Karim Aya

Karim Aya

1562381959

Everything you need to know about Node.js

Node.js is one of the most popular technologies nowadays to build scalable and efficent REST API’s. It is also used to build hybrid mobile applications, desktop applications and even Internet of Things.

I have been working with Node.js for about 6 years and I really love it. This posts tries to be an ultime guide to understand how Node.js works.

Let’s get started!!

Table of Contents

  • The World Before Node.js
  • The C10K Problem
  • Node.js and the Event Loop
  • The Problem with CPU Intensive tasks
  • Worker Threads

The World Before Node.js

Multi Threaded Server

Web applications were written in a client/server model where the client would demand resources from the server and the server would respond with the resources. The server only responded when the client requested and would close the connection after each response.

This pattern is efficient because every request to the server takes time and resources (memory, CPU, etc). To attend the next request the server must complete the previous one.

So, the server attends one request at time? Well not exactly, when the server gets a new request, the request will be processed by a thread.

A thread in simple words is time and resources the CPU gives to execute a small unit of instructions. With that said, the server attends multiple requests at once, one per thread (also called thread-per-request model).

To attend N requests at once, the server needs N threads. If the server gets the N+1 request, then it must wait until any of those N threads is available.

In the Multi Threaded Server example, the server allows up to 4 requests (threads) at once and when it receives the next 3 requests, those requests must wait until any of those 4 threads is available.

A way to solve this limitation is add more resources (memory, CPU cores, etc) to the server but maybe it’s not a good idea at all…

And of course, there will be technological limitations.

Blocking I/O

The number of threads in a server isn’t the only problem here. Maybe you are wondering why a single thread can’t attend 2 or more request at once? That’s because blocking Input/Output operations.

Suppose you are developing an online store and it needs a page where the user can view all your products.

The user access to http://yourstore.com/products and the server renders an HTML file with all your products from database. Pretty simple right?

But, what happens behind?..

  1. When the user access to /products a specific method or function needs to be executed to attend the request, so a little piece of code (maybe yours or framework’s) parses the requested url and searches for the right method or function. The thread is working.
  2. The method or function is executed, as well as the first lines. The thread is working.
  3. Because you are a good developer, you save all system logs in a file and of course, to be sure the route is executing the right method/function you log a “Method X executing!!” string, that’s a blocking I/O operation. The thread is waiting.
  4. The log is saved and the next lines are being executed. The thread is working again.
  5. It’s time to go to the database and get all products, a simple query such as SELECT * FROM products does the job but guess what? that’s a blocking I/O operation. The thread is waiting.
  6. You get an array or list of all products but to be sure you log them. The thread is waiting.
  7. With those products it’s time to render a template but before render it you need to read it first. The thread is waiting.
  8. The template engine does it’s job and the response is sent to the client. The thread is working again.
  9. The thread is free, like a bird.

How slow are I/O operations? Well, it depends.

Let’s check the table below:

Disk and Network operations are too slow. How many queries or external API calls does your system make?

In resume, I/O operations make threads wait and waste resources.

The C10K Problem

The Problem

In the early 2000s, servers and client machines were slow. The problem was about concurrently handling 10,000 clients connections on a single server machine.

But why our traditional thread-per-request model can’t solve the problem? Well, let’s do some math.

The native thread implementations allocate about 1 MB of memory per thread, so 10k threads require 10GB of RAM just for the thread stack and remember we are in the early 2000s!!

Nowadays servers and client machines are better than that and almost any programming language and/or framework solves the problem. Actually, the problem has been updated to handle 10 million clients connections on a single server machine (also called C10M Problem).

Javascript to the rescue?

Spoiler alert 🚨🚨🚨!!

Node.js solves the C10K problem… but why?!

Javascript server-side wasn’t new in the early 2000s, there were a few implementations ontop of the Java Virtual Machine like RingoJS and AppEngineJS, based on thread-per-request model.

But if that didn’t solve the C10K problem then why Node.js did?! Well, it’s because Javascript is single threaded.

Node.js and the Event Loop

Node.js

Node.js is a server-side platform built on Google Chrome’s Javascript Engine (V8 Engine) which compiles Javascript code into Machine code.

Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient. It’s not a Framework, it’s not a Library, it’s a runtime environment.

