Mary  Turcotte

Mary Turcotte

1665896520

A CLI Utility for Communicating with OBD/UDS Services Over CAN on Rust

HyperCAN

HyperCAN is a Rust-based command line utility for communicating with OBD/UDS services over CAN. It provides a straightforward set of subcommands and configurable flags, designed for allowing users to quickly and easily query these services and get back semantically-relevant data.

Caveat Emptor

HyperCAN is currently under development. A lot of testing happens against virtual CAN interfaces, using mocked or emulated devices on the bus. This can mean that what appears to work in testing may or may not work for you in real-world conditions. Filing an issue (with simple reproduction instructions) is always welcome.

Requirements

HyperCAN depends on SocketCAN, which makes this utility Linux-only. Sorry! Life is too short to wrangle support for multiple platorms, arbitrary J2534 DLLs, and all of that. :)

Additionally, HyperCAN depends on ISO-TP support. ISO-TP support was added to the Linux mainline kernel from 5.10 onward. If you're running an older kernel, you can compile support for it on your own by using the following repository: hartkopp/can-isotp. I don't have anything to do with that kernel module, so please don't ask for support compiling it.

Other than that, HyperCAN is built against stable Rust: 1.59.0 at the time of writing. If HyperCAN does not build against stable Rust from 1.59.0 and newer: it's a bug, please let me know.

Supported Features

  •  Validate a SocketCAN interface exists and can be opened. (validate-socket subcommand)
  •  Read all available OBD-II current data PIDs. (query-available-pids subcommand)
  •  Read the current data of an OBD-II PID(s). (OBD-II, Service 01)
  •  Read/clear stored diagnostic trouble codes. (OBD-II, Services 03 and 04)
  •  Read vehicle information. (OBD-II, Service 09)
  •  Any UDS service.

.gitignore

# Generated by Cargo
# will have compiled files and executables
/target/

# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
Cargo.lock

# These are backup files generated by rustfmt
**/*.rs.bk

Cargo.toml

[package]
name = "hypercan"
version = "0.1.0"
edition = "2021"

license = "MIT"

[dependencies]
async-trait = "0.1.52"
can = { git = "https://github.com/nuclearfurnace/rust-can" }
clap = { version = "3.1.2", features = ["derive"] }
duration-str = "0.3.8"
futures = "0.3"
mio = "0.8.0"
socketcan = "1.7.0"
socketcan-isotp = "1.0.0"
thiserror = "1.0"
tokio = { version = "1.17.0", features = ["full"] }
tracing = "0.1"
tracing-subscriber = "0.3"

License

HyperCAN is licensed under the MIT license.


Download Details:

Author: nuclearfurnace
Source Code: https://github.com/nuclearfurnace/hypercan

License: MIT license

#rust 

What is GEEK

Buddha Community

A CLI Utility for Communicating with OBD/UDS Services Over CAN on Rust
Mary  Turcotte

Mary Turcotte

1665896520

A CLI Utility for Communicating with OBD/UDS Services Over CAN on Rust

HyperCAN

HyperCAN is a Rust-based command line utility for communicating with OBD/UDS services over CAN. It provides a straightforward set of subcommands and configurable flags, designed for allowing users to quickly and easily query these services and get back semantically-relevant data.

Caveat Emptor

HyperCAN is currently under development. A lot of testing happens against virtual CAN interfaces, using mocked or emulated devices on the bus. This can mean that what appears to work in testing may or may not work for you in real-world conditions. Filing an issue (with simple reproduction instructions) is always welcome.

Requirements

HyperCAN depends on SocketCAN, which makes this utility Linux-only. Sorry! Life is too short to wrangle support for multiple platorms, arbitrary J2534 DLLs, and all of that. :)

Additionally, HyperCAN depends on ISO-TP support. ISO-TP support was added to the Linux mainline kernel from 5.10 onward. If you're running an older kernel, you can compile support for it on your own by using the following repository: hartkopp/can-isotp. I don't have anything to do with that kernel module, so please don't ask for support compiling it.

Other than that, HyperCAN is built against stable Rust: 1.59.0 at the time of writing. If HyperCAN does not build against stable Rust from 1.59.0 and newer: it's a bug, please let me know.

