Anton Palyonko

Anton Palyonko

1621122840

Introduction to Media Service Mesh - Giles Heron, Cisco Systems

Lightning Talk: Introduction to Media Service Mesh - Giles Heron, Cisco Systems

Media Service Mesh is a new concept for enabling real-time applications in Kubernetes. Most real-time applications (such as multi-player FPS games, multi-party video-conferencing, and CCTV streaming) use UDP rather than TCP and hence are incompatible with current web-proxy based service meshes. In addition they often use out of band TCP control channel to negotiate UDP port numbers, and this is incompatible with the kube-proxy ClusterIP NAT. There is, however, a desire from the developers of these platforms to move away from monolithic applications towards the microservices architecture, and to be able to leverage a service mesh infrastructure providing load balancing, encryption and observability. Media Service Mesh enables this.

#service-mesh #kubernetes #microservices

What is GEEK

Buddha Community

Introduction to Media Service Mesh - Giles Heron, Cisco Systems
Anton Palyonko

Anton Palyonko

1621122840

Introduction to Media Service Mesh - Giles Heron, Cisco Systems

Lightning Talk: Introduction to Media Service Mesh - Giles Heron, Cisco Systems

Media Service Mesh is a new concept for enabling real-time applications in Kubernetes. Most real-time applications (such as multi-player FPS games, multi-party video-conferencing, and CCTV streaming) use UDP rather than TCP and hence are incompatible with current web-proxy based service meshes. In addition they often use out of band TCP control channel to negotiate UDP port numbers, and this is incompatible with the kube-proxy ClusterIP NAT. There is, however, a desire from the developers of these platforms to move away from monolithic applications towards the microservices architecture, and to be able to leverage a service mesh infrastructure providing load balancing, encryption and observability. Media Service Mesh enables this.

#service-mesh #kubernetes #microservices

Roberta  Ward

Roberta Ward

1598169240

From Service Mess to Service Mesh

Introduction

Over the last 10 years, the rapid adoption of microservices architecture has resulted in enterprises with hundreds or (sometimes even thousands) of services. With the growth of containerization technologies like Docker and Kubernetes, microservice patterns have seen the strongest growth; resulting in a complex dependency matrix between these micro-services. For teams to monitor, support, and to maintain these services is becoming a challenge so most enterprises have invested in some kind of microservices management tool.

This article will explore some of the common aspects of microservice management. Then we’ll take a closer look at the centralized gateway pattern, as well as its limitations (most enterprises have started with or currently still use this pattern). Then we will look into a new pattern called “Service Mesh” which has gained a lot of attention in the last 3–4 years. Often this pattern is also referred to as the “Side Car Proxy”. So lets get started!

Micro-Services Management

As enterprises start building more and more microservices, it’s becoming clear that some of the aspects of microservices are common across all microservices. So it makes sense to provide a common platform for managing these common aspects. Below are some of the key common aspects:

Service Registration and Discovery: A commonplace to register, document, search and discover microservices

Service Version Management: Ability to run multiple versions of a microservice.

**Authentication and Authorization: **Handle authentication and authorization including Mutual TLS (MTLS) between services.

Service Observability: Ability to monitor end to end traffic between services, response times, and quickly identify failures and bottlenecks.

**Rate Limiting: **Define threshold limits that traffic services can handle.

Circuit Breaker: Ability to configure and introduce a circuit breaker in case of failure scenarios (to avoid flooding downstream services with requests).

**Retry Logic: **Ability to configure and introduce retry logic dynamically in services.

So it’s a good idea to build these concerns as part of a common framework or service management tool. As a result, micro-service development teams don’t have to build these aspects in the service itself.

#service-mesh #istio-service-mesh #microservices #gateway-service #envoy-proxy

Ruth  Nabimanya

Ruth Nabimanya

1620633584

System Databases in SQL Server

Introduction

In SSMS, we many of may noticed System Databases under the Database Folder. But how many of us knows its purpose?. In this article lets discuss about the System Databases in SQL Server.

System Database

Fig. 1 System Databases

There are five system databases, these databases are created while installing SQL Server.

