1654135765
Algorithms-Javascript
Solutions of algorithm problems using Javascript.
The solutions are located under /LeetcodeProblems
. Each problem has a test file located under /LeetcodeProblemsTest
.
To run all the test run node Test.js
in the console.
To run a specific problem in your console run node <problem_file_path>
(e.g. node LeetcodeProblems/Lowest_Common_Ancestor_of_a_Binary_Tree.js
).
Algoritmhs |
---|
Heap Sort |
Quick Sort |
Other languages provides built-in classes (e.g Linked List, Tree, etc). This module contains util classes to use in your problems.
I'd be pleased to accept contributions. I'd be happy to discuss problems and solutions over a Pull Request or an Issue.
Each problem should have:
test()
function which should run all the tests of the file.PR Example: https://github.com/ignacio-chiazzo/Algorithms-Leetcode-Javascript/pull/39
Link: https://ignacio-chiazzo.github.io/Algorithms-Leetcode-Javascript/
Author: ignacio-chiazzo
Source Code: https://github.com/ignacio-chiazzo/Algorithms-Leetcode-Javascript
License: MIT license
1674793920
This repository contains JavaScript based examples of many popular algorithms and data structures.
Each algorithm and data structure has its own separate README with related explanations and links for further reading (including ones to YouTube videos).
Read this in other languages: 简体中文, 繁體中文, 한국어, 日本語, Polski, Français, Español, Português, Русский, Türkçe, Italiana, Bahasa Indonesia, Українська, Arabic, Tiếng Việt, Deutsch
☝ Note that this project is meant to be used for learning and researching purposes only, and it is not meant to be used for production.
A data structure is a particular way of organizing and storing data in a computer so that it can be accessed and modified efficiently. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.
B
- Beginner, A
- Advanced
B
Linked ListB
Doubly Linked ListB
QueueB
StackB
Hash TableB
Heap - max and min heap versionsB
Priority QueueA
TrieA
TreeA
Binary Search TreeA
AVL TreeA
Red-Black TreeA
Segment Tree - with min/max/sum range queries examplesA
Fenwick Tree (Binary Indexed Tree)A
Graph (both directed and undirected)A
Disjoint SetA
Bloom FilterA
LRU Cache - Least Recently Used (LRU) cacheAn algorithm is an unambiguous specification of how to solve a class of problems. It is a set of rules that precisely define a sequence of operations.
B
- Beginner, A
- Advanced
B
Bit Manipulation - set/get/update/clear bits, multiplication/division by two, make negative etc.B
Binary Floating Point - binary representation of the floating-point numbers.B
FactorialB
Fibonacci Number - classic and closed-form versionsB
Prime Factors - finding prime factors and counting them using Hardy-Ramanujan's theoremB
Primality Test (trial division method)B
Euclidean Algorithm - calculate the Greatest Common Divisor (GCD)B
Least Common Multiple (LCM)B
Sieve of Eratosthenes - finding all prime numbers up to any given limitB
Is Power of Two - check if the number is power of two (naive and bitwise algorithms)B
Pascal's TriangleB
Complex Number - complex numbers and basic operations with themB
Radian & Degree - radians to degree and backwards conversionB
Fast PoweringB
Horner's method - polynomial evaluationB
Matrices - matrices and basic matrix operations (multiplication, transposition, etc.)B
Euclidean Distance - distance between two points/vectors/matricesA
Integer PartitionA
Square Root - Newton's methodA
Liu Hui π Algorithm - approximate π calculations based on N-gonsA
Discrete Fourier Transform - decompose a function of time (a signal) into the frequencies that make it upB
Cartesian Product - product of multiple setsB
Fisher–Yates Shuffle - random permutation of a finite sequenceA
Power Set - all subsets of a set (bitwise, backtracking, and cascading solutions)A
Permutations (with and without repetitions)A
Combinations (with and without repetitions)A
Longest Common Subsequence (LCS)A
Longest Increasing SubsequenceA
Shortest Common Supersequence (SCS)A
Knapsack Problem - "0/1" and "Unbound" onesA
Maximum Subarray - "Brute Force" and "Dynamic Programming" (Kadane's) versionsA
Combination Sum - find all combinations that form specific sumB
Hamming Distance - number of positions at which the symbols are differentB
Palindrome - check if the string is the same in reverseA
Levenshtein Distance - minimum edit distance between two sequencesA
Knuth–Morris–Pratt Algorithm (KMP Algorithm) - substring search (pattern matching)A
Z Algorithm - substring search (pattern matching)A
Rabin Karp Algorithm - substring searchA
Longest Common SubstringA
Regular Expression MatchingB
Linear SearchB
Jump Search (or Block Search) - search in sorted arrayB
Binary Search - search in sorted arrayB
Interpolation Search - search in uniformly distributed sorted arrayB