Supported Features

  •  Validate a SocketCAN interface exists and can be opened. (validate-socket subcommand)
  •  Read all available OBD-II current data PIDs. (query-available-pids subcommand)
  •  Read the current data of an OBD-II PID(s). (OBD-II, Service 01)
  •  Read/clear stored diagnostic trouble codes. (OBD-II, Services 03 and 04)
  •  Read vehicle information. (OBD-II, Service 09)
  •  Any UDS service.

.gitignore

# Generated by Cargo
# will have compiled files and executables
/target/

# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
Cargo.lock

# These are backup files generated by rustfmt
**/*.rs.bk

Cargo.toml

[package]
name = "hypercan"
version = "0.1.0"
edition = "2021"

license = "MIT"

[dependencies]
async-trait = "0.1.52"
can = { git = "https://github.com/nuclearfurnace/rust-can" }
clap = { version = "3.1.2", features = ["derive"] }
duration-str = "0.3.8"
futures = "0.3"
mio = "0.8.0"
socketcan = "1.7.0"
socketcan-isotp = "1.0.0"
thiserror = "1.0"
tokio = { version = "1.17.0", features = ["full"] }
tracing = "0.1"
tracing-subscriber = "0.3"

License

HyperCAN is licensed under the MIT license.


Download Details:

Author: nuclearfurnace
Source Code: https://github.com/nuclearfurnace/hypercan

License: MIT license

#rust 

Serde Rust: Serialization Framework for Rust

Serde

*Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.*

You may be looking for:

Serde in action

Click to show Cargo.toml. Run this code in the playground.

[dependencies]

# The core APIs, including the Serialize and Deserialize traits. Always
# required when using Serde. The "derive" feature is only required when
# using #[derive(Serialize, Deserialize)] to make Serde work with structs
# and enums defined in your crate.
serde = { version = "1.0", features = ["derive"] }

# Each data format lives in its own crate; the sample code below uses JSON
# but you may be using a different one.
serde_json = "1.0"

 

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let point = Point { x: 1, y: 2 };

    // Convert the Point to a JSON string.
    let serialized = serde_json::to_string(&point).unwrap();

    // Prints serialized = {"x":1,"y":2}
    println!("serialized = {}", serialized);

    // Convert the JSON string back to a Point.
    let deserialized: Point = serde_json::from_str(&serialized).unwrap();

    // Prints deserialized = Point { x: 1, y: 2 }
    println!("deserialized = {:?}", deserialized);
}

Getting help

Serde is one of the most widely used Rust libraries so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

Download Details:
Author: serde-rs
Source Code: https://github.com/serde-rs/serde
License: View license

#rust  #rustlang 

Ignite 2020: Introducing Azure Communication Services

Microsoft Teams’ growth has exploded as the COVID-19 pandemic has forced more and more companies to shift to home working and virtual meetings. With more than 5 billion daily meeting minutes, Teams relies heavily on Azure’s global network of fiber-connected hyperscale data centers and its growing number of metroscale edge sites. It’s a powerful set of technologies, with support for text, voice, and video communications, all wrapped up in apps that run on the Web, on PCs, and on mobile devices.

What if you could take advantage of those same services in your own code, using them to add global, stress-tested, reliable communications features without spending time learning how to construct calls in WebRTC? With the launch of a public preview of Azure Communication Services (ACS), now you can. Microsoft is unbundling many of Teams’ foundational services, turning them into APIs that can be quickly integrated into new and existing apps.

As Scott Van Vliet, CVP, Intelligent Communications at Azure noted, “The service that my team runs that powers Teams has been built on Azure since day one, so we were kind of born in the cloud with Teams. And thinking about the value we get from being on the Azure platform, we started thinking about what are ways in which we think people can leverage this platform?” The pandemic may have accelerated Microsoft’s plans to release ACS to help companies improve their remote working, but it’s an expansion that’s clearly been in the works for some time. The mature APIs used by Teams are ready to launch a fully fledged service that’s able to support as wide a set of scenarios as possible.

Building Teams’ back-end services into your code

Building on the internal APIs used in Teams, ACS is designed to support many different communication scenarios: one-to-one, one-to-many, many-to-many, browser, apps, bots, and even the public switched telephony network. You can also mix different options in the same app, much like Teams where you can change your communications mode as your interactions deepen or become more focused. It’s easy to image an ACS-based customer service application starting as text chat in a bot and then moving to a human agent when more complex answers are required, or even to a video call if problem diagnosis calls for images.