Let’s write a quick example:

// Importing native http module
const http = require('http');

// Creating a server instance where every call
// the message 'Hello World' is responded to the client
const server = http.createServer(function(request, response) {
  response.write('Hello World');
  response.end();
});

// Listening port 8080
server.listen(8080);

Non-blocking I/O

Node.js is non-blocking I/O, which means:

  1. The main thread won’t be blocked in I/O operations.
  2. The server will keep attending requests.
  3. We will be working with asynchronous code.

Let’s write an example, in every /home request the server sends a HTML page, otherwise the server sends ‘Hello World’ text. To send the HTML page is necessary to read the file first.

home.html

<html>
  <body>
    <h1>This is home page</h1>
  </body>
</html>

index.js

const http = require('http');
const fs = require('fs');

const server = http.createServer(function(request, response) {
  if (request.url === '/home') {
    fs.readFile(`${ __dirname }/home.html`, function (err, content) {
      if (!err) {
        response.setHeader('Content-Type', 'text/html');
        response.write(content);
      } else {
        response.statusCode = 500;
        response.write('An error has ocurred');
      }

      response.end();
    });
  } else {
    response.write('Hello World');
    response.end();
  }
});

server.listen(8080);   

If the requested url is /home then using fs native module we read the home.html file.

The functions passed to http.createServer and fs.readFile are called callbacks. Those functions will execute sometime in the future (the first one when the server gets a request and the second one when the file has been read and the content is buffered).

While reading the file Node.js can still attend requests, even to read the file again, all at once in a single thread… but how?!

The Event Loop

The Event Loop is the magic behind Node.js. In short terms, the Event Loop is literally an infinite loop and is the only thread available.

Libuv is a C library which implements this pattern and it’s part of the Node.js core modules. You can read more about libuv here.

The Event Loop has six phases, the execution of all phases is called a tick.

  • timers: this phase executes callbacks scheduled by setTimeout() and setInterval().
  • pending callbacks: executes almost all callbacks with the exception of close callbacks, the ones scheduled by timers, and setImmediate().
  • idle, prepare: only used internally.
  • poll: retrieve new I/O events; node will block here when appropriate.
  • check: setImmediate() callbacks are invoked here.close callbacks: such as socket.on(‘close’).

Okay, so there is only one thread and that thread is the Event Loop, but then who executes the I/O operations?

Pay attention !!!

When the Event Loop needs to execute an I/O operation it uses an OS thread from a pool (through libuv library) and when the job is done, the callback is queued to be executed in pending callbacks phase.

Isn’t that awesome?

The Problem with CPU Intensive Tasks

Node.js seems to be perfect, you can build whatever you want.

Let’s build an API to calculate prime numbers.

A prime number is a whole number greater than 1 whose only factors are 1 and itself.

Given a number N, the API must calculate and return the first N prime numbers in a list (or array).

primes.js

function isPrime(n) {
  for(let i = 2, s = Math.sqrt(n); i <= s; i++)
    if(n % i === 0) return false;
  return n > 1;
}

function nthPrime(n) {
  let counter = n;
  let iterator = 2;
  let result = [];

  while(counter > 0) {
    isPrime(iterator) && result.push(iterator) && counter--;
    iterator++;
  }

  return result;
}

module.exports = { isPrime, nthPrime };

index.js

const http = require('http');
const url = require('url');
const primes = require('./primes');

const server = http.createServer(function (request, response) {
  const { pathname, query } = url.parse(request.url, true);

  if (pathname === '/primes') {
    const result = primes.nthPrime(query.n || 0);
    response.setHeader('Content-Type', 'application/json');
    response.write(JSON.stringify(result));
    response.end();
  } else {
    response.statusCode = 404;
    response.write('Not Found');
    response.end();
  }
});

server.listen(8080);

prime.js is the prime numbers implementation, isPrime checks if given a number N, that number is prime and nthPrime gets the nth prime (of course).

index.js creates a server and uses the library in every call to /primes. The N number is passed through query string.

To get the first 20 prime numbers we make a request to <a href="http://localhost:8080/primes?n=20" target="_blank">http://localhost:8080/primes?n=20</a>.

