Macey  Kling

Macey Kling

1598741340

5 Things I Love About The TypeScript 4.0 Release

Recently, TypeScript released the latest version of the language: V4.0. It comes with several features and enhancements available across the language itself and the tooling. So far, what it offers is quite promising. In this article, I am going to present five things that I love, comes with this release.

1. Editor improvements

As developers, we spend most of our time working with a code editor. I am a heavy VS Code user at the moment. Therefore I will start with the VS Code editor improvements for TS4. To use the latest editor functionalities, you have to switch the TS version in VS Code to the latest. Open command pallet and find the command TypeScript: Select Version and pick the newest version.

Image for post

Changing TS version in VS Code

Refactoring Hint to Convert to Optional Chaining

When working with nested objects, one of the most painful mistakes is to fail to check for undefined or null when accessing an object property. Let’s consider the following example:

// Approach 1
// This will break if the user is undefined or address
if(user.address.city){ }
// Approach 2
// Can be solved
if(user && user.address && user.address.city){ }
// Approach 3
// With optional chaining
if(user?.address?.city){ }

With TS4, it automatically suggests converting to optional chaining whenever it is applicable. I have been using Approach 2 for the most part, and that is how I used to start writing the code if it is accessing any inner object properties. Since converting to optional chaining is hinted, it is straightforward for me to write much readable code.

Image for post

Image for post

Convert to Optional Chaining hint in VS Code

Support for deprecated JSDoc comments

When it comes to using 3rd party libraries or modules, it is hard to notice if a Class or a Method has been deprecated unless we refer the documentation. With the new release, now it shows the syntax with a strikethrough text. Therefore it is easy to see which parts of your code use deprecated syntax.

#new-releases #typescript #javascript

What is GEEK

Buddha Community

5 Things I Love About The TypeScript 4.0 Release
Christa  Stehr

Christa Stehr

1599308024

Microsoft Releases TypeScript 4.0 With Speed Boosting Features

icrosoft recently announced the availability of TypeScript version 4.0. The developers at the tech giant claimed that this version of the language represents the next generation of TypeScript with more expressivity, productivity as well as scalability.

Developed by the tech giant, TypeScript is an open-source programming language that is built on top of JavaScript by adding syntax for static type definitions. The types in this language provide a way to describe the shape of an object, providing better documentation as well as allowing TypeScript to validate that the code is working correctly.

According to the latest Stack Overflow Developers survey 2020, it secured the second position as the most loved language and  9th position among 25 programming languages as the most commonly used programming language by the developers. In one of our articles, we discussed how TypeScript weighs over other programming languages.

It is one of the fastest-growing programming languages among the developers. The motive behind this language is that while writing down the types of values and where they are used, developers can use TypeScript to type-check the code and let them know about mistakes before they run the code. TypeScript compiler can be used to strip away types from the code, leaving them with clean, readable JavaScript that runs anywhere.

In the present scenario, TypeScript is a core part of many developer’s JavaScript stack. The language adds optional types to JavaScript that support tools for large-scale JavaScript applications for any browser, for any host and on any operating systems.

The program manager of TypeScript, Daniel Rosenwasser, said in a blog post, “In our past two major versions, we looked back at some highlights that shined over the years. For TypeScript 4.0, we’re going to keep up that tradition.”

What’s New?

Based on the feedback by the developer’s community, TypeScript 4.0 includes many intuitive features that are focussed on boosting the performance of this language. Some of them are mentioned below-

Speed Improvements in build mode with –noEmitOnError

According to Rosenwasser, previously, compiling a program after a previous compile with errors under incremental would result in extremely slow performance when using the –noEmitOnError flag. The reason is, none of the information from the last compilation would be cached in a .tsbuildinfo file based on the –noEmitOnError flag.

But now TypeScript 4.0 changes this. The new update provides a great speed boost in these scenarios, and in turn, improves the build mode scenarios, which imply both –incremental and –noEmitOnError.

