1592816220
Welcome!!!
This blog written with the purpose of introducing you to fastai’s awesome datablock api. This is first part of blog and the part 2 will be code approach.
Even though fastai follows top down approach, I am writing this first part of blog with no code, and theoretical explanation which sets motive to learn datablock with code in part2.(in course Jeremy gives motive and awesome explanation to why use it, before code, So I find that important before writing code.)
So lets start!!!
If you have used any deep learning framework( I use PyTorch so speak w.r.t. it) to build a model to solve a deep learning problem, you go through steps of collecting the data, what type of problem is it(like image classification, segmentation ), see what are dependent and independent variables, how to split the data into training and validation set, apply transforms to improve accuracy.
#fastai #pytorch #blogging
1675304280
We are back with another exciting and much-talked-about Rails tutorial on how to use Hotwire with the Rails application. This Hotwire Rails tutorial is an alternate method for building modern web applications that consume a pinch of JavaScript.
Rails 7 Hotwire is the default front-end framework shipped with Rails 7 after it was launched. It is used to represent HTML over the wire in the Rails application. Previously, we used to add a hotwire-rails gem in our gem file and then run rails hotwire: install. However, with the introduction of Rails 7, the gem got deprecated. Now, we use turbo-rails and stimulus rails directly, which work as Hotwire’s SPA-like page accelerator and Hotwire’s modest JavaScript framework.
Hotwire is a package of different frameworks that help to build applications. It simplifies the developer’s work for writing web pages without the need to write JavaScript, and instead sending HTML code over the wire.
Introduction to The Hotwire Framework:
It uses simplified techniques to build web applications while decreasing the usage of JavaScript in the application. Turbo offers numerous handling methods for the HTML data sent over the wire and displaying the application’s data without actually loading the entire page. It helps to maintain the simplicity of web applications without destroying the single-page application experience by using the below techniques:
Turbo Frames: Turbo Frames help to load the different sections of our markup without any dependency as it divides the page into different contexts separately called frames and updates these frames individually.
Turbo Drive: Every link doesn’t have to make the entire page reload when clicked. Only the HTML contained within the tag will be displayed.
Turbo Streams: To add real-time features to the application, this technique is used. It helps to bring real-time data to the application using CRUD actions.
It represents the JavaScript framework, which is required when JS is a requirement in the application. The interaction with the HTML is possible with the help of a stimulus, as the controllers that help those interactions are written by a stimulus.
Not much information is available about Strada as it has not been officially released yet. However, it works with native applications, and by using HTML bridge attributes, interaction is made possible between web applications and native apps.
Simple diagrammatic representation of Hotwire Stack:
As we are implementing the Ruby on Rails Hotwire tutorial, make sure about the following installations before you can get started.
Looking for an enthusiastic team of ROR developers to shape the vision of your web project?
Contact Bacancy today and hire Ruby developers to start building your dream project!
Find the following commands to create a rails application.
mkdir ~/projects/railshotwire
cd ~/projects/railshotwire
echo "source 'https://rubygems.org'" > Gemfile
echo "gem 'rails', '~> 7.0.0'" >> Gemfile
bundle install
bundle exec rails new . --force -d=postgresql
Now create some files for the project, up till now no usage of Rails Hotwire can be seen.
Fire the following command in your terminal.
echo "class HomeController < ApplicationController" > app/controllers/home_controller.rb
echo "end" >> app/controllers/home_controller.rb
echo "class OtherController < ApplicationController" > app/controllers/other_controller.rb
echo "end" >> app/controllers/home_controller.rb
echo "Rails.application.routes.draw do" > config/routes.rb
echo ' get "home/index"' >> config/routes.rb
echo ' get "other/index"' >> config/routes.rb
echo ' root to: "home#index"' >> config/routes.rb
echo 'end' >> config/routes.rb
mkdir app/views/home
echo '<h1>This is Rails Hotwire homepage</h1>' > app/views/home/index.html.erb
echo '<div><%= link_to "Enter to other page", other_index_path %></div>' >> app/views/home/index.html.erb
mkdir app/views/other
echo '<h1>This is Another page</h1>' > app/views/other/index.html.erb
echo '<div><%= link_to "Enter to home page", root_path %></div>' >> app/views/other/index.html.erb
bin/rails db:create
bin/rails db:migrate
Additionally, you can clone the code and browse through the project. Here’s the source code of the repository: Rails 7 Hotwire application
Now, let’s see how Hotwire Rails can work its magic with various Turbo techniques.
