How to use @DateTimeFormat to format Date Time request param in SpringBoot RestAPI

https://ozenero.com/how-to-use-datetimeformat-to-format-date-time-request-param-in-springboot-restapi-examples

How to use @DateTimeFormat to format Date Time request param in SpringBoot RestAPI Examples

[no_toc]
In the tutorial, we show how to work with DateTime request param in SpringBoot RestAPI using @DateTimeFormat.

@DateTimeFormat with DateTime Request Param

@DateTimeFormat is used to declare a field or method parameter should be formatted as a date or time.

We can use @DateTimeFormat with ISO date time pattern, or custom format pattern string:

  • Common ISO enum value: DATE, TIME, DATE_TIME
  • DATE: yyyy-MM-dd, example 2019-03-28
  • TIME: HH:mm:ss.SSSXXX, example 01:30:00.000-05:00
  • DATE_TIME: yyyy-MM-dd'T'HH:mm:ss.SSSXXX, example 2019-03-28T01:30:00.000+07:00

Example @DateTimeFormat with @RequestParam in Spring RestAPI:

More at:

https://ozenero.com/how-to-use-datetimeformat-to-format-date-time-request-param-in-springboot-restapi-examples

How to use @DateTimeFormat to format Date Time request param in SpringBoot RestAPI Examples

#springboot #restapi

What is GEEK

Buddha Community

How to use @DateTimeFormat to format Date Time request param in SpringBoot RestAPI
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

How to use @DateTimeFormat to format Date Time request param in SpringBoot RestAPI

https://ozenero.com/how-to-use-datetimeformat-to-format-date-time-request-param-in-springboot-restapi-examples

How to use @DateTimeFormat to format Date Time request param in SpringBoot RestAPI Examples

[no_toc]
In the tutorial, we show how to work with DateTime request param in SpringBoot RestAPI using @DateTimeFormat.

@DateTimeFormat with DateTime Request Param

@DateTimeFormat is used to declare a field or method parameter should be formatted as a date or time.

We can use @DateTimeFormat with ISO date time pattern, or custom format pattern string:

  • Common ISO enum value: DATE, TIME, DATE_TIME
  • DATE: yyyy-MM-dd, example 2019-03-28
  • TIME: HH:mm:ss.SSSXXX, example 01:30:00.000-05:00
  • DATE_TIME: yyyy-MM-dd'T'HH:mm:ss.SSSXXX, example 2019-03-28T01:30:00.000+07:00

Example @DateTimeFormat with @RequestParam in Spring RestAPI:

More at:

https://ozenero.com/how-to-use-datetimeformat-to-format-date-time-request-param-in-springboot-restapi-examples

How to use @DateTimeFormat to format Date Time request param in SpringBoot RestAPI Examples

#springboot #restapi

Hal  Sauer

Hal Sauer

1591688078

Python Datetime Tutorial: Manipulate Times, Dates, and Time Spans

Dealing with dates and times in Python can be a hassle. Thankfully, there’s a built-in way of making it easier: the Python datetime module.

datetime helps us identify and process time-related elements like dates, hours, minutes, seconds, days of the week, months, years, etc. It offers various services like managing time zones and daylight savings time. It can work with timestamp data. It can extract the day of the week, day of the month, and other date and time formats from strings.

#data science tutorials #calendar #date #dates #datetime #intermediate #python #time #time series #times #tutorial #tutorials

Java Date Time - How to build SpringBoot RestApi - Post/Get request with Java Date Time

https://grokonez.com/spring-framework/spring-boot/java-date-time-how-to-build-springboot-restapi-post-get-request-with-java-date-time-using-jackson-and-make-query-with-spring-jpa-in-mysql-postgresql-examples

Java Date Time – How to build SpringBoot RestApi – Post/Get request with Java Date Time using Jackson and Make Query with Spring JPA example

[no_toc]
In the tutorial, we build a SpringBoot RestAPIs example that post/get data with java.util.Date time and save it to MySQL/PostgreSQL database using Spring JPA. Working with Java Date Time is an exciting part but also not easy task, fortunately we have the supporting from utilities of Jackson lib, now the job can be done in an easy way.

Let’s do details by steps!