Suppose there are 3 clients trying to access this amazing non-blocking API:

  • The first one requests every second the first 5 prime numbers.
  • The second one requests every second the first 1,000 prime numbers.
  • The third one requests once the first 10,000,000,000 prime numbers, but…

When the third client sends the request the main thread gets blocked and that’s because the prime numbers library is CPU intensive. The main thread is busy executing the intensive code and won’t be able to do anything else.

But what about libuv? If you remember this library helped Node.js to do I/O operations with OS threads to avoid blocking the main thread and you are right, that’s the solution to our problem but to use libuv our library must be written in C++ language.

Thanksfully Node.js v10.5 introduced the Worker Threads.

Worker Threads

As the documentation says:

Workers are useful for performing CPU-intensive JavaScript operations; do not use them for I/O, since Node.js’s built-in mechanisms for performing operations asynchronously already treat it more efficiently than Worker threads can.#### Fixing the code

It’s time to fix our initial code:

primes-workerthreads.js

const { workerData, parentPort } = require('worker_threads');

function isPrime(n) {
  for(let i = 2, s = Math.sqrt(n); i <= s; i++)
    if(n % i === 0) return false;
  return n > 1;
}

function nthPrime(n) {
  let counter = n;
  let iterator = 2;
  let result = [];

  while(counter > 0) {
    isPrime(iterator) && result.push(iterator) && counter--;
    iterator++;
  }

  return result;
}

parentPort.postMessage(nthPrime(workerData.n));

index-workerthreads.js

const http = require('http');
const url = require('url');
const { Worker } = require('worker_threads');

const server = http.createServer(function (request, response) {                                                                                              
  const { pathname, query } = url.parse(request.url, true);

  if (pathname === '/primes') {                                                                                                                                    
    const worker = new Worker('./primes-workerthreads.js', { workerData: { n: query.n || 0 } });

    worker.on('error', function () {
      response.statusCode = 500;
      response.write('Oops there was an error...');
      response.end();
    });

    let result;
    worker.on('message', function (message) {
      result = message;
    });

    worker.on('exit', function () {
      response.setHeader('Content-Type', 'application/json');
      response.write(JSON.stringify(result));
      response.end();
    });
  } else {
    response.statusCode = 404;
    response.write('Not Found');
    response.end();
  }
});

server.listen(8080);

index-workerthreads.js in every call creates a new instance of Worker class (from worker_threads native module) to load and execute the primes-workerthreads.js file in a worker thread. When the prime numbers’ list is calculated the message event is fired, sending the result to the main thread and because the job is done the exit event is also fired, letting the main thread send the data to the client.

primes-workerthreads.js changes a little bit. It imports workerData(parameters passed from main thread) and parentPort which is the way we send messages to the main thread.

Now let’s do the 3 clients example again to see what happens:

The main thread doesn’t block anymore !!!

It worked like expected but spawning worker threads like that isn’t the best practice, it isn’t cheap to create a new thread. Be sure to create a pool of threads before.

Conclusion

Node.js is a powerful technology, worth to learn. My recommendation is always be curious, if you know how things work, you will make better decisions.

#node-js #javascript #web-development

What is GEEK

Buddha Community

Everything you need to know about Node.js

NBB: Ad-hoc CLJS Scripting on Node.js

Nbb

Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.

Status

Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.

Requirements

Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).

Usage

Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'
6

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
"/private/tmp/test-script"
#js {:columns 216, :rows 47}
510
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
true
$ ls
node_modules
package-lock.json
package.json
script.cljs

Macros

Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)
                                        body))))
            body
            binding-pairs)))

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "https://clojure.org")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "https://clojure.org")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
6
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.

Dependencies

NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.

Classpath

To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [foo.bar :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"

Reagent

Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink

ink-demo.cljs:

(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))

Promesa

Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
  (js/Promise.
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
  []
  (p/do!
   (println "Doing stuff which takes a while")
   (sleep 1000)
   1))

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while
3

Also see API docs.

Js-interop

Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.

Examples

See the examples directory for small examples.

Also check out these projects built with nbb:

API

See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.

Build

Prequisites:

  • babashka >= 0.4.0
  • Clojure CLI >= 1.10.3.933
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: https://github.com/borkdude/nbb 
License: EPL-1.0

#node #javascript

Hire Dedicated Node.js Developers - Hire Node.js Developers

If you look at the backend technology used by today’s most popular apps there is one thing you would find common among them and that is the use of NodeJS Framework. Yes, the NodeJS framework is that effective and successful.