Developing with ACS is much like working with any other Azure service. Microsoft has provided a series of SDKs and client libraries to help you build code, treating ACS as a data plane that links application end points routing calls and messages. Browser-based applications can use the provided ACS JavaScript libraries. Similarly you can build these services into native desktop and mobile apps, tying in other Azure services like Windows Notifications to add additional features, or working with platform-specific APIs such as Google Firebase on Android and Apple Push Notifications on iOS.

#azure communication services #azure #communication services #communication #ignite 2020

Make Your Business Popular On the Internet with search engine optimization services India

As a small business owner, you should never think that SEO services are not for you. The search engine optimization services India from this digital marketing agency offer SEO services for small businesses and enterprises to make sure that they get in competition with bigger websites. They deliver on-page, off-page, local SEO and ecommerce SEO services.

#search engine optimization services india #seo services india #affordable seo services india #seo services provider #website seo services #outsource seo services india

Awesome  Rust

Awesome Rust

1654894080

Serde JSON: JSON Support for Serde Framework

Serde JSON

Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.

[dependencies]
serde_json = "1.0"

You may be looking for:

JSON is a ubiquitous open-standard format that uses human-readable text to transmit data objects consisting of key-value pairs.

{
    "name": "John Doe",
    "age": 43,
    "address": {
        "street": "10 Downing Street",
        "city": "London"
    },
    "phones": [
        "+44 1234567",
        "+44 2345678"
    ]
}

There are three common ways that you might find yourself needing to work with JSON data in Rust.

  • As text data. An unprocessed string of JSON data that you receive on an HTTP endpoint, read from a file, or prepare to send to a remote server.
  • As an untyped or loosely typed representation. Maybe you want to check that some JSON data is valid before passing it on, but without knowing the structure of what it contains. Or you want to do very basic manipulations like insert a key in a particular spot.
  • As a strongly typed Rust data structure. When you expect all or most of your data to conform to a particular structure and want to get real work done without JSON's loosey-goosey nature tripping you up.

Serde JSON provides efficient, flexible, safe ways of converting data between each of these representations.

Operating on untyped JSON values

Any valid JSON data can be manipulated in the following recursive enum representation. This data structure is serde_json::Value.

enum Value {
    Null,
    Bool(bool),
    Number(Number),
    String(String),
    Array(Vec<Value>),
    Object(Map<String, Value>),
}

A string of JSON data can be parsed into a serde_json::Value by the serde_json::from_str function. There is also from_slice for parsing from a byte slice &[u8] and from_reader for parsing from any io::Read like a File or a TCP stream.

use serde_json::{Result, Value};

fn untyped_example() -> Result<()> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"
        {
            "name": "John Doe",
            "age": 43,
            "phones": [
                "+44 1234567",
                "+44 2345678"
            ]
        }"#;

    // Parse the string of data into serde_json::Value.
    let v: Value = serde_json::from_str(data)?;

    // Access parts of the data by indexing with square brackets.
    println!("Please call {} at the number {}", v["name"], v["phones"][0]);

    Ok(())
}

The result of square bracket indexing like v["name"] is a borrow of the data at that index, so the type is &Value. A JSON map can be indexed with string keys, while a JSON array can be indexed with integer keys. If the type of the data is not right for the type with which it is being indexed, or if a map does not contain the key being indexed, or if the index into a vector is out of bounds, the returned element is Value::Null.

When a Value is printed, it is printed as a JSON string. So in the code above, the output looks like Please call "John Doe" at the number "+44 1234567". The quotation marks appear because v["name"] is a &Value containing a JSON string and its JSON representation is "John Doe". Printing as a plain string without quotation marks involves converting from a JSON string to a Rust string with as_str() or avoiding the use of Value as described in the following section.

The Value representation is sufficient for very basic tasks but can be tedious to work with for anything more significant. Error handling is verbose to implement correctly, for example imagine trying to detect the presence of unrecognized fields in the input data. The compiler is powerless to help you when you make a mistake, for example imagine typoing v["name"] as v["nmae"] in one of the dozens of places it is used in your code.