#developers corner #microsoft #microsoft releases typescript 4.0 #programming language #programming language with high salary #typescript #typescript 4.0

Semantic Similarity Framework for Knowledge Graph

Introduction

Sematch is an integrated framework for the development, evaluation, and application of semantic similarity for Knowledge Graphs (KGs). It is easy to use Sematch to compute semantic similarity scores of concepts, words and entities. Sematch focuses on specific knowledge-based semantic similarity metrics that rely on structural knowledge in taxonomy (e.g. depth, path length, least common subsumer), and statistical information contents (corpus-IC and graph-IC). Knowledge-based approaches differ from their counterpart corpus-based approaches relying on co-occurrence (e.g. Pointwise Mutual Information) or distributional similarity (Latent Semantic Analysis, Word2Vec, GLOVE and etc). Knowledge-based approaches are usually used for structural KGs, while corpus-based approaches are normally applied in textual corpora.

In text analysis applications, a common pipeline is adopted in using semantic similarity from concept level, to word and sentence level. For example, word similarity is first computed based on similarity scores of WordNet concepts, and sentence similarity is computed by composing word similarity scores. Finally, document similarity could be computed by identifying important sentences, e.g. TextRank.

logo

KG based applications also meet similar pipeline in using semantic similarity, from concept similarity (e.g. http://dbpedia.org/class/yago/Actor109765278) to entity similarity (e.g. http://dbpedia.org/resource/Madrid). Furthermore, in computing document similarity, entities are extracted and document similarity is computed by composing entity similarity scores.

kg

In KGs, concepts usually denote ontology classes while entities refer to ontology instances. Moreover, those concepts are usually constructed into hierarchical taxonomies, such as DBpedia ontology class, thus quantifying concept similarity in KG relies on similar semantic information (e.g. path length, depth, least common subsumer, information content) and semantic similarity metrics (e.g. Path, Wu & Palmer,Li, Resnik, Lin, Jiang & Conrad and WPath). In consequence, Sematch provides an integrated framework to develop and evaluate semantic similarity metrics for concepts, words, entities and their applications.


Getting started: 20 minutes to Sematch

Install Sematch

You need to install scientific computing libraries numpy and scipy first. An example of installing them with pip is shown below.

pip install numpy scipy

Depending on different OS, you can use different ways to install them. After sucessful installation of numpy and scipy, you can install sematch with following commands.

pip install sematch
python -m sematch.download

Alternatively, you can use the development version to clone and install Sematch with setuptools. We recommend you to update your pip and setuptools.

git clone https://github.com/gsi-upm/sematch.git
cd sematch
python setup.py install

We also provide a Sematch-Demo Server. You can use it for experimenting with main functionalities or take it as an example for using Sematch to develop applications. Please check our Documentation for more details.

Computing Word Similarity

The core module of Sematch is measuring semantic similarity between concepts that are represented as concept taxonomies. Word similarity is computed based on the maximum semantic similarity of WordNet concepts. You can use Sematch to compute multi-lingual word similarity based on WordNet with various of semantic similarity metrics.

from sematch.semantic.similarity import WordNetSimilarity
wns = WordNetSimilarity()

# Computing English word similarity using Li method
wns.word_similarity('dog', 'cat', 'li') # 0.449327301063
# Computing Spanish word similarity using Lin method
wns.monol_word_similarity('perro', 'gato', 'spa', 'lin') #0.876800984373
# Computing Chinese word similarity using  Wu & Palmer method
wns.monol_word_similarity('狗', '猫', 'cmn', 'wup') # 0.857142857143
# Computing Spanish and English word similarity using Resnik method
wns.crossl_word_similarity('perro', 'cat', 'spa', 'eng', 'res') #7.91166650904
# Computing Spanish and Chinese word similarity using Jiang & Conrad method
wns.crossl_word_similarity('perro', '猫', 'spa', 'cmn', 'jcn') #0.31023804699
# Computing Chinese and English word similarity using WPath method
wns.crossl_word_similarity('狗', 'cat', 'cmn', 'eng', 'wpath')#0.593666388463

Computing semantic similarity of YAGO concepts.

from sematch.semantic.similarity import YagoTypeSimilarity
sim = YagoTypeSimilarity()

#Measuring YAGO concept similarity through WordNet taxonomy and corpus based information content
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Actor109765278', 'wpath') #0.642
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Singer110599806', 'wpath') #0.544
#Measuring YAGO concept similarity based on graph-based IC
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Actor109765278', 'wpath_graph') #0.423
sim.yago_similarity('http://dbpedia.org/class/yago/Dancer109989502','http://dbpedia.org/class/yago/Singer110599806', 'wpath_graph') #0.328

