1658404800
TLSCallbackGenerator is a helper library that allows you to generate TLSCallbacks and nested TLSCallbacks in C++/C. TLSCallbacks are callback which are defined in the Thread Local Storage data structure. They are executed on the thread startup, before the entry point. I encourage you to read more on the subject as it can be used in conjunction with various other obfuscation techniques.
This can be used to create a simple TLSCallback. All you need to do is create a function that you wish to run as a TLSCallback, and call it using the "CREATE_TLS_CALLBACK Macro. For Example: CREATE_TLS_CALLBACK(<tls_callback>);
After creating your initial function and registering it as the first item in the Callback array, you can use the "ADD_SECRET_TLS_CALLBACK" Macro to add more callbacks. The advantage is that these callbacks will be added in runtime, so they won't be detected in a static analysis of the PE. For example:
void tls_callback(PVOID hModule, DWORD dwReason, PVOID pContext)
{
...code...
ADD_SECRET_TLS_CALLBACK(<secret_tls_callback>, <index>);
...code...
}
note that you can also add secret TLSCallback from within secret TLSCallbacks! just make sure that the indexes make sense since a Callback will not execute if it's not connected to the rest of the array.
And That's it! your code will run before main. If you're struggling with implementation, check out example.cpp to see how to use both functions.
We've also added the option to remove your callbacks from the array. Use the "REMOVE_SECRET_TLS_CALLBACK_BY_INDEX" Macro to do so.
These are all taken from an executable which uses both regular and a dynamic TLSCallback, but they apply to both cases.
PeStudio finds the Static TLSCallback, since it's written in the PE structure of the executable. However, it won't see any dynamic TLSCallback that's present (duh!)
We can also see the first callback in the exports section, but c'est tout.
This is how our main will look like. No TLS in sight!
This is how the regular callback looks like. You can see the definition of the dynamic callback (further obfuscation is left as an exercise for the reader). However you won't see any call to it.
Author: barakinio
Source code: https://github.com/barakinio/TLSCallbackGenerator
License:
1624240146
C and C++ are the most powerful programming language in the world. Most of the super fast and complex libraries and algorithms are written in C or C++. Most powerful Kernel programs are also written in C. So, there is no way to skip it.
In programming competitions, most programmers prefer to write code in C or C++. Tourist is considered the worlds top programming contestant of all ages who write code in C++.
During programming competitions, programmers prefer to use a lightweight editor to focus on coding and algorithm designing. Vim, Sublime Text, and Notepad++ are the most common editors for us. Apart from the competition, many software developers and professionals love to use Sublime Text just because of its flexibility.
I have discussed the steps we need to complete in this blog post before running a C/C++ code in Sublime Text. We will take the inputs from an input file and print outputs to an output file without using freopen
file related functions in C/C++.
#cpp #c #c-programming #sublimetext #c++ #c/c++
1597937354
If you are familiar with C/C++then you must have come across some unusual things and if you haven’t, then you are about to. The below codes are checked twice before adding, so feel free to share this article with your friends. The following displays some of the issues:
The below code generates no error since a print function can take any number of inputs but creates a mismatch with the variables. The print function is used to display characters, strings, integers, float, octal, and hexadecimal values onto the output screen. The format specifier is used to display the value of a variable.
A signed integer is a 32-bit datum that encodes an integer in the range [-2147483648 to 2147483647]. An unsigned integer is a 32-bit datum that encodes a non-negative integer in the range [0 to 4294967295]. The signed integer is represented in twos-complement notation. In the below code the signed integer will be converted to the maximum unsigned integer then compared with the unsigned integer.
#problems-with-c #dicey-issues-in-c #c-programming #c++ #c #cplusplus
1658977500
Calyx provides a simple API for generating text with declarative recursive grammars.
gem install calyx
gem 'calyx'
The best way to get started quickly is to install the gem and run the examples locally.
Requires Roda and Rack to be available.
gem install roda
Demonstrates how to use Calyx to construct SVG graphics. Any Gradient generates a rectangle with a linear gradient of random colours.