Bubble SortB
Selection SortB
Insertion SortB
Heap SortB
Merge SortB
Quicksort - in-place and non-in-place implementationsB
ShellsortB
Counting SortB
Radix SortB
Depth-First Search (DFS)B
Breadth-First Search (BFS)B
Depth-First Search (DFS)B
Breadth-First Search (BFS)B
Kruskal’s Algorithm - finding Minimum Spanning Tree (MST) for weighted undirected graphA
Dijkstra Algorithm - finding the shortest paths to all graph vertices from single vertexA
Bellman-Ford Algorithm - finding the shortest paths to all graph vertices from single vertexA
Floyd-Warshall Algorithm - find the shortest paths between all pairs of verticesA
Detect Cycle - for both directed and undirected graphs (DFS and Disjoint Set based versions)A
Prim’s Algorithm - finding Minimum Spanning Tree (MST) for weighted undirected graphA
Topological Sorting - DFS methodA
Articulation Points - Tarjan's algorithm (DFS based)A
Bridges - DFS based algorithmA
Eulerian Path and Eulerian Circuit - Fleury's algorithm - Visit every edge exactly onceA
Hamiltonian Cycle - Visit every vertex exactly onceA
Strongly Connected Components - Kosaraju's algorithmA
Travelling Salesman Problem - shortest possible route that visits each city and returns to the origin cityB
Polynomial Hash - rolling hash function based on polynomialB
Rail Fence Cipher - a transposition cipher algorithm for encoding messagesB
Caesar Cipher - simple substitution cipherB
Hill Cipher - substitution cipher based on linear algebraB
NanoNeuron - 7 simple JS functions that illustrate how machines can actually learn (forward/backward propagation)B
k-NN - k-nearest neighbors classification algorithmB
k-Means - k-Means clustering algorithmB
Seam Carving - content-aware image resizing algorithmB
Weighted Random - select the random item from the list based on items' weightsA
Genetic algorithm - example of how the genetic algorithm may be applied for training the self-parking carsB
Tower of HanoiB
Square Matrix Rotation - in-place algorithmB
Jump Game - backtracking, dynamic programming (top-down + bottom-up) and greedy examplesB
Unique Paths - backtracking, dynamic programming and Pascal's Triangle based examplesB
Rain Terraces - trapping rain water problem (dynamic programming and brute force versions)B
Recursive Staircase - count the number of ways to reach to the top (4 solutions)B
Best Time To Buy Sell Stocks - divide and conquer and one-pass examplesA
N-Queens ProblemA
Knight's TourAn algorithmic paradigm is a generic method or approach which underlies the design of a class of algorithms. It is an abstraction higher than the notion of an algorithm, just as an algorithm is an abstraction higher than a computer program.
B
Linear SearchB
Rain Terraces - trapping rain water problemB
Recursive Staircase - count the number of ways to reach to the topA
Maximum SubarrayA
Travelling Salesman Problem - shortest possible route that visits each city and returns to the origin cityA
Discrete Fourier Transform - decompose a function of time (a signal) into the frequencies that make it upB
Jump GameA
Unbound Knapsack ProblemA
Dijkstra Algorithm - finding the shortest path to all graph verticesA
Prim’s Algorithm - finding Minimum Spanning Tree (MST) for weighted undirected graphA
Kruskal’s Algorithm - finding Minimum Spanning Tree (MST) for weighted undirected graphB
Binary SearchB
Tower of HanoiB
Pascal's TriangleB
Euclidean Algorithm - calculate the Greatest Common Divisor (GCD)B
Merge SortB
QuicksortB
Tree Depth-First Search (DFS)B
Graph Depth-First Search (DFS)B
Matrices - generating and traversing the matrices of different shapesB
Jump GameB
Fast PoweringB
Best Time To Buy Sell Stocks - divide and conquer and one-pass examplesA
Permutations (with and without repetitions)A
Combinations (with and without repetitions)A
Maximum SubarrayB
Fibonacci NumberB
Jump GameB
Unique PathsB
Rain Terraces - trapping rain water problemB
Recursive Staircase - count the number of ways to reach to the topB
Seam Carving - content-aware image resizing algorithmA
Levenshtein Distance - minimum edit distance between two sequencesA
Longest Common Subsequence (LCS)A
Longest Common SubstringA
Longest Increasing SubsequenceA
Shortest Common SupersequenceA
0/1 Knapsack ProblemA
Integer PartitionA
Maximum SubarrayA
Bellman-Ford Algorithm - finding the shortest path to all graph verticesA
Floyd-Warshall Algorithm - find the shortest paths between all pairs of verticesA
Regular Expression MatchingB
Jump GameB
Unique PathsB
Power Set - all subsets of a setA
Hamiltonian Cycle - Visit every vertex exactly onceA
N-Queens ProblemA
Knight's TourA
Combination Sum - find all combinations that form specific sumInstall all dependencies
npm install
Run ESLint
You may want to run it to check code quality.