Computing semantic similarity of DBpedia concepts.

from sematch.semantic.graph import DBpediaDataTransform, Taxonomy
from sematch.semantic.similarity import ConceptSimilarity
concept = ConceptSimilarity(Taxonomy(DBpediaDataTransform()),'models/dbpedia_type_ic.txt')
concept.name2concept('actor')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'path')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'wup')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'li')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'res')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'lin')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'jcn')
concept.similarity('http://dbpedia.org/ontology/Actor','http://dbpedia.org/ontology/Film', 'wpath')

Computing semantic similarity of DBpedia entities.

from sematch.semantic.similarity import EntitySimilarity
sim = EntitySimilarity()
sim.similarity('http://dbpedia.org/resource/Madrid','http://dbpedia.org/resource/Barcelona') #0.409923677282
sim.similarity('http://dbpedia.org/resource/Apple_Inc.','http://dbpedia.org/resource/Steve_Jobs')#0.0904545454545
sim.relatedness('http://dbpedia.org/resource/Madrid','http://dbpedia.org/resource/Barcelona')#0.457984139871
sim.relatedness('http://dbpedia.org/resource/Apple_Inc.','http://dbpedia.org/resource/Steve_Jobs')#0.465991132787

Evaluate semantic similarity metrics with word similarity datasets

from sematch.evaluation import WordSimEvaluation
from sematch.semantic.similarity import WordNetSimilarity
evaluation = WordSimEvaluation()
evaluation.dataset_names()
wns = WordNetSimilarity()
# define similarity metrics
wpath = lambda x, y: wns.word_similarity_wpath(x, y, 0.8)
# evaluate similarity metrics with SimLex dataset
evaluation.evaluate_metric('wpath', wpath, 'noun_simlex')
# performa Steiger's Z significance Test
evaluation.statistical_test('wpath', 'path', 'noun_simlex')
# define similarity metrics for Spanish words
wpath_es = lambda x, y: wns.monol_word_similarity(x, y, 'spa', 'path')
# define cross-lingual similarity metrics for English-Spanish
wpath_en_es = lambda x, y: wns.crossl_word_similarity(x, y, 'eng', 'spa', 'wpath')
# evaluate metrics in multilingual word similarity datasets
evaluation.evaluate_metric('wpath_es', wpath_es, 'rg65_spanish')
evaluation.evaluate_metric('wpath_en_es', wpath_en_es, 'rg65_EN-ES')

Evaluate semantic similarity metrics with category classification

Although the word similarity correlation measure is the standard way to evaluate the semantic similarity metrics, it relies on human judgements over word pairs which may not have same performance in real applications. Therefore, apart from word similarity evaluation, the Sematch evaluation framework also includes a simple aspect category classification. The task classifies noun concepts such as pasta, noodle, steak, tea into their ontological parent concept FOOD, DRINKS.

from sematch.evaluation import AspectEvaluation
from sematch.application import SimClassifier, SimSVMClassifier
from sematch.semantic.similarity import WordNetSimilarity

# create aspect classification evaluation
evaluation = AspectEvaluation()
# load the dataset
X, y = evaluation.load_dataset()
# define word similarity function
wns = WordNetSimilarity()
word_sim = lambda x, y: wns.word_similarity(x, y)
# Train and evaluate metrics with unsupervised classification model
simclassifier = SimClassifier.train(zip(X,y), word_sim)
evaluation.evaluate(X,y, simclassifier)

macro averge:  (0.65319812882333839, 0.7101245049198579, 0.66317566364913016, None)
micro average:  (0.79210167952791644, 0.79210167952791644, 0.79210167952791644, None)
weighted average:  (0.80842645056024054, 0.79210167952791644, 0.79639496616636352, None)
accuracy:  0.792101679528
             precision    recall  f1-score   support

    SERVICE       0.50      0.43      0.46       519
 RESTAURANT       0.81      0.66      0.73       228
       FOOD       0.95      0.87      0.91      2256
   LOCATION       0.26      0.67      0.37        54
   AMBIENCE       0.60      0.70      0.65       597
     DRINKS       0.81      0.93      0.87       752

avg / total       0.81      0.79      0.80      4406

Matching Entities with type using SPARQL queries

You can use Sematch to download a list of entities having a specific type using different languages. Sematch will generate SPARQL queries and execute them in DBpedia Sparql Endpoint.

from sematch.application import Matcher
matcher = Matcher()
# matching scientist entities from DBpedia
matcher.match_type('scientist')
matcher.match_type('científico', 'spa')
matcher.match_type('科学家', 'cmn')
matcher.match_entity_type('movies with Tom Cruise')

Example of automatically generated SPARQL query.