If you wish to have a strong backend for efficient app performance then have NodeJS at the backend.

WebClues Infotech offers different levels of experienced and expert professionals for your app development needs. So hire a dedicated NodeJS developer from WebClues Infotech with your experience requirement and expertise.

So what are you waiting for? Get your app developed with strong performance parameters from WebClues Infotech

For inquiry click here: https://www.webcluesinfotech.com/hire-nodejs-developer/

Book Free Interview: https://bit.ly/3dDShFg

#hire dedicated node.js developers #hire node.js developers #hire top dedicated node.js developers #hire node.js developers in usa & india #hire node js development company #hire the best node.js developers & programmers

Aria Barnes

Aria Barnes

1622719015

Why use Node.js for Web Development? Benefits and Examples of Apps

Front-end web development has been overwhelmed by JavaScript highlights for quite a long time. Google, Facebook, Wikipedia, and most of all online pages use JS for customer side activities. As of late, it additionally made a shift to cross-platform mobile development as a main technology in React Native, Nativescript, Apache Cordova, and other crossover devices. 

Throughout the most recent couple of years, Node.js moved to backend development as well. Designers need to utilize a similar tech stack for the whole web project without learning another language for server-side development. Node.js is a device that adjusts JS usefulness and syntax to the backend. 

What is Node.js? 

Node.js isn’t a language, or library, or system. It’s a runtime situation: commonly JavaScript needs a program to work, however Node.js makes appropriate settings for JS to run outside of the program. It’s based on a JavaScript V8 motor that can run in Chrome, different programs, or independently. 

The extent of V8 is to change JS program situated code into machine code — so JS turns into a broadly useful language and can be perceived by servers. This is one of the advantages of utilizing Node.js in web application development: it expands the usefulness of JavaScript, permitting designers to coordinate the language with APIs, different languages, and outside libraries.

What Are the Advantages of Node.js Web Application Development? 

Of late, organizations have been effectively changing from their backend tech stacks to Node.js. LinkedIn picked Node.js over Ruby on Rails since it took care of expanding responsibility better and decreased the quantity of servers by multiple times. PayPal and Netflix did something comparative, just they had a goal to change their design to microservices. We should investigate the motivations to pick Node.JS for web application development and when we are planning to hire node js developers. 

Amazing Tech Stack for Web Development 

The principal thing that makes Node.js a go-to environment for web development is its JavaScript legacy. It’s the most well known language right now with a great many free devices and a functioning local area. Node.js, because of its association with JS, immediately rose in ubiquity — presently it has in excess of 368 million downloads and a great many free tools in the bundle module. 

Alongside prevalence, Node.js additionally acquired the fundamental JS benefits: 

  • quick execution and information preparing; 
  • exceptionally reusable code; 
  • the code is not difficult to learn, compose, read, and keep up; 
  • tremendous asset library, a huge number of free aides, and a functioning local area. 

In addition, it’s a piece of a well known MEAN tech stack (the blend of MongoDB, Express.js, Angular, and Node.js — four tools that handle all vital parts of web application development). 

Designers Can Utilize JavaScript for the Whole Undertaking 

This is perhaps the most clear advantage of Node.js web application development. JavaScript is an unquestionable requirement for web development. Regardless of whether you construct a multi-page or single-page application, you need to know JS well. On the off chance that you are now OK with JavaScript, learning Node.js won’t be an issue. Grammar, fundamental usefulness, primary standards — every one of these things are comparable. 

In the event that you have JS designers in your group, it will be simpler for them to learn JS-based Node than a totally new dialect. What’s more, the front-end and back-end codebase will be basically the same, simple to peruse, and keep up — in light of the fact that they are both JS-based. 

A Quick Environment for Microservice Development 

There’s another motivation behind why Node.js got famous so rapidly. The environment suits well the idea of microservice development (spilling stone monument usefulness into handfuls or many more modest administrations). 

Microservices need to speak with one another rapidly — and Node.js is probably the quickest device in information handling. Among the fundamental Node.js benefits for programming development are its non-obstructing algorithms.

Node.js measures a few demands all at once without trusting that the first will be concluded. Many microservices can send messages to one another, and they will be gotten and addressed all the while. 