Go to your localhost:3000 on your web browser and right-click on the Inspect and open a Network tab of the DevTools of the browser.
Now click on go to another page link that appears on the home page to redirect from the home page to another page. In our Network tab, we can see that this action of navigation is achieved via XHR. It appears only the part inside HTML is reloaded, here neither the CSS is reloaded nor the JS is reloaded when the navigation action is performed.
By performing this action we can see that Turbo Drive helps to represent the HTML response without loading the full page and only follows redirect and reindeer HTML responses which helps to make the application faster to access.
This technique helps to divide the current page into different sections called frames that can be updated separately independently when new data is added from the server.
Below we discuss the different use cases of Turbo frame like inline edition, sorting, searching, and filtering of data.
Let’s perform some practical actions to see the example of these use cases.
Make changes in the app/controllers/home_controller.rb file
#CODE
class HomeController < ApplicationController
def turbo_frame_form
end
def turbo_frame submit
extracted_anynumber = params[:any][:anynumber]
render :turbo_frame_form, status: :ok, locals: {anynumber: extracted_anynumber, comment: 'turbo_frame_submit ok' }
end
end
Add app/views/home/turbo_frame_form.html.erb file to the application and add this content inside the file.
#CODE
<section>
<%= turbo_frame_tag 'anyframe' do %>
<div>
<h2>Frame view</h2>
<%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
<%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0 d-inline' %>
<%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}", 'aria-describedby' => 'anynumber' %>
<%= form.submit 'Submit this number', 'id' => 'submit-number' %>
<% end %>
</div>
<div>
<h2>Data of the view</h2>
<pre style="font-size: .7rem;"><%= JSON.pretty_generate(local_assigns) %></pre>
</div>
<% end %>
</section>
Make some adjustments in routes.rb
#CODE
Rails.application.routes.draw do
get 'home/index'
get 'other/index'
get '/home/turbo_frame_form' => 'home#turbo_frame_form', as: 'turbo_frame_form'
post '/home/turbo_frame_submit' => 'home#turbo_frame_submit', as: 'turbo_frame_submit'
root to: "home#index"
end
#CODE
<h1>This is Rails Hotwire home page</h1>
<div><%= link_to "Enter to other page", other_index_path %></div>
<%= turbo_frame_tag 'anyframe' do %>
<div>
<h2>Home view</h2>
<%= form_with scope: :any, url: turbo_frame_submit_path, local: true do |form| %>
<%= form.label :anynumber, 'Type an integer (odd or even)', 'class' => 'my-0 d-inline' %>
<%= form.text_field :anynumber, type: 'number', 'required' => 'true', 'value' => "#{local_assigns[:anynumber] || 0}", 'aria-describedby' => 'anynumber' %>
<%= form.submit 'Submit this number', 'id' => 'submit-number' %>
<% end %>
<div>
<% end %>
After making all the changes, restart the rails server and refresh the browser, the default view will appear on the browser.
Now in the field enter any digit, after entering the digit click on submit button, and as the submit button is clicked we can see the Turbo Frame in action in the below screen, we can observe that the frame part changed, the first title and first link didn’t move.
Turbo Streams deliver page updates over WebSocket, SSE or in response to form submissions by only using HTML and a series of CRUD-like operations, you are free to say that either
This transmit can be represented by a simple example.
#CODE
class OtherController < ApplicationController
def post_something
respond_to do |format|
format.turbo_stream { }
end
end
end
Add the below line in routes.rb file of the application
#CODE
post '/other/post_something' => 'other#post_something', as: 'post_something'
Superb! Rails will now attempt to locate the app/views/other/post_something.turbo_stream.erb template at any moment the ‘/other/post_something’ endpoint is reached.
For this, we need to add app/views/other/post_something.turbo_stream.erb template in the rails application.