SELECT DISTINCT ?s, ?label, ?abstract WHERE {
    {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/NuclearPhysicist110364643> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Econometrician110043491> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Sociologist110620758> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Archeologist109804806> . }
 UNION {  
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/class/yago/Neurolinguist110354053> . } 
    ?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2002/07/owl#Thing> . 
    ?s <http://www.w3.org/2000/01/rdf-schema#label> ?label . 
    FILTER( lang(?label) = "en") . 
    ?s <http://dbpedia.org/ontology/abstract> ?abstract . 
    FILTER( lang(?abstract) = "en") .
} LIMIT 5000

Entity feature extraction with Similarity Graph

Apart from semantic matching of entities from DBpedia, you can also use Sematch to extract features of entities and apply semantic similarity analysis using graph-based ranking algorithms. Given a list of objects (concepts, words, entities), Sematch compute their pairwise semantic similarity and generate similarity graph where nodes denote objects and edges denote similarity scores. An example of using similarity graph for extracting important words from an entity description.

from sematch.semantic.graph import SimGraph
from sematch.semantic.similarity import WordNetSimilarity
from sematch.nlp import Extraction, word_process
from sematch.semantic.sparql import EntityFeatures
from collections import Counter
tom = EntityFeatures().features('http://dbpedia.org/resource/Tom_Cruise')
words = Extraction().extract_nouns(tom['abstract'])
words = word_process(words)
wns = WordNetSimilarity()
word_graph = SimGraph(words, wns.word_similarity)
word_scores = word_graph.page_rank()
words, scores =zip(*Counter(word_scores).most_common(10))
print words
(u'picture', u'action', u'number', u'film', u'post', u'sport', 
u'program', u'men', u'performance', u'motion')

Publications

Ganggao Zhu, and Carlos A. Iglesias. "Computing Semantic Similarity of Concepts in Knowledge Graphs." IEEE Transactions on Knowledge and Data Engineering 29.1 (2017): 72-85.

Oscar Araque, Ganggao Zhu, Manuel Garcia-Amado and Carlos A. Iglesias Mining the Opinionated Web: Classification and Detection of Aspect Contexts for Aspect Based Sentiment Analysis, ICDM sentire, 2016.

Ganggao Zhu, and Carlos Angel Iglesias. "Sematch: Semantic Entity Search from Knowledge Graph." SumPre-HSWI@ ESWC. 2015.


Support

You can post bug reports and feature requests in Github issues. Make sure to read our guidelines first. This project is still under active development approaching to its goals. The project is mainly maintained by Ganggao Zhu. You can contact him via gzhu [at] dit.upm.es


Why this name, Sematch and Logo?

The name of Sematch is composed based on Spanish "se" and English "match". It is also the abbreviation of semantic matching because semantic similarity metrics helps to determine semantic distance of concepts, words, entities, instead of exact matching.

The logo of Sematch is based on Chinese Yin and Yang which is written in I Ching. Somehow, it correlates to 0 and 1 in computer science.

Author: Gsi-upm
Source Code: https://github.com/gsi-upm/sematch 
License: View license

#python #jupyternotebook #graph 

Macey  Kling

Macey Kling

1598741340

5 Things I Love About The TypeScript 4.0 Release

Recently, TypeScript released the latest version of the language: V4.0. It comes with several features and enhancements available across the language itself and the tooling. So far, what it offers is quite promising. In this article, I am going to present five things that I love, comes with this release.

1. Editor improvements

As developers, we spend most of our time working with a code editor. I am a heavy VS Code user at the moment. Therefore I will start with the VS Code editor improvements for TS4. To use the latest editor functionalities, you have to switch the TS version in VS Code to the latest. Open command pallet and find the command TypeScript: Select Version and pick the newest version.