Versatile Web Application Development 

Node.js was worked in view of adaptability — its name really says it. The environment permits numerous hubs to run all the while and speak with one another. Here’s the reason Node.js adaptability is better than other web backend development arrangements. 

Node.js has a module that is liable for load adjusting for each running CPU center. This is one of numerous Node.js module benefits: you can run various hubs all at once, and the environment will naturally adjust the responsibility. 

Node.js permits even apportioning: you can part your application into various situations. You show various forms of the application to different clients, in light of their age, interests, area, language, and so on. This builds personalization and diminishes responsibility. Hub accomplishes this with kid measures — tasks that rapidly speak with one another and share a similar root. 

What’s more, Node’s non-hindering solicitation handling framework adds to fast, letting applications measure a great many solicitations. 

Control Stream Highlights

Numerous designers consider nonconcurrent to be one of the two impediments and benefits of Node.js web application development. In Node, at whatever point the capacity is executed, the code consequently sends a callback. As the quantity of capacities develops, so does the number of callbacks — and you end up in a circumstance known as the callback damnation. 

In any case, Node.js offers an exit plan. You can utilize systems that will plan capacities and sort through callbacks. Systems will associate comparable capacities consequently — so you can track down an essential component via search or in an envelope. At that point, there’s no compelling reason to look through callbacks.

 

Final Words

So, these are some of the top benefits of Nodejs in web application development. This is how Nodejs is contributing a lot to the field of web application development. 

I hope now you are totally aware of the whole process of how Nodejs is really important for your web project. If you are looking to hire a node js development company in India then I would suggest that you take a little consultancy too whenever you call. 

Good Luck!

Original Source

#node.js development company in india #node js development company #hire node js developers #hire node.js developers in india #node.js development services #node.js development

Node JS Development Company| Node JS Web Developers-SISGAIN

Top organizations and start-ups hire Node.js developers from SISGAIN for their strategic software development projects in Illinois, USA. On the off chance that you are searching for a first rate innovation to assemble a constant Node.js web application development or a module, Node.js applications are the most appropriate alternative to pick. As Leading Node.js development company, we leverage our profound information on its segments and convey solutions that bring noteworthy business results. For more information email us at hello@sisgain.com

#node.js development services #hire node.js developers #node.js web application development #node.js development company #node js application

sophia tondon

sophia tondon

1625114985

Top 10 NodeJs app Development Companies- ValueCoders

Node.js is a prominent tech trend in the space of web and mobile application development. It has been proven very efficient and useful for a variety of application development. Thus, all business owners are eager to leverage this technology for creating their applications.

Are you striving to develop an application using Node.js? But can’t decide which company to hire for NodeJS app development? Well! Don’t stress over it, as the following list of NodeJS app development companies is going to help you find the best partner.

Let’s take a glance at top NodeJS application development companies to hire developers in 2021 for developing a mind-blowing application solution.

Before enlisting companies, I would like to say that every company has a foundation on which they thrive. Their end goals, qualities, and excellence define their competence. Thus, I prepared this list by considering a number of aspects. While making this list, I have considered the following aspects:

  • Review and rating
  • Enlisted by software peer & forums
  • Hourly price
  • Offered services
  • Year of experience (Average 8+ years)
  • Credibility & Excellence
  • Served clients and more

I believe this list will help you out in choosing the best NodeJS service provider company. So, now let’s explore the top NodeJS developer companies to choose from in 2021.

#1. JSGuru

JSGuru is a top-rated NodeJS app development company with an innovative team of dedicated NodeJS developers engaged in catering best-class UI/UX design, software products, and AWS professional services.

It is a team of one of the most talented developers to hire for all types of innovative solution development, including social media, dating, enterprise, and business-oriented solutions. The company has worked for years with a number of startups and launched a variety of products by collaborating with big-name corporations like T-systems.

If you want to hire NodeJS developers to secure an outstanding application, I would definitely suggest them. They serve in the area of eLearning, FinTech, eCommerce, Telecommunications, Mobile Device Management, and more.

  • Ratings: 4.9/5.0

  • Founded: 2006

  • Headquarters: Banja Luka, Bosnia, and Herzegovina

  • Price: Starting from $50/hour

Visit Website - https://www.valuecoders.com/blog/technology-and-apps/top-node-js-app-development-companies

#node js developer #hire node js developer #hiring node js developers #node js development company #node.js development company #node js development services