#CODE
<turbo-stream action="append" target="messages">
<template>
<div id="message_1">This changes the existing message!</div>
</template>
</turbo-stream>
This states that the response will try to append the template of the turbo frame with ID “messages”.
Now change the index.html.erb file in app/views/other paths with the below content.
#CODE
<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>
<div style="margin-top: 3rem;">
<%= form_with scope: :any, url: post_something_path do |form| %>
<%= form.submit 'Post any message %>
<% end %>
<turbo-frame id="messages">
<div>An empty message</div>
</turbo-frame>
</div>
This action shows that after submitting the response, the Turbo Streams help the developer to append the message, without reloading the page.
Another use case we can test is that rather than appending the message, the developer replaces the message. For that, we need to change the content of app/views/other/post_something.turbo_stream.erb template file and change the value of the action attribute from append to replace and check the changes in the browser.
#CODE
<turbo-stream action="replace" target="messages">
<template>
<div id="message_1">This changes the existing message!</div>
</template>
</turbo-stream>
When we click on Post any message button, the message that appear below that button will get replaced with the message that is mentioned in the app/views/other/post_something.turbo_stream.erb template
There are some cases in an application where JS is needed, therefore to cover those scenarios we require Hotwire JS tool. Hotwire has a JS tool because in some scenarios Turbo-* tools are not sufficient. But as we know that Hotwire is used to reduce the usage of JS in an application, Stimulus considers HTML as the single source of truth. Consider the case where we have to give elements on a page some JavaScript attributes, such as data controller, data-action, and data target. For that, a stimulus controller that can access elements and receive events based on those characteristics will be created.
Make a change in app/views/other/index.html.erb template file in rails application
#CODE
<h1>This is Another page</h1>
<div><%= link_to "Enter to home page", root_path %></div>
<div style="margin-top: 2rem;">
<%= form_with scope: :any, url: post_something_path do |form| %>
<%= form.submit 'Post something' %>
<% end %>
<turbo-frame id="messages">
<div>An empty message</div>
</turbo-frame>
</div>
<div style="margin-top: 2rem;">
<h2>Stimulus</h2>
<div data-controller="hello">
<input data-hello-target="name" type="text">
<button data-action="click->hello#greet">
Greet
</button>
<span data-hello-target="output">
</span>
</div>
</div>
Make changes in the hello_controller.js in path app/JavaScript/controllers and add a stimulus controller in the file, which helps to bring the HTML into life.
#CODE
import { Controller } from "@hotwired/stimulus"
export default class extends Controller {
static targets = [ "name", "output" ]
greet() {
this.outputTarget.textContent =
`Hello, ${this.nameTarget.value}!`
}
}
Go to your browser after making the changes in the code and click on Enter to other page link which will navigate to the localhost:3000/other/index page there you can see the changes implemented by the stimulus controller that is designed to augment your HTML with just enough behavior to make it more responsive.
With just a little bit of work, Turbo and Stimulus together offer a complete answer for applications that are quick and compelling.
Using Rails 7 Hotwire helps to load the pages at a faster speed and allows you to render templates on the server, where you have access to your whole domain model. It is a productive development experience in ROR, without compromising any of the speed or responsiveness associated with SPA.
We hope you were satisfied with our Rails Hotwire tutorial. Write to us at service@bacancy.com for any query that you want to resolve, or if you want us to share a tutorial on your query.
For more such solutions on RoR, check out our Ruby on Rails Tutorials. We will always strive to amaze you and cater to your needs.
Original article source at: https://www.bacancytechnology.com/
1595396220
As more and more data is exposed via APIs either as API-first companies or for the explosion of single page apps/JAMStack, API security can no longer be an afterthought. The hard part about APIs is that it provides direct access to large amounts of data while bypassing browser precautions. Instead of worrying about SQL injection and XSS issues, you should be concerned about the bad actor who was able to paginate through all your customer records and their data.
Typical prevention mechanisms like Captchas and browser fingerprinting won’t work since APIs by design need to handle a very large number of API accesses even by a single customer. So where do you start? The first thing is to put yourself in the shoes of a hacker and then instrument your APIs to detect and block common attacks along with unknown unknowns for zero-day exploits. Some of these are on the OWASP Security API list, but not all.
