Text Classification with TensorFlow Keras, NLP Using Embedding and LSTM Recurrent Neural Networks

In this video I’m creating a baseline NLP model for Text Classification with the help of Embedding and LSTM layers from TensorFlow’s high-level API Keras.

00:00 NLP with TensorFlow
00:48 How to clean text data for machine learning
01:56 How to count the occurences of each word in a corpus
03:40 Why we need to define the sequence length for NLP Projects with Tensorflow
04:00 How to split the dataset into a train and test set
04:42 How to use Tokenizer from Keras to index words and transform text to sequences
05:49 How to pad text sequences to have a specific length for NLP Projects with Tensorflow
08:15 LSTM Model for NLP Projects with Tensorflow
08:25 Understanding Embedding and why we need to use it for NLP Projects

With Embedding, we map each word to a vector of fixed size with real-valued elements. In contrast to one hot encoding, we can use finite sized vectors to represent an infinite number of real numbers.

This feature learning technique can learn the most important features to represent the words in the data.

LSTMs are Recurrent Neural Networks (RNN) used for modeling sequences. LSTM units have a memory cell as the building block and it represents the hidden layer. In an LSTM cell there are three different types of gates: the forget gate, the input gate and the output gate.

The most important one, the forget gate allows the LSTM memory cell to reset the cell state. The forget gate decides which information is allowed to go through and which to hold back.

You can access the Jupyter notebook here (login required):

https://www.decisionforest.com/downlo…

Subscribe: https://www.youtube.com/c/DecisionForest/featured

#python #nlp #tensorflow

What is GEEK

Buddha Community

Text Classification with TensorFlow Keras, NLP Using Embedding and LSTM Recurrent Neural Networks
Dominic  Feeney

Dominic Feeney

1622273248

Sentiment Analysis Using TensorFlow Keras - Analytics India Magazine

Natural Language Processing is one of the artificial intelligence tasks performed with natural languages. The word ‘natural’ refers to the languages that evolved naturally among humans for communication. A long-standing goal in artificial intelligence is to make a machine effectively communicate with humans. Language modeling and Language generation (such as neural machine translation) have been popular among researchers for over a decade. For an AI beginner, learning and practicing Natural Language Processing can be initialized with classification of texts. Sentiment Analysis is among the text classification applications in which a given text is classified into a positive class or a negative class (sometimes, a neutral class, too) based on the context. This article discusses sentiment analysis using TensorFlow Keras with the IMDB movie reviews dataset, one of the famous Sentiment Analysis datasets.

TensorFlow’s Keras API offers the complete functionality required to build and execute a deep learning model. This article assumes that the reader is familiar with the basics of deep learning and Recurrent Neural Networks (RNNs). Nevertheless, the following articles may yield a good understanding of deep learning and RNNs:

#developers corner #imdb dataset #keras #lstm #lstm recurrent neural network #natural language processing #nlp #recurrent neural network #rnn #sentiment analysis #sentiment analysis nlp #tensorflow

Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Text Classification with TensorFlow Keras, NLP Using Embedding and LSTM Recurrent Neural Networks

In this video I’m creating a baseline NLP model for Text Classification with the help of Embedding and LSTM layers from TensorFlow’s high-level API Keras.

00:00 NLP with TensorFlow
00:48 How to clean text data for machine learning
01:56 How to count the occurences of each word in a corpus
03:40 Why we need to define the sequence length for NLP Projects with Tensorflow
04:00 How to split the dataset into a train and test set
04:42 How to use Tokenizer from Keras to index words and transform text to sequences
05:49 How to pad text sequences to have a specific length for NLP Projects with Tensorflow
08:15 LSTM Model for NLP Projects with Tensorflow
08:25 Understanding Embedding and why we need to use it for NLP Projects

With Embedding, we map each word to a vector of fixed size with real-valued elements. In contrast to one hot encoding, we can use finite sized vectors to represent an infinite number of real numbers.

This feature learning technique can learn the most important features to represent the words in the data.

LSTMs are Recurrent Neural Networks (RNN) used for modeling sequences. LSTM units have a memory cell as the building block and it represents the hidden layer. In an LSTM cell there are three different types of gates: the forget gate, the input gate and the output gate.

The most important one, the forget gate allows the LSTM memory cell to reset the cell state. The forget gate decides which information is allowed to go through and which to hold back.