Image for post

Changing TS version in VS Code

Refactoring Hint to Convert to Optional Chaining

When working with nested objects, one of the most painful mistakes is to fail to check for undefined or null when accessing an object property. Let’s consider the following example:

// Approach 1
// This will break if the user is undefined or address
if(user.address.city){ }
// Approach 2
// Can be solved
if(user && user.address && user.address.city){ }
// Approach 3
// With optional chaining
if(user?.address?.city){ }

With TS4, it automatically suggests converting to optional chaining whenever it is applicable. I have been using Approach 2 for the most part, and that is how I used to start writing the code if it is accessing any inner object properties. Since converting to optional chaining is hinted, it is straightforward for me to write much readable code.

Image for post

Image for post

Convert to Optional Chaining hint in VS Code

Support for deprecated JSDoc comments

When it comes to using 3rd party libraries or modules, it is hard to notice if a Class or a Method has been deprecated unless we refer the documentation. With the new release, now it shows the syntax with a strikethrough text. Therefore it is easy to see which parts of your code use deprecated syntax.

#new-releases #typescript #javascript

What is Industry 4.0?Latest Trends, Technologies & Examples

https://www.mobinius.com/blogs/what-is-industry-4-0-trends-technologies-examples

#industrial revolution 4.0 #digital transformation companies #industry 4.0 services #industry 4. 0 technologies #internet of things #iot applications

Dylan  Iqbal

Dylan Iqbal

1630408920

Big Data Visualization: What, Why, Tips and Tools

Wondering what is big data visualization and how you can apply it for your business? Here's a guide to help you get started.

Because we live in a data-driven society, it’s likely that you’re constantly bombarded with complex sets of data that you need to transmit to your coworkers in an easy-to-grasp way.

The challenge is that almost no one wants to look at large lists of numbers and data, and important information can be easily lost within the midst of chaotic spreadsheets. But there is a solution, and that is big data visualization.

Today, we’ll be covering what big data visualization is and why it’s important, different big data visualization techniques you can use, tips and tricks for creating easily intelligible large data sets and the best big data visualization tools you can use.

By the end of this article, you’ll feel like a real data scientist and be competent in creating pie charts, bar charts, heat maps, histograms, interactive charts and more for big data visualization.

So let’s get into it, shall we?

Table of Contents

What is Big Data Visualization?

Why is Data Visualization Important in Big Data?

What Are the Types of Big Data Visualization?

5 Big Data Visualization Tips for Beginners

4 Tools for Big Data Visualization

---

What is Big Data Visualization?

Big data visualization is the representation of large sets of data through visual aids, whether that be through pie charts, heat maps, bar charts or any other kind of chart types or visual representation.

Analyzing and understanding large data sets and data analytics is no easy task and it can be especially difficult trying to relay that same information to colleagues who are not data-driven or data scientists.

That’s where big data visualization comes in. By transforming your large data sets into visually appealing infographics or interactive charts, you can easily convey your data points to fellow decision-makers.

When your data is plotted out on graphs in a visual way and metrics are made easily readable, no data gets lost in the mix, no matter how large or small, and it makes decision-making for the future a breeze.

Because you can’t make adequate decisions or advance significantly without analyzing your raw data, it’s important that companies use great data visualization methods to keep everyone in the loop.

Let’s take BMW for example.

Image Source

In 2020, BMW was able to track the number of sales for electric cars that they had and then compare it to other car companies’ sales, but not only.

They also were able to track the countries that bought the highest amount of their electric cars.

Image Source

This is a prime example of big data visualization in action. When you track your analytics and data, you can see where your wins are and when to celebrate or where your losses are and how you can make adjustments for the future.

Now, imagine for a moment that all this information was just written out plainly on a spreadsheet and had unstructured data all over it.

It would be hard to understand and assess how the company is doing and would take a long time to communicate to employees how their work has affected the sales of the cars.

This is why visualizing big data is so important. With just a glance and within seconds, you can easily see what cars are selling best and in what countries.

No time is wasted going through spreadsheets and trying to make sense of unstructured data — just visual analytics laid out for all to see and understand.

 

Why is Data Visualization Important in Big Data?

We live in a time where the internet and social media have exploded at an extraordinary rate, and information can be gathered within seconds and at the tips of anyone’s fingers.