Format Java Date Time with Jackson

Set the Format with @JsonFormat

With the @JsonFormat annotation of Jackson, we can use it to format a specific field in Java model:

public class DateTimeModel {	
    
    @JsonFormat(pattern="yyyy-MM-dd")
    private Date date;
    
    @JsonFormat(pattern="yyyy-MM-dd HH:mm:ss")
    private Date datetime;
	
	...
}

Set TimeZone with @JsonFormat

For setting Time Zone, we use timezone attribute of the @JsonFormat:

@JsonFormat(pattern="yyyy-MM-dd HH:mm:ss", timezone="Europe/Paris")
private Date datetimewithzone;

Set Default Format

We can configure a default format & time-zone for all dates in application.properties:

https://grokonez.com/spring-framework/spring-boot/java-date-time-how-to-build-springboot-restapi-post-get-request-with-java-date-time-using-jackson-and-make-query-with-spring-jpa-in-mysql-postgresql-examples

Java Date Time – How to build SpringBoot RestApi – Post/Get request with Java Date Time using Jackson and Make Query with Spring JPA example

#java #springboot #springjpa #restapi

Michio JP

Michio JP

1629796171

Focal Transformer | Official Implementation of Focal Transformer

Focal Transformer

This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transformers", by Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan and Jianfeng Gao.

Introduction

Our Focal Transfomer introduced a new self-attention mechanism called focal self-attention for vision transformers. In this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively.

With our Focal Transformers, we achieved superior performance over the state-of-the-art vision Transformers on a range of public benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.6 and 84.0 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art methods for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation.

Benchmarking

Image Classification on ImageNet-1K

ModelPretrainUse ConvResolutionacc@1acc@5#paramsFLOPsCheckpointConfig
Focal-TIN-1KNo22482.295.928.9M4.9Gdownloadyaml
Focal-TIN-1KYes22482.796.130.8M4.9Gdownloadyaml
Focal-SIN-1KNo22483.696.251.1M9.4Gdownloadyaml
Focal-BIN-1KNo22484.096.589.8M16.4Gdownloadyaml

Object Detection and Instance Segmentation on COCO

Mask R-CNN

BackbonePretrainLr Schd#paramsFLOPsbox mAPmask mAP
Focal-TImageNet-1K1x49M291G44.841.0
Focal-TImageNet-1K3x49M291G47.242.7
Focal-SImageNet-1K1x71M401G47.442.8
Focal-SImageNet-1K3x71M401G48.843.8
Focal-BImageNet-1K1x110M533G47.843.2
Focal-BImageNet-1K3x110M533G49.043.7

RetinaNet

BackbonePretrainLr Schd#paramsFLOPsbox mAP
Focal-TImageNet-1K1x39M265G43.7
Focal-TImageNet-1K3x39M265G45.5
Focal-SImageNet-1K1x62M367G45.6
Focal-SImageNet-1K3x62M367G47.3
Focal-BImageNet-1K1x101M514G46.3
Focal-BImageNet-1K3x101M514G46.9

Other detection methods

BackbonePretrainMethodLr Schd#paramsFLOPsbox mAP
Focal-TImageNet-1KCascade Mask R-CNN3x87M770G51.5
Focal-TImageNet-1KATSS3x37M239G49.5
Focal-TImageNet-1KRepPointsV23x45M491G51.2
Focal-TImageNet-1KSparse R-CNN3x111M196G49.0

Semantic Segmentation on ADE20K

BackbonePretrainMethodResolutionIters#paramsFLOPsmIoUmIoU (MS)
Focal-TImageNet-1KUPerNet512x512160k62M998G45.847.0
Focal-SImageNet-1KUPerNet512x512160k85M1130G48.050.0
Focal-BImageNet-1KUPerNet512x512160k126M1354G49.050.5
Focal-LImageNet-22KUPerNet640x640160k240M3376G54.055.4

Getting Started

Citation

If you find this repo useful to your project, please consider to cite it with following bib:

@misc{yang2021focal,
    title={Focal Self-attention for Local-Global Interactions in Vision Transformers}, 
    author={Jianwei Yang and Chunyuan Li and Pengchuan Zhang and Xiyang Dai and Bin Xiao and Lu Yuan and Jianfeng Gao},
    year={2021},
    eprint={2107.00641},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Acknowledgement

Our codebase is built based on Swin-Transformer. We thank the authors for the nicely organized code!

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Download Details:

Author: microsoft

Source Code: https://github.com/microsoft/Focal-Transformer