1612003304
DevOps could be a combination of development and operations. It implies that to complete the project the event team should integrate with operations deliver on the project to the top user inside the required amount of the top user.
This powerful DevOps platform makes an acceptable IT company which became the trend doing these days and Azure is the best cloud computing service supporter to provide in all the IT departments for their projects. Both of them providing different supporters. However, there’s some connection between them. Now in the present time, the DevOps became useful to Microsoft Azure join the online Microsoft Azure Course.
Before reaching to see their connectivity, allow us to have a glance at what’s Infrastructure as a code?
Infrastructure as a Code know as IAC :
Infrastructure as a code (IAC) may be a type of IT Infrastructure, that operations control the code instead of the guide approach. It is commonly referred to as programmable infrastructure. The idea of IAC is akin to programming scripts which may automatize the manually written approach. Scripts have been written to automatize the manually written approach inside which a particular piece of code is going to be lifeless via way of means of a couple of times.
But the period IAC is going to be ever-changing in the course of a very extraordinary manner. Here the certain piece of code is going to be lifeless a couple of numbers times, via way of means of growing the modifications to the scripts slightly. Here the automobile maker should have the records of code anyplace he need to amendment and what is going to the output ought to return. IAC makes use of an excessive level or descriptive language to code plenty of flexible language and adaptive procedure and readying approach.
The development of IAC is proven below:
Get an improved understanding of Microsoft Azure from Azure Online Training Course.
For example, the IAC is coded with Ansible, partner diploma It configurations and control device anyplace it’ll deployation the MYSQL server to confirm that it is been run properly. Serves in the advent of personal accounts, control of latest accounts, placing in an alternative record, deletion of recurrent databases so on. The operations group will be geared up to carry out a few code automation as a substitute for searching at the developer
Now let’s have a precis of but Devops has become beneficial to Azure. IAC is that the essential idea hired in the integration of DevOps with Azure. It consists of the following points: Azure automation: As all of us know that Azure makes use of several types of equipment to finish the project. One of the several types of equipment that it makes use of in its Cloud environment is DevOps which is largely accustomed to automatize the approach. DevOps powerful automation makes the work easier and smarter and reduces the manual work that must be done by the developers learn depth in online DevOps Training Course.
Desired State Configuration: each environment has its very own configuration via way of means of default. Some default configurations may fulfill the pinnacle person requirements while a few don’t.To conquer that downside Azure environment has been designed in this sort of style anyplace the pinnacle person will transfer to the desired kingdom configuration as consistent with their call for inside the IAC.
ARM templates: Here ARM stands for Azure Resource supervisor templates. It the bespoken manual that can be created in the Azure environment, anyplace the customers will personalize the manual and install it in the Azure cloud environment. The declarative code would not have any readying info, but instead, it carries the pinnacle kingdom of the targeted environment. Moreover, while reading, you have the functionality to extrade and replace them in the course of management-led and positive ways to follow a version manipulation for your infrastructure.
#online devops training #online devops course #data science online training #data science online course #data science training in noida #data science training in delhi
1667425440
Perl script converts PDF files to Gerber format
Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.
The general workflow is as follows:
Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).
See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.
#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;
use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)
##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file
use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call
#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software. \nGerber files MAY CONTAIN ERRORS. Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG
use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC
use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)
#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1);
#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
.010, -.001, #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
.031, -.014, #used for vias
.041, -.020, #smallest non-filled plated hole
.051, -.025,
.056, -.029, #useful for IC pins
.070, -.033,
.075, -.040, #heavier leads
# .090, -.043, #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
.100, -.046,
.115, -.052,
.130, -.061,
.140, -.067,
.150, -.079,
.175, -.088,
.190, -.093,
.200, -.100,
.220, -.110,
.160, -.125, #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
.090, -.040, #want a .090 pad option, but use dummy hole size
.065, -.040, #.065 x .065 rect pad
.035, -.040, #.035 x .065 rect pad
#traces:
.001, #too thin for real traces; use only for board outlines
.006, #minimum real trace width; mainly used for text
.008, #mainly used for mid-sized text, not traces
.010, #minimum recommended trace width for low-current signals
.012,
.015, #moderate low-voltage current
.020, #heavier trace for power, ground (even if a lighter one is adequate)
.025,
.030, #heavy-current traces; be careful with these ones!
.040,
.050,
.060,
.080,
.100,
.120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);
#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size: parsed PDF diameter: error:
# .014 .016 +.002
# .020 .02267 +.00267
# .025 .026 +.001
# .029 .03167 +.00267
# .033 .036 +.003
# .040 .04267 +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};
#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
CIRCLE_ADJUST_MINX => 0,
CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
CIRCLE_ADJUST_MAXY => 0,
SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};
#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches
#line join/cap styles:
use constant
{
CAP_NONE => 0, #butt (none); line is exact length
CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
#number of elements in each shape type:
use constant
{
RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
rect => RECT_SHAPELEN,
line => LINE_SHAPELEN,
curve => CURVE_SHAPELEN,
circle => CIRCLE_SHAPELEN,
);
#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions
# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?
#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes.