Parsing JSON as strongly typed data structures

Serde provides a powerful way of mapping JSON data into Rust data structures largely automatically.

use serde::{Deserialize, Serialize};
use serde_json::Result;

#[derive(Serialize, Deserialize)]
struct Person {
    name: String,
    age: u8,
    phones: Vec<String>,
}

fn typed_example() -> Result<()> {
    // Some JSON input data as a &str. Maybe this comes from the user.
    let data = r#"
        {
            "name": "John Doe",
            "age": 43,
            "phones": [
                "+44 1234567",
                "+44 2345678"
            ]
        }"#;

    // Parse the string of data into a Person object. This is exactly the
    // same function as the one that produced serde_json::Value above, but
    // now we are asking it for a Person as output.
    let p: Person = serde_json::from_str(data)?;

    // Do things just like with any other Rust data structure.
    println!("Please call {} at the number {}", p.name, p.phones[0]);

    Ok(())
}

This is the same serde_json::from_str function as before, but this time we assign the return value to a variable of type Person so Serde will automatically interpret the input data as a Person and produce informative error messages if the layout does not conform to what a Person is expected to look like.

Any type that implements Serde's Deserialize trait can be deserialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Deserialize)].

Once we have p of type Person, our IDE and the Rust compiler can help us use it correctly like they do for any other Rust code. The IDE can autocomplete field names to prevent typos, which was impossible in the serde_json::Value representation. And the Rust compiler can check that when we write p.phones[0], then p.phones is guaranteed to be a Vec<String> so indexing into it makes sense and produces a String.

The necessary setup for using Serde's derive macros is explained on the Using derive page of the Serde site.

Constructing JSON values

Serde JSON provides a json! macro to build serde_json::Value objects with very natural JSON syntax.

use serde_json::json;

fn main() {
    // The type of `john` is `serde_json::Value`
    let john = json!({
        "name": "John Doe",
        "age": 43,
        "phones": [
            "+44 1234567",
            "+44 2345678"
        ]
    });

    println!("first phone number: {}", john["phones"][0]);

    // Convert to a string of JSON and print it out
    println!("{}", john.to_string());
}

The Value::to_string() function converts a serde_json::Value into a String of JSON text.

One neat thing about the json! macro is that variables and expressions can be interpolated directly into the JSON value as you are building it. Serde will check at compile time that the value you are interpolating is able to be represented as JSON.

let full_name = "John Doe";
let age_last_year = 42;

// The type of `john` is `serde_json::Value`
let john = json!({
    "name": full_name,
    "age": age_last_year + 1,
    "phones": [
        format!("+44 {}", random_phone())
    ]
});

This is amazingly convenient, but we have the problem we had before with Value: the IDE and Rust compiler cannot help us if we get it wrong. Serde JSON provides a better way of serializing strongly-typed data structures into JSON text.

Creating JSON by serializing data structures

A data structure can be converted to a JSON string by serde_json::to_string. There is also serde_json::to_vec which serializes to a Vec<u8> and serde_json::to_writer which serializes to any io::Write such as a File or a TCP stream.

use serde::{Deserialize, Serialize};
use serde_json::Result;

#[derive(Serialize, Deserialize)]
struct Address {
    street: String,
    city: String,
}

fn print_an_address() -> Result<()> {
    // Some data structure.
    let address = Address {
        street: "10 Downing Street".to_owned(),
        city: "London".to_owned(),
    };

    // Serialize it to a JSON string.
    let j = serde_json::to_string(&address)?;

    // Print, write to a file, or send to an HTTP server.
    println!("{}", j);

    Ok(())
}

Any type that implements Serde's Serialize trait can be serialized this way. This includes built-in Rust standard library types like Vec<T> and HashMap<K, V>, as well as any structs or enums annotated with #[derive(Serialize)].

Performance

It is fast. You should expect in the ballpark of 500 to 1000 megabytes per second deserialization and 600 to 900 megabytes per second serialization, depending on the characteristics of your data. This is competitive with the fastest C and C++ JSON libraries or even 30% faster for many use cases. Benchmarks live in the serde-rs/json-benchmark repo.

Getting help

Serde is one of the most widely used Rust libraries, so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo, but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

No-std support

As long as there is a memory allocator, it is possible to use serde_json without the rest of the Rust standard library. This is supported on Rust 1.36+. Disable the default "std" feature and enable the "alloc" feature:

[dependencies]
serde_json = { version = "1.0", default-features = false, features = ["alloc"] }

For JSON support in Serde without a memory allocator, please see the serde-json-core crate.

Link: https://crates.io/crates/serde_json

#rust  #rustlang  #encode   #json