Most APIs provide access to resources that are lists of entities such as /users
or /widgets
. A client such as a browser would typically filter and paginate through this list to limit the number items returned to a client like so:
First Call: GET /items?skip=0&take=10
Second Call: GET /items?skip=10&take=10
However, if that entity has any PII or other information, then a hacker could scrape that endpoint to get a dump of all entities in your database. This could be most dangerous if those entities accidently exposed PII or other sensitive information, but could also be dangerous in providing competitors or others with adoption and usage stats for your business or provide scammers with a way to get large email lists. See how Venmo data was scraped
A naive protection mechanism would be to check the take count and throw an error if greater than 100 or 1000. The problem with this is two-fold:
skip = 0
while True: response = requests.post('https://api.acmeinc.com/widgets?take=10&skip=' + skip), headers={'Authorization': 'Bearer' + ' ' + sys.argv[1]}) print("Fetched 10 items") sleep(randint(100,1000)) skip += 10
To secure against pagination attacks, you should track how many items of a single resource are accessed within a certain time period for each user or API key rather than just at the request level. By tracking API resource access at the user level, you can block a user or API key once they hit a threshold such as “touched 1,000,000 items in a one hour period”. This is dependent on your API use case and can even be dependent on their subscription with you. Like a Captcha, this can slow down the speed that a hacker can exploit your API, like a Captcha if they have to create a new user account manually to create a new API key.
Most APIs are protected by some sort of API key or JWT (JSON Web Token). This provides a natural way to track and protect your API as API security tools can detect abnormal API behavior and block access to an API key automatically. However, hackers will want to outsmart these mechanisms by generating and using a large pool of API keys from a large number of users just like a web hacker would use a large pool of IP addresses to circumvent DDoS protection.
The easiest way to secure against these types of attacks is by requiring a human to sign up for your service and generate API keys. Bot traffic can be prevented with things like Captcha and 2-Factor Authentication. Unless there is a legitimate business case, new users who sign up for your service should not have the ability to generate API keys programmatically. Instead, only trusted customers should have the ability to generate API keys programmatically. Go one step further and ensure any anomaly detection for abnormal behavior is done at the user and account level, not just for each API key.
APIs are used in a way that increases the probability credentials are leaked:
If a key is exposed due to user error, one may think you as the API provider has any blame. However, security is all about reducing surface area and risk. Treat your customer data as if it’s your own and help them by adding guards that prevent accidental key exposure.
The easiest way to prevent key exposure is by leveraging two tokens rather than one. A refresh token is stored as an environment variable and can only be used to generate short lived access tokens. Unlike the refresh token, these short lived tokens can access the resources, but are time limited such as in hours or days.
The customer will store the refresh token with other API keys. Then your SDK will generate access tokens on SDK init or when the last access token expires. If a CURL command gets pasted into a GitHub issue, then a hacker would need to use it within hours reducing the attack vector (unless it was the actual refresh token which is low probability)
APIs open up entirely new business models where customers can access your API platform programmatically. However, this can make DDoS protection tricky. Most DDoS protection is designed to absorb and reject a large number of requests from bad actors during DDoS attacks but still need to let the good ones through. This requires fingerprinting the HTTP requests to check against what looks like bot traffic. This is much harder for API products as all traffic looks like bot traffic and is not coming from a browser where things like cookies are present.
The magical part about APIs is almost every access requires an API Key. If a request doesn’t have an API key, you can automatically reject it which is lightweight on your servers (Ensure authentication is short circuited very early before later middleware like request JSON parsing). So then how do you handle authenticated requests? The easiest is to leverage rate limit counters for each API key such as to handle X requests per minute and reject those above the threshold with a 429 HTTP response.
There are a variety of algorithms to do this such as leaky bucket and fixed window counters.
APIs are no different than web servers when it comes to good server hygiene. Data can be leaked due to misconfigured SSL certificate or allowing non-HTTPS traffic. For modern applications, there is very little reason to accept non-HTTPS requests, but a customer could mistakenly issue a non HTTP request from their application or CURL exposing the API key. APIs do not have the protection of a browser so things like HSTS or redirect to HTTPS offer no protection.