  • Master
  • Model
  • MSDB
  • Tempdb
  • Resource
Master
  • This database contains all the System level Information in SQL Server. The Information in form of Meta data.
  • Because of this master database, we are able to access the SQL Server (On premise SQL Server)
Model
  • This database is used as a template for new databases.
  • Whenever a new database is created, initially a copy of model database is what created as new database.
MSDB
  • This database is where a service called SQL Server Agent stores its data.
  • SQL server Agent is in charge of automation, which includes entities such as jobs, schedules, and alerts.
TempDB
  • The Tempdb is where SQL Server stores temporary data such as work tables, sort space, row versioning information and etc.
  • User can create their own version of temporary tables and those are stored in Tempdb.
  • But this database is destroyed and recreated every time when we restart the instance of SQL Server.
Resource
  • The resource database is a hidden, read only database that holds the definitions of all system objects.
  • When we query system object in a database, they appear to reside in the sys schema of the local database, but in actually their definitions reside in the resource db.

#sql server #master system database #model system database #msdb system database #sql server system databases #ssms #system database #system databases in sql server #tempdb system database

Fannie  Zemlak

Fannie Zemlak

1597494060

Open Service Mesh — Microsoft’s SMI based Open Source Service Mesh Implementation

Microsoft’s Open Service Mesh is an SMI-compliant, lightweight service mesh being run as an open source project. Backed by service-mesh partners including HashiCorp, Solo.io, and Buoyant, Microsoft introduced the Service Mesh Interface last year with the goal of helping end users and software vendors work with the myriad choices presented by service mesh technology by providing a set of specification standards. OSM can be considered as a reference implementation of SMI, one that builds on existing service mesh components and concepts.

Open Service Mesh data plane is architecturally based on the Envoy proxy and implements the go-control-plane xDS v3 API. However, despite the fact that Envoy comes with OSM by default, using standard interfaces allows it to be integrated with other reverse proxies (compatible with xDS).

SMI follows in the footsteps of existing Kubernetes resources, like Ingress and Network Policy, which also do not provide an implementation where required interfaces to interact with Kubernetes are facilitated for providers to plug their products. The SMI specification instead defines a set of common APIs that allow mesh providers to deliver their own implementations. This means mesh providers can either use SMI APIs directly or build operators to translate SMI to native APIs.

Image for post

SMI Implementation

With OSM, users can use SMI and Envoy on Kubernetes and get a simplified service-mesh implementation. The SMI ecosystem already has multiple providers like Istio, Linkerd, Consul Connect, now Open Service Mesh etc. some of them have implemented SMI compatibility using adaptors (Istio, Consul Connect) and others (OSM, Linkerd etc.) consume the SMI APIs directly.

OSM implementation is very similar to Linkerd which also directly consumes SMI APIs without any need for an adaptor like Istio, but one key difference is that OSM uses Envoy for its proxy and communication bus, whereas Linkerd uses linkerd2-proxy (rust based — lighter than Envoy).

Architecture & Components

OSM control plane comprise four core components. All these four components are implemented as a single controller entity (Kubernetes pod/deployment), this is much lighter in weight when compared with older versions of Istio where there are 4 control plane components (Istio-1.6 introduced istiod which unifies all the control plane components into one binary).

Image for post

OSM Architecture — Components

OSM Data Plane — Uses Envoy as reverse-proxy by default — similar to most other Service Mesh providers (Linkerd is unique in this case which uses ultralight transparent proxy written in Rust). While by default OSM ships with Envoy, the design utilizes interfaces (An interface type in Go is kind of definition. It defines and describes the exact methods that some other type must have), which enable integrations with any xDS compatible reverse-proxy. The dynamic configuration of all the proxies is handled by OSM controller using Envoy xDS go-control-plane.

#service-mesh #istio-service-mesh #kubernetes #azure #microsoft

Stratus seo

Stratus seo

1625816471

Stratus: One of the best social media posting tools for efficient social media management

Efficient social media management could mean you getting the desired online recognition and leads for your business (if that was your intend to stay active on social media). Unfortunately, the common practice of social media management requires you to switch between multiple accounts of yours. This requires significant time and effort on your part. Stratus addresses this problem by bringing all of the social media channels on a single platform. You can access and manage your social media accounts in a single place while saving your time and effort. The user-friendly interface and advanced features integrated into the Stratus platform make it one of the best social media posting tools. To learn more or to sign up on Stratus, visit https://stratus.co/

#best social media posting tools #social media management #manage social media accounts in one place #best social media management tools #manage all social media in one place #social media management tools