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes
#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches
# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)
# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time
# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const
use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool
my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time
print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load
#############################################################################################
#junk/experiment:
#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html
#my $caller = "pdf2gerb::";
#sub cfg
#{
# my $proto = shift;
# my $class = ref($proto) || $proto;
# my $settings =
# {
# $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
# };
# bless($settings, $class);
# return $settings;
#}
#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;
#print STDERR "read cfg file\n";
#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names
#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }
Author: swannman
Source Code: https://github.com/swannman/pdf2gerb
License: GPL-3.0 license
1624939448
Collaboration is a crucial element in software development; having the right collaboration tools can make a difference and boost the entire team’s productivity. Microsoft introduced its Application Lifecycle Management product with Team Foundation Server (aka TFS) on March 16th, 2006. This software had to be installed on a server within your network and had a user-based license. To reduce the complexity of setting up and maintaining the server, Microsoft released Visual Studio Online–an Azure-based, server-hosted version of TFS. Microsoft manages and administers the servers as well as taking care of backups. To clarify its commitment to agile and DevOps, Microsoft rebranded Visual Studio Online in 2015 as Visual Studio Team Services and later as Azure DevOps in 2018.
Since its beginning, this platform has changed significantly. For example, it introduced a customizable, task-based build service, release gates, and much more. Many organizations across the world made a significant investment to run their businesses on Azure DevOps. For this reason, after Microsoft announced the acquisition of GitHub in mid-2018, GitHub announced its automated workflow system, which is much like Azure Pipelines. It’s called GitHub Actions. Due to the switch, some companies became afraid of having to migrate their practices again. In the past few months, I have gotten several questions about whether it is still worth starting new projects on Azure DevOps, especially after the release of features like GitHub Advanced Security and GitHub Codespaces (similar to Visual Studio Codespaces). In this article, I’ll clarify the differences between these two platforms, and I’ll give you some advice on how you should be using them to your advantage.
To meet the needs of companies that want to keep their data within their network, both GitHub and Azure DevOps provide a server version of their platform. GitHub version is called GitHub Enterprise Server, and the Azure DevOps version is called Azure DevOps Server. Both versions require the client to install and maintain both software and machine.
On the other hand, there is a critical difference between their cloud-hosted version. While Azure DevOps Service allows you to choose the Azure region, which is closes to your organization’s location, to decrease the eventuality of networking latency during the creation of your organization (collection of projects). GitHub doesn’t provide this feature.
At the core of GitHub project management, we can find the issues. This task can be used to track any work item, from feature to bugs, and can be sorted into a Kanban-style board for easy consultation. The issue’s description also supports markdown syntax. Adding a specific keyword #issue-number (ex: #3) can associate the issue with another one. Each issue can be assigned to multiple developers, be linked to pull requests, and have various labels assigned to it. One can link a pull request to an issue to show that a fix is in progress and automatically close the issue when someone merges the pull request.
GitHub Kanban board
#azure-devops #microsoft #azure #github #azure devops #azure devops and github
1602401329
DevOps and Cloud computing are joined at the hip, now that fact is well appreciated by the organizations that engaged in SaaS cloud and developed applications in the Cloud. During the COVID crisis period, most of the organizations have started using cloud computing services and implementing a cloud-first strategy to establish their remote operations. Similarly, the extended DevOps strategy will make the development process more agile with automated test cases.
According to the survey in EMEA, IT decision-makers have observed a 129%* improvement in the overall software development process when performing DevOps on the Cloud. This success result was just 81% when practicing only DevOps and 67%* when leveraging Cloud without DevOps. Not only that, but the practice has also made the software predictability better, improve the customer experience as well as speed up software delivery 2.6* times faster.
3 Core Principle to fit DevOps Strategy
If you consider implementing DevOps in concert with the Cloud, then the
below core principle will guide you to utilize the strategy.
Guide to Remold Business with DevOps and Cloud
Companies are now re-inventing themselves to become better at sensing the next big thing their customers need and finding ways with the Cloud based DevOps to get ahead of the competition.
#devops #devops-principles #azure-devops #devops-transformation #good-company #devops-tools #devops-top-story #devops-infrastructure
1619601744
In this article, I will discuss an Azure Database CI/CD approach using Azure Premium Function and Jenkins pipeline. I will only explain the architecture and the approach I took to implement the Database CI/CD pipeline.
Problem Statement and Challenges
I was working on a project where I had to build a Database deployment pipeline using enterprise GitHub which is only accessible through the company’s internal network. Also, port 1433 was blocked from the internal network to the Azure Synapse public endpoint for security reasons. Hence the only option I had was to run my pipeline in an internal network so that I could access GitHub which I was using for my Database Deployment Source Control and send the SQL code to Azure Synapse using Azure function HTTP post as port 1433 was blocked.
#azure #devops #azure-synapse-analytics #azure-devops #azure-functions
1619625660
In this article, I will discuss an Azure Database CI/CD approach using Azure Premium Function and Jenkins pipeline. I will only explain the architecture and the approach I took to implement the Database CI/CD pipeline.
Problem Statement and Challenges
#azure #devops #azure-synapse-analytics #azure-devops #azure-functions