Run as a web server and preview the output in a browser (http://localhost:9292
):
ruby examples/any_gradient.rb
Or generate SVG files via a command line pipe:
ruby examples/any_gradient > gradient1.xml
Requires the Twitter client gem and API access configured for a specific Twitter handle.
gem install twitter
Demonstrates how to use Calyx to make a minimal Twitter bot that periodically posts unique tweets. See @tiny_woodland on Twitter and the writeup here.
TWITTER_CONSUMER_KEY=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
TWITTER_ACCESS_TOKEN=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
ruby examples/tiny_woodland_bot.rb
Faker is a popular library for generating fake names and associated sample data like internet addresses, company names and locations.
This example demonstrates how to use Calyx to reproduce the same functionality using custom lists defined in a YAML configuration file.
ruby examples/faker.rb
Require the library and inherit from Calyx::Grammar
to construct a set of rules to generate a text.
require 'calyx'
class HelloWorld < Calyx::Grammar
start 'Hello world.'
end
To generate the text itself, initialize the object and call the generate
method.
hello = HelloWorld.new
hello.generate
# > "Hello world."
Obviously, this hardcoded sentence isn’t very interesting by itself. Possible variations can be added to the text by adding additional rules which provide a named set of text strings. The rule delimiter syntax ({}
) can be used to substitute the generated content of other rules.
class HelloWorld < Calyx::Grammar
start '{greeting} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
end
Each time #generate
runs, it evaluates the tree and randomly selects variations of rules to construct a resulting string.
hello = HelloWorld.new
hello.generate
# > "Hi world."
hello.generate
# > "Hello world."
hello.generate
# > "Yo world."
By convention, the start
rule specifies the default starting point for generating the final text. You can start from any other named rule by passing it explicitly to the generate method.
class HelloWorld < Calyx::Grammar
hello 'Hello world.'
end
hello = HelloWorld.new
hello.generate(:hello)
As an alternative to subclassing, you can also construct rules unique to an instance by passing a block when initializing the class:
hello = Calyx::Grammar.new do
start '{greeting} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
end
hello.generate
Basic rule substitution uses single curly brackets as delimiters for template expressions:
fruit = Calyx::Grammar.new do
start '{colour} {fruit}'
colour 'red', 'green', 'yellow'
fruit 'apple', 'pear', 'tomato'
end
6.times { fruit.generate }
# => "yellow pear"
# => "red apple"
# => "green tomato"
# => "red pear"
# => "yellow tomato"
# => "green apple"
Rules are recursive. They can be arbitrarily nested and connected to generate larger and more complex texts.
class HelloWorld < Calyx::Grammar
start '{greeting} {world_phrase}.'
greeting 'Hello', 'Hi', 'Hey', 'Yo'
world_phrase '{happy_adj} world', '{sad_adj} world', 'world'
happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
sad_adj 'cruel', 'miserable'
end
Nesting and hierarchy can be manipulated to balance consistency with novelty. The exact same word atoms can be combined in a variety of ways to produce strikingly different resulting texts.
module HelloWorld
class Sentiment < Calyx::Grammar
start '{happy_phrase}', '{sad_phrase}'
happy_phrase '{happy_greeting} {happy_adj} world.'
happy_greeting 'Hello', 'Hi', 'Hey', 'Yo'
happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
sad_phrase '{sad_greeting} {sad_adj} world.'
sad_greeting 'Goodbye', 'So long', 'Farewell'
sad_adj 'cruel', 'miserable'
end
class Mixed < Calyx::Grammar
start '{greeting} {adj} world.'
greeting 'Hello', 'Hi', 'Hey', 'Yo', 'Goodbye', 'So long', 'Farewell'
adj 'wonderful', 'amazing', 'bright', 'beautiful', 'cruel', 'miserable'
end
end
By default, the outcomes of generated rules are selected with Ruby’s built-in pseudorandom number generator (as seen in methods like Kernel.rand
and Array.sample
). To seed the random number generator, pass in an integer seed value as the first argument to the constructor:
grammar = Calyx::Grammar.new(seed: 12345) do
# rules...
end
Alternatively, you can pass a preconfigured instance of Ruby’s stdlib Random
class:
random = Random.new(12345)
grammar = Calyx::Grammar.new(rng: random) do
# rules...
end
When a random seed isn’t supplied, Time.new.to_i
is used as the default seed, which makes each run of the generator relatively unique.