With the rise of this technological era, it’s important that data can be visualized and consumed quickly and efficiently — especially since the human brain now has an attention span of about 8 seconds, according to this study by the Technical University of Denmark.

Because companies, businesses and organizations can gather data more quickly than ever, this means that they need to be able to visualize that data in an equally quick and easily consumable way.

The best way to efficiently communicate your ever-coming, new data is through visualizing big data. This will bring your complex data to life and anyone who looks at it will be able to understand and grasp it with just a glance.

Customize this template and make it your own!

Edit and Download

Take the image above as an example. With just a quick look at the statistics that are clearly visualized, you can make a data-based assumption.

Now, imagine if this data was just written out plainly on a spreadsheet. It would take much longer to understand and make an assumption based on the numbers.

By using big data visualization techniques, you’ll be able to get the most value from your data and analytics and make sure that everyone who says your data analysis will be able to interpret, understand and use your data. This, in turn, will help your company excel.

When you use data visualization techniques, it will optimize your use of data, help decision making and planning go smoothly, you’ll be able to identify and mitigate risk, extract loads of useful data and insights and improve your overall strategy and direction of your company.

There are no losses to using a visual representation of data, only wins. But there are lots of different types of data visualization that you can use.

Let’s discuss the different types of big data visualization and assess which one will work best for you.

 

What Are the Types of Big Data Visualization?

There are lots of different types of data visualization that data analysts like to use and depending on the amount of data. A data analyst may choose to use a pie chart to express their numerical data or a bar chart.

When looking at big data analytics regarding locations, one might choose to use an interactive heat map or maybe a pivot table.

We’re going to look at 8 common types of big data visualization and some data visualization examples for each to help you decipher which one will work best for you.

 

Type #1: Line Charts

Customize this template and make it your own!

Edit and Download

A line chart, also known as a line graph, is a graphic representation of data that plots a fixed value on one side and a variable on the other.

A line chart is a fantastic way to represent the relationship of data. You can use a line chart to represent changes and fluctuations of things within a certain period of time.

 

Type #2: Bar Charts

Customize this template and make it your own!

Edit and Download

A bar chart, also known as a bar graph, uses bars to compare different data points or data sets.

Many data scientists will use bar charts to visually represent their data analysis. You can use a bar chart to compare large amounts of data, fluctuations of quantities or different categories.

The taller the bar, the larger the numerical value and vice versa.

 

Type #3: Pie Charts

Customize this template and make it your own!

Edit and Download

Pie charts, donut charts, circle graphs or whatever you choose to call them, are representations of data that are split into smaller segments and sizes to represent their numerical value.

When you use a pie chart, it becomes easy to see and compare how the different segments relate and differ from each other.

When using a pie chart, try not to overload it with too many different values. When you split the pie chart into more than 7 segments, it can become difficult to understand the data.

 

Type #4: Heat Maps

Image Source

A heat map is a visual representation of data that is laid out on a map or table and uses different nuances and intensities of colors to represent its data.

Using a heat map can be especially helpful when you need to analyze data that seems to be never-ending. When you have an extremely wide value range, using a heat map makes it much more simple to quickly visualize and analyze large amounts of complex data at a glance.

 

Type #5: Histograms

histogram - weights of newborns

Customize this template and make it your own!

Edit and Download

A histogram is a graphical and visual representation of complex data sets and the frequency of said numerical data displayed through bars.

Histograms are very similar to bar graphs but vary in the fact that they mostly focus on the repeated frequency of numerical data.

Type #6: Scatter Plots

Customize this template and make it your own!

Edit and Download

A scatter plot, scatter chart or scatter graph, is a diagram that uses dots to represent and emphasize the different values of two or more numeric variables on an X and Y-axis.

Scatter plots are extremely useful to use when you have multiple large data sets and you want to know how they relate to each other and compare the importance of each value.

 

Type #7: Treemaps

Create your own charts and graphs!

Get Started For Free!

Treemaps are the visual representation of hierarchical data by using color-coded rectangles.

Users can use treemaps as a method to compare multiple sets of data and reflect the weight of each value in a project.

 

Type #8: Funnel Charts

Customize this template and make it your own!