Test your SSL implementation over at Qualys SSL Test or similar tool. You should also block all non-HTTP requests which can be done within your load balancer. You should also remove any HTTP headers scrub any error messages that leak implementation details. If your API is used only by your own apps or can only be accessed server-side, then review Authoritative guide to Cross-Origin Resource Sharing for REST APIs
APIs provide access to dynamic data that’s scoped to each API key. Any caching implementation should have the ability to scope to an API key to prevent cross-pollution. Even if you don’t cache anything in your infrastructure, you could expose your customers to security holes. If a customer with a proxy server was using multiple API keys such as one for development and one for production, then they could see cross-pollinated data.
#api management #api security #api best practices #api providers #security analytics #api management policies #api access tokens #api access #api security risks #api access keys
1602725748
APIs have been around for decades – they allow different systems to talk to each other in a seamless, fast fashion – yet it’s been during the past decade that this technology has become a significant force.
So then why all the interest in APIs? We all know the usual stories – Uber, Airbnb, Apple Pay… the list goes on, and the reasons are plentiful. Today the question is, how? Perhaps you are looking to differentiate your business or want a first-mover advantage. How can you execute quickly and at low cost/risk to try new market offerings?
An API provides several benefits to an organisation, but without a dedicated team of trained developers, it might seem like an implausible option. Developers are expensive, and it can take months to develop an API from the ground up. If you don’t fancy outsourcing or have the capability in house to build internal APIs, a low-code platform might just be the answer.
For a small one-page application, this might only be a day or two of talking with stakeholders and designing business logic. The purpose of this first step is to ensure that the API will cover all use cases and provides stakeholders with what they need. Refactoring an entire coding design due to missing business logic is not only frustrating for the development team but adds high cost and time to the API project.
During the planning and design stage, remember that running an API requires more infrastructure than just resources to execute endpoint logic. You need a database to store the data, an email system to send messages, storage for files, and security to handle authorisation and authentication. These services can be farmed out to cloud providers to expedite the API build process (e.g. AWS provides all these infrastructure components, but Microsoft Azure is an optional cloud provider with SendGrid as the email application.)
**Planning considerations: **An API “speaks” in JSON or XML, so the output provided to client applications should be decided. Should you choose to later create endpoints for public developer consumption, you could offer both for ease-of-use and fostering more adoption. Ensuring the API follows OpenAPI standards will encourage more adoption and attract more developers.
#api #rest-api #api-development #restful-api #low-code-platform #low-code #build-a-rest-api #low-code-approach
1601381326
We’ve conducted some initial research into the public APIs of the ASX100 because we regularly have conversations about what others are doing with their APIs and what best practices look like. Being able to point to good local examples and explain what is happening in Australia is a key part of this conversation.
The method used for this initial research was to obtain a list of the ASX100 (as of 18 September 2020). Then work through each company looking at the following:
With regards to how the APIs are shared:
#api #api-development #api-analytics #apis #api-integration #api-testing #api-security #api-gateway
1598083582
As more companies realize the benefits of an API-first mindset and treating their APIs as products, there is a growing need for good API product management practices to make a company’s API strategy a reality. However, API product management is a relatively new field with little established knowledge on what is API product management and what a PM should be doing to ensure their API platform is successful.
Many of the current practices of API product management have carried over from other products and platforms like web and mobile, but API products have their own unique set of challenges due to the way they are marketed and used by customers. While it would be rare for a consumer mobile app to have detailed developer docs and a developer relations team, you’ll find these items common among API product-focused companies. A second unique challenge is that APIs are very developer-centric and many times API PMs are engineers themselves. Yet, this can cause an API or developer program to lose empathy for what their customers actually want if good processes are not in place. Just because you’re an engineer, don’t assume your customers will want the same features and use cases that you want.
This guide lays out what is API product management and some of the things you should be doing to be a good product manager.
#api #analytics #apis #product management #api best practices #api platform #api adoption #product managers #api product #api metrics