Choices can be weighted so that some rules have a greater probability of expanding than others.
Weights are defined by passing a hash instead of a list of rules where the keys are strings or symbols representing the grammar rules and the values are weights.
Weights can be represented as floats, integers or ranges.
The following definitions produce an equivalent weighting of choices:
Calyx::Grammar.new do
start 'heads' => 1, 'tails' => 1
end
Calyx::Grammar.new do
start 'heads' => 0.5, 'tails' => 0.5
end
Calyx::Grammar.new do
start 'heads' => 1..5, 'tails' => 6..10
end
Calyx::Grammar.new do
start 'heads' => 50, 'tails' => 50
end
There’s a lot of interesting things you can do with this. For example, you can model the triangular distribution produced by rolling 2d6:
Calyx::Grammar.new do
start(
'2' => 1,
'3' => 2,
'4' => 3,
'5' => 4,
'6' => 5,
'7' => 6,
'8' => 5,
'9' => 4,
'10' => 3,
'11' => 2,
'12' => 1
)
end
Or reproduce Gary Gygax’s famous generation table from the original Dungeon Master’s Guide (page 171):
Calyx::Grammar.new do
start(
:empty => 0.6,
:monster => 0.1,
:monster_treasure => 0.15,
:special => 0.05,
:trick_trap => 0.05,
:treasure => 0.05
)
empty 'Empty'
monster 'Monster Only'
monster_treasure 'Monster and Treasure'
special 'Special'
trick_trap 'Trick/Trap.'
treasure 'Treasure'
end
Dot-notation is supported in template expressions, allowing you to call any available method on the String
object returned from a rule. Formatting methods can be chained arbitrarily and will execute in the same way as they would in native Ruby code.
greeting = Calyx::Grammar.new do
start '{hello.capitalize} there.', 'Why, {hello} there.'
hello 'hello', 'hi'
end
4.times { greeting.generate }
# => "Hello there."
# => "Hi there."
# => "Why, hello there."
# => "Why, hi there."
You can also extend the grammar with custom modifiers that provide useful formatting functions.
Filters accept an input string and return the transformed output:
greeting = Calyx::Grammar.new do
filter :shoutycaps do |input|
input.upcase
end
start '{hello.shoutycaps} there.', 'Why, {hello.shoutycaps} there.'
hello 'hello', 'hi'
end
4.times { greeting.generate }
# => "HELLO there."
# => "HI there."
# => "Why, HELLO there."
# => "Why, HI there."
The mapping shortcut allows you to specify a map of regex patterns pointing to their resulting substitution strings:
green_bottle = Calyx::Grammar.new do
mapping :pluralize, /(.+)/ => '\\1s'
start 'One green {bottle}.', 'Two green {bottle.pluralize}.'
bottle 'bottle'
end
2.times { green_bottle.generate }
# => "One green bottle."
# => "Two green bottles."
In order to use more intricate rewriting and formatting methods in a modifier chain, you can add methods to a module and embed it in a grammar using the modifier
classmethod.
Modifier methods accept a single argument representing the input string from the previous step in the expression chain and must return a string, representing the modified output.
module FullStop
def full_stop(input)
input << '.'
end
end
hello = Calyx::Grammar.new do
modifier FullStop
start '{hello.capitalize.full_stop}'
hello 'hello'
end
hello.generate
# => "Hello."
To share custom modifiers across multiple grammars, you can include the module in Calyx::Modifiers
. This will make the methods available to all subsequent instances:
module FullStop
def full_stop(input)
input << '.'
end
end
class Calyx::Modifiers
include FullStop
end
Alternatively, you can combine methods from existing Gems that monkeypatch String
:
require 'indefinite_article'
module FullStop
def full_stop
self << '.'
end
end
class String
include FullStop
end
noun_articles = Calyx::Grammar.new do
start '{fruit.with_indefinite_article.capitalize.full_stop}'
fruit 'apple', 'orange', 'banana', 'pear'
end
4.times { noun_articles.generate }
# => "An apple."
# => "An orange."
# => "A banana."
# => "A pear."
Rule expansions can be ‘memoized’ so that multiple references to the same rule return the same value. This is useful for picking a noun from a list and reusing it in multiple places within a text.