Edit and Download

Funnel charts are typically used in sales and represent the different stages that your users or customers go through during the sales process and demonstrate decreasing values as they move through your funnel.

By using a funnel chart, you can accurately see where you are losing or gaining your customers during the sales process.

 

5 Big Data Visualization Tips for Beginners

Now that we’ve covered what big data visualization is, its importance and 9 different types of data visualization, you may feel like you’re a professional in data science.

Now that you’re familiar with the basics of data visualization, it’s time that we equip you with some of our best data visualization techniques.

Here are our top 5 best data visualization techniques for you to use when creating a visual representation of your data.

 

Tip #1: Use a Powerful Data Visualization Tool

Customize this template and make it your own!

Edit and Download

You can’t create powerful graphs without a powerful data visualization tool.

Sure, you could use something like Google charts, but to create unique, engaging charts, you’ll want to use a data visualization tool like Visme that's packed with amazing functionality.

Visme is a powerful data visualization tool with many integration functionalities. As you can see in the image above, you can create everything from funnel charts and tables to interactive data maps and graphs in this editor.

When you need to visualize big data, Visme is the way to go. When you create a graph in our big data visualization tool, your data can be updated in real-time with our integration tools.

You can import all your data from Google Sheets, Microsoft Excel, Google Analytics and other data sources, then see it come to life automatically on your project while you sit back and relax.

Visme also has many open-source elements and graphics for you to use to keep your infographic intriguing. To have the perfect interactive data visualization, you can use word clouds, tables, treemaps, animated characters and graphic design elements and more to implement into your design.

They’re also a powerhouse filled with lots of useful and educational tutorials on how to create the perfect chart for your raw data. Visme also has lots of tutorials for all things graphic design.

So why not use a tool that has everything you need for creating visuals for your data analysis and tons of tutorials to go with it? You can start your free account with Visme today and start living out your data analyst dreams.

It’s important to use a strong data visualization software for your data analysis and presentations. Stick around and soon we’ll get into our list of best tools for big data visualization.

 

Tip #2: Pick the Correct Form of Big Data Visualization

Customize this template and make it your own!

Edit and Download

When it comes to visualizing your data, you need to make sure that you choose the correct chart type.

Because there are so many different ways to display your data, you need to weigh out the cons and pros of each and find out which one will work best for your infographic or presentation.

Take for example pie charts and bar graphs.

When you analyze data that is very different, you might want to use a pie chart. But if you want to represent data entries that are close together, you could use a bar chart for that.

If you’re trying to create data visualization for sales, you could use a funnel chart, pyramid chart or cone chart for that.

Each different visualization method has its time and place, and you need to analyze your data and think about what method will work best for your respective data.

Refer above to the “Big Data Visualization Types” section above to see which one will suit you best.

 

Tip #3: Make Sure Your Data is Easily Comprehensible

Customize this template and make it your own!

Edit and Download

The whole point of big data visualization is to make it easy to understand at a glance.

It won’t be easily intelligible if you just start piling in large amounts of unstructured data and simply hope for the best. Or imagine you have tens of tiny little numbers on a bar graph that no one can see or read.

You need to make sure that anyone on your team, whether a data scientist or not, can understand what you’re trying to convey at a glance.

You can do this by using clear and bold text, contrasting font colors and background colors, not adding too many values to one chart and using compelling images to highlight your point, just like in the example above.

By adding too much text or too many values to a single graph, you risk confusing your audience even more. So keep it as simple and concise as possible.

 

Tip #4: Always Use Legends to Further Explain Your Data

Customize this template and make it your own!

Edit and Download

Using legends is absolutely vital for making your data easy to understand, so whether you’re creating a pie chart or bar graph, make sure you’re using a legend.

A legend is an area of your design that further explains each segment of your chart.

Many times people will assign a color to a segment in their chart, just like in the example above, and on the side add a little graphic element that explains what each color represents.

The legend is responsible for keeping the audience engaged and understanding everything you’re trying to convey.

 

Tip #5: Use Multiple Charts for Big Data

Visualize big data easily with this drag-and-drop tool!

Try It For Free

If you have a large amount of data that needs to be conveyed to your team, try using multiple graphs to do so.

Incorporating tons of data into a single chart will only make it hard for the human brain to stay on track and focus to try and understand what you want to share.

