail usually presents an AOL Blerk Error 5 after the AOL connection details have been entered. meaning. Your password and your username. This error is usually found in words! Or 'BLERK! Error 5 Authentication problem, 'Your sign-in has been received.

Some of the reasons for the error are as follows:
• Internet browser configuration problem

• Saved erroneous bookmark addresses

• browser cache or cookie

• An AOL Desktop Gold technical error.
How to Fix AOL Mail Blerk Error 5 in a Simple Way

This type of error is mostly due to your browser settings or the use of outdated, obsolete software. Users should remember that the steps to solve problems vary, depending on the browser you are using. Here are the steps to fix the mistake, check your browser and follow the steps.

Internet Explorer: Make sure you use the most recent web browser version. Open a new window and follow the “Tools> Web Options> Security> Internet Zone” thread. Activate ‘Safeguard Mode’ and follow the steps to include AOL Mail in the list of assured websites. Start the browser again to save changes and run Internet Explorer without additional information.
Firefox Mozilla: Open a new Firefox window and press Menu. To start the browser in safe mode, disable the add-on and choose the option to restart Firefox. You can see two options in the dialog box. Use the “Start in Safe Mode” option to disable all themes and extensions. The browser also turns off the hardware speed and resets the toolbar. You should be able to execute AOL mail when this happens.

Google Chrome: Update to the latest version of Chrome. Open the browser and go to the Advanced Options section. Go to ‘Security and Privacy’ and close the appropriate add-ons. Once the browsing history is deleted, the password, cookies saved and the cache will be cleared. Restart your system and try to log in to your AOL account with a new window.

Safari: Some pop-up windows block AOL mail when it comes to Safari and causes authentication issues. To fix the error, use Safari Security Preferences to enable the pop-up window and disable the security warning.

If you see, even when you change the required browser settings, the black error will not disappear, you can consult a skilled professional and see all the AOL email customer support numbers.

Get Connect to Fix Blerk Error Even After Clearing Cache & Cookies?
Somehow you can contact AOL technical support directly and get immediate help if you still get the error. Call +1(888)857-5157 to receive assistance from the AOL technical support team.

Source: https://email-expert247.blogspot.com/2021/04/immediate-olution-to-fix-aol-blerk.html “How to Resolve or Fix AOL Blerk Error Code 5”)**? Here, In this article, we mentioned troubleshooting steps to fix AOL Blerk Error Code 5.

What are the causes of AOL Blerk Error Code 5?

AOL mail usually presents an AOL Blerk Error 5 after the AOL connection details have been entered. meaning. Your password and your username. This error is usually found in words! Or 'BLERK! Error 5 Authentication problem, 'Your sign-in has been received.

Some of the reasons for the error are as follows:
• Internet browser configuration problem

• Saved erroneous bookmark addresses

• browser cache or cookie

• An AOL Desktop Gold technical error.
How to Fix AOL Mail Blerk Error 5 in a Simple Way

This type of error is mostly due to your browser settings or the use of outdated, obsolete software. Users should remember that the steps to solve problems vary, depending on the browser you are using. Here are the steps to fix the mistake, check your browser and follow the steps.

  1. Internet Explorer: Make sure you use the most recent web browser version. Open a new window and follow the “Tools> Web Options> Security> Internet Zone” thread. Activate ‘Safeguard Mode’ and follow the steps to include AOL Mail in the list of assured websites. Start the browser again to save changes and run Internet Explorer without additional information.

  2. Firefox Mozilla: Open a new Firefox window and press Menu. To start the browser in safe mode, disable the add-on and choose the option to restart Firefox. You can see two options in the dialog box. Use the “Start in Safe Mode” option to disable all themes and extensions. The browser also turns off the hardware speed and resets the toolbar. You should be able to execute AOL mail when this happens.

  3. Google Chrome: Update to the latest version of Chrome. Open the browser and go to the Advanced Options section. Go to ‘Security and Privacy’ and close the appropriate add-ons. Once the browsing history is deleted, the password, cookies saved and the cache will be cleared. Restart your system and try to log in to your AOL account with a new window.

  4. Safari: Some pop-up windows block AOL mail when it comes to Safari and causes authentication issues. To fix the error, use Safari Security Preferences to enable the pop-up window and disable the security warning.

If you see, even when you change the required browser settings, the black error will not disappear, you can consult a skilled professional and see all the AOL email customer support numbers.

Get Connect to Fix Blerk Error Even After Clearing Cache & Cookies?

Somehow you can contact AOL technical support directly and get immediate help if you still get the error. Call +1(888)857-5157 to receive assistance from the AOL technical support team.

Source: https://email-expert247.blogspot.com/2021/04/immediate-olution-to-fix-aol-blerk.html

#aol blerk error code 5 #aol blerk error 5 #aol mail blerk error code 5 #aol mail blerk error 5 #aol error code 5 #aol error 5