The @
sigil is used to mark memoized rules. This evaluates the rule and stores it in memory the first time it’s referenced. All subsequent references to the memoized rule use the same stored value.
# Without memoization
grammar = Calyx::Grammar.new do
start '{name} <{name.downcase}>'
name 'Daenerys', 'Tyrion', 'Jon'
end
3.times { grammar.generate }
# => Daenerys <jon>
# => Tyrion <daenerys>
# => Jon <tyrion>
# With memoization
grammar = Calyx::Grammar.new do
start '{@name} <{@name.downcase}>'
name 'Daenerys', 'Tyrion', 'Jon'
end
3.times { grammar.generate }
# => Tyrion <tyrion>
# => Daenerys <daenerys>
# => Jon <jon>
Note that the memoization symbol can only be used on the right hand side of a production rule.
Rule expansions can be marked as ‘unique’, meaning that multiple references to the same rule always return a different value. This is useful for situations where the same result appearing twice would appear awkward and messy.
Unique rules are marked by the $
sigil.
grammar = Calyx::Grammar.new do
start "{$medal}, {$medal}, {$medal}"
medal 'Gold', 'Silver', 'Bronze'
end
grammar.generate
# => Silver, Bronze, Gold
Template expansions can be dynamically constructed at runtime by passing a context map of rules to the #generate
method:
class AppGreeting < Calyx::Grammar
start 'Hi {username}!', 'Welcome back {username}...', 'Hola {username}'
end
context = {
username: UserModel.username
}
greeting = AppGreeting.new
greeting.generate(context)
In addition to defining grammars in pure Ruby, you can load them from external JSON and YAML files:
hello = Calyx::Grammar.load('hello.yml')
hello.generate
The format requires a flat map with keys representing the left-hand side named symbols and the values representing the right hand side substitution rules.
In JSON:
{
"start": "{greeting} world.",
"greeting": ["Hello", "Hi", "Hey", "Yo"]
}
In YAML:
---
start: "{greeting} world."
greeting:
- Hello
- Hi
- Hey
- Yo
Calling #evaluate
on the grammar instance will give you access to the raw generated tree structure before it gets flattened into a string.
The tree is encoded as an array of nested arrays, with the leading symbols labeling the choices and rules selected, and the trailing terminal leaves encoding string values.
This may not make a lot of sense unless you’re familiar with the concept of s-expressions. It’s a fairly speculative feature at this stage, but it leads to some interesting possibilities.
grammar = Calyx::Grammar.new do
start 'Riddle me ree.'
end
grammar.evaluate
# => [:start, [:choice, [:concat, [[:atom, "Riddle me ree."]]]]]
Rough plan for stabilising the API and features for a 1.0
release.
Version | Features planned |
---|---|
0.6 | |
0.7 | |
0.8 | |
0.9 |
|
0.10 | |
0.11 | |
0.12 | |
0.13 | |
0.14 | |
0.15 | |
0.16 | |
0.17 |
|
Author: Maetl
Source Code: https://github.com/maetl/calyx
License: MIT license
1589840460
We can’t define functions inside other functions in C.
With languages like JavaScript, Swift or Python it is pretty common to use nested functions.
C and C++ do not provide this option.
Your next best option is to put the functions you need to perform something in a separate file, and only expose the primary function a client program needs to use, so you can “hide” all the things that does not need to be public.
#c #c# #c++ #programming-c
1589822520
A new C# compiler feature that inspects code and generates additional source files promises to improve performance in a number of scenarios.
Microsoft has introduced a preview of a C# compiler capability called Source Generators that can inspect a program and generate source files that can be added to a compilation. Microsoft says Source Generators can improve performance in a number of scenarios.
Introduced April 29, a Source Generator is a piece of code (a .NET Standard 2.0 assembly) that runs during compilation and can inspect a program to produce additional files that are compiled together with the rest of the code.
#c #c# #c++ #programming-c