The best rule of thumb to follow here is KISS — keep it simple, stupid.

So instead of simply adding all your data to one pie chart and making it have 30 pie slices, why not create multiple graphs and break it down into bite-sized pieces? Pun intended.

By creating multiple matching charts, you can keep your data easily intelligible, cohesive and right on brand.

Just like in the example above, you can clearly understand all the data that’s being displayed because it is written out on two different donut charts.

You want to make sure your information is understandable by anyone at a glance, and you can do so by breaking down your data.

 

4 Tools for Big Data Visualization

Now that you know essentially all there is to know about big data visualization, it’s time you choose a tool that will help you create those visuals.

We’ll be covering 4 data visualization software you can use to get the job done.

Let’s jump right into it.

 

Tool #1: Visme

Start visualizing data with beautiful charts and graphs!

Try It For Free

If you want to create compelling and professional data visualization, then you need a tool like Visme.

Visme makes it easy for both designers and non-designers alike to visualize their data in interactive and engaging ways.

For example, you can create incredible animated charts, add your own audio files to them that you can record right within the editor, add tons of professionally design data widgets and import all your data from third-party websites such as Microsoft Excel, Google sheets etc.

The best part? You can save endless amounts of time and effort by using one of our hundreds of customizable templates for displaying your data.

Simply scroll through tons of professionally design templates for charts and data choose one that suits your style.

Everything can be customized on each and every template and you can even add your own brand colors, logo and font to keep everything right on-brand with your other designs.

Not only can you create loads of beautiful charts, graphs and infographics with Visme, but you can also create anything else design-related. You can create presentations, infographics, multi-page reports and proposals, branded social graphics and more.

If you’re looking for a powerful data visualization tool with high functionality for many other types of designs, Visme is the one for you. Plus, you can create a free account and use for as long as you like — no trial period or hidden costs!

 

Tip #2: Tableau

Tableau is an interactive data visualization software with a focus on business intelligence. Their goal is to help people make data that can be easily understood by anyone.

Tableau is a tool that is used in the business intelligence industry and it can help you simplify raw data into a simple format. With drag and drop functionalities, you can create data visualization fairly quickly and then share it with others.

In Tableau you can create lots of different data visualizations, from a correlation matrix to a simple bar graph.

Another plus for the software is that you can infuse the Tableau dashboard with artificial intelligence and machine learning from Aible.

You can start a free trial with Tableau, but it is a bit pricey after your trial is up. At $70/month billed annually, you’ll have to make sure you absolutely love the product before buying it.

 

Tool #3: Microsoft’s Power BI

Power BI by Microsoft is a business analytics service that helps you create interactive data visualizations.

Whether your data is on an Excel spreadsheet an on-premises hybrid data warehouses, Power BI will help you bring that data together to create reports and graphs to share with your team.

There are three versions of Power BI that you can use: the desktop app, the mobile app or their website.

You can use Power BI to help you visualize big data with your team by using some of their other popular apps like Microsoft Excel and work together in real-time to create compelling data.

Power BI has some basic templates that you can use to get a jump start on creating your data.

Power BI is quite affordable, coming in at $9.99/month.

If you’re not completely sold on using Power BI, let’s move on to our next tool.

 

Tool #4: Datawrapper

Datawrapper is an online tool that you can use to create data visualizations that are interactive and responsive, with no code or programming languages like python or javascript required.

With big users like the New York Times and the UN, they do have quite a few things to boast about.

Data wrapper is an open-source and easy-to-use data visualization software where you can create basic charts and graphs, maps and line charts that can be embedded into your website.

As for the price, you can use their free plan and create lots of charts, maps and tables, but they will be watermarked and there are a few other inconveniences that come with the free plan.

The next plan comes in at $599/month, which is definitely on the pricey side.

And that concludes our list of 4 tools for data visualization.

 

Now Over to You

If you want a data visualization software that will help you convey your data in a fun and engaging way, then you most likely will love using Visme.

Not only is Visme a powerful data visualization tool, but it’s so much more. You can use Visme to create all of your graphic design needs, from sales presentations to pitch decks, social media posts, infographics, videos, eBooks and more.

What are you waiting for? Create your free account today and free your inner data scientist.

Originally published at https://visme.co

#datavisualization #bigdata