You can access the Jupyter notebook here (login required):

https://www.decisionforest.com/downlo…

Subscribe: https://www.youtube.com/c/DecisionForest/featured

#python #nlp #tensorflow

Marlon  Boyle

Marlon Boyle

1594366200

Recurrent Neural Networks for Multilabel Text Classification Tasks

The purpose of this project is to build and evaluate Recurrent Neural Networks(RNNs) for sentence-level classification tasks. I evaluate three architectures: a two-layer Long Short-Term Memory Network(LSTM), a two-layer Bidirectional Long Short-Term Memory Network(BiLSTM), and a two-layer BiLSTM with a word-level attention layer. Although they do learn useful vector representation, BiLSTM with attention mechanism focuses on necessary tokens when learning text representation. To that end, I’m using the 2019 Google Jigsaw published dataset on Kaggle labeled “Jigsaw Unintended Bias in Toxicity Classification.” The dataset includes 1,804,874 user comments, with the toxicity level being between 0 and 1. The final models can be used for filtering online posts and comments, social media policing, and user education.

Links

Recurrent Neural Networks Overview

RNNs are neural networks used for problems that require sequential data processing. For instance:

  • In a sentiment analysis task, a text’s sentiment can be inferred from a sequence of words or characters.
  • In a stock prediction task, current stock prices can be inferred from a sequence of past stock prices.

At each time step of the input sequence, RNNs compute the output yt and an internal state update ht using the input xt and the previous hidden-state ht-1. They then pass information about the current time step of the network to the next. The hidden-state ht summarizes the task-relevant aspect of the past sequence of the input up to t, allowing for information to persist over time.

Image for post

Recurrent Neural Network

Image for post

Recurrent Neural Network

During training, RNNs re-use the same weight matrices at each time step. Parameter sharing enables the network to generalize to different sequence lengths. The total loss is a sum of all losses at each time step, the gradients with respect to the weights are the sum of the gradients at each time step, and the parameters are updated to minimize the loss function.

Image for post

forward pass: compute the loss function

Image for post

Image for post

loss function

Image for post

Backward Pass: compute the gradients

Image for post

gradient equation

Although RNNs learn contextual representations of sequential data, they suffer from the exploding and vanishing gradient phenomena in long sequences. These problems occur due to the multiplicative gradient that can exponentially increase or decrease through time. RNNs commonly use three activation functions: RELU, Tanh, and Sigmoid. Because the gradient calculation also involves the gradient with respect to the non-linear activations, architectures that use a RELU activation can suffer from the exploding gradient problem. Architectures that use Tanh/Sigmoid can suffer from the vanishing gradient problem. Gradient clipping — limiting the gradient within a specific range — can be used to remedy the exploding gradient. However, for the vanishing gradient problem, a more complex recurrent unit with gates such as Gated Recurrent Unit (GRU) or Long Short-Term Memory (LSTM) can be used.

#ai #recurrent-neural-network #attention-network #machine-learning #neural-network

Angela  Dickens

Angela Dickens

1599202560

Text Classification on Disaster Tweets with LSTM and Word Embedding

This was my first Kaggle notebook and I thought why not write it on Medium too?

Full code on my Github.

In this post, I will elaborate on how to use fastText and GloVe as word embedding on LSTM model for text classification. I got interested in Word Embedding while doing my paper on Natural Language Generation. It showed that embedding matrix for the weight on embedding layer improved the performance of the model. But since it was NLG, the measurement was objective. And I only used fastText too. So in this article, I want to see how each method (with fastText and GloVe and without) affects to the prediction. On my Github code, I also compare the result with CNN. The dataset that i use here is from one of competition on Kaggle, consisted of tweets and labelled with whether the tweet is using disastrous words to inform a real disaster or merely just used it metaphorically. Honestly, on first seeing this dataset, I immediately thought about BERT and its ability to understand way better than what I proposed on this article (further reading on BERT).

But anyway, in this article I will focus on fastText and GloVe.

Let’s go?


Data + Pre-Processing

The data consisted of 7613 tweets (columns Text) with label (column Target) whether they were talking about a real disaster or not. With 3271 rows informing real disaster and 4342 rows informing not real disaster. The data shared on kaggle competition, and if you want to learn more about the data you can read it here.

Image for post

Example of real disaster word in a text :

“ Forest fire near La Ronge Sask. Canada “

Example of the use of disaster word but not about disaster:

“These boxes are ready to explodeExploding Kittens finally arrived! gameofkittens #explodingkittens”

The data will be divided for training (6090 rows) and testing (1523 rows) then proceed to pre-processing. We will only be using the text and target columns.

#data-science #lstm #word-embeddings #nlp #text-classification #data analysis