npm run lint
Run all tests
npm test
Run tests by name
npm test -- 'LinkedList'
Troubleshooting
If linting or testing is failing, try to delete the node_modules
folder and re-install npm packages:
rm -rf ./node_modules
npm i
Also make sure that you're using a correct Node version (>=14.16.0
). If you're using nvm for Node version management you may run nvm use
from the root folder of the project and the correct version will be picked up.
Playground
You may play with data-structures and algorithms in ./src/playground/playground.js
file and write tests for it in ./src/playground/__test__/playground.test.js
.
Then just simply run the following command to test if your playground code works as expected:
npm test -- 'playground'
Big O notation is used to classify algorithms according to how their running time or space requirements grow as the input size grows. On the chart below you may find most common orders of growth of algorithms specified in Big O notation.
Source: Big O Cheat Sheet.
Below is the list of some of the most used Big O notations and their performance comparisons against different sizes of the input data.
Big O Notation | Type | Computations for 10 elements | Computations for 100 elements | Computations for 1000 elements |
---|---|---|---|---|
O(1) | Constant | 1 | 1 | 1 |
O(log N) | Logarithmic | 3 | 6 | 9 |
O(N) | Linear | 10 | 100 | 1000 |
O(N log N) | n log(n) | 30 | 600 | 9000 |
O(N^2) | Quadratic | 100 | 10000 | 1000000 |
O(2^N) | Exponential | 1024 | 1.26e+29 | 1.07e+301 |
O(N!) | Factorial | 3628800 | 9.3e+157 | 4.02e+2567 |
Data Structure | Access | Search | Insertion | Deletion | Comments |
---|---|---|---|---|---|
Array | 1 | n | n | n | |
Stack | n | n | 1 | 1 | |
Queue | n | n | 1 | 1 | |
Linked List | n | n | 1 | n | |
Hash Table | - | n | n | n | In case of perfect hash function costs would be O(1) |
Binary Search Tree | n | n | n | n | In case of balanced tree costs would be O(log(n)) |
B-Tree | log(n) | log(n) | log(n) | log(n) | |
Red-Black Tree | log(n) | log(n) | log(n) | log(n) | |
AVL Tree | log(n) | log(n) | log(n) | log(n) | |
Bloom Filter | - | 1 | 1 | - | False positives are possible while searching |
Name | Best | Average | Worst | Memory | Stable | Comments |
---|---|---|---|---|---|---|
Bubble sort | n | n2 | n2 | 1 | Yes | |
Insertion sort | n | n2 | n2 | 1 | Yes | |
Selection sort | n2 | n2 | n2 | 1 | No | |
Heap sort | n log(n) | n log(n) | n log(n) | 1 | No | |
Merge sort | n log(n) | n log(n) | n log(n) | n | Yes | |
Quick sort | n log(n) | n log(n) | n2 | log(n) | No | Quicksort is usually done in-place with O(log(n)) stack space |
Shell sort | n log(n) | depends on gap sequence | n (log(n))2 | 1 | No | |
Counting sort | n + r | n + r | n + r | n + r | Yes | r - biggest number in array |
Radix sort | n * k | n * k | n * k | n + k | Yes | k - length of longest key |
Folks who are backing this project ∑ = 0
ℹ️ A few more projects and articles about JavaScript and algorithms on trekhleb.dev
Author: trekhleb
Source Code: https://github.com/trekhleb/javascript-algorithms
License: MIT license
1622207074
Who invented JavaScript, how it works, as we have given information about Programming language in our previous article ( What is PHP ), but today we will talk about what is JavaScript, why JavaScript is used The Answers to all such questions and much other information about JavaScript, you are going to get here today. Hope this information will work for you.
JavaScript language was invented by Brendan Eich in 1995. JavaScript is inspired by Java Programming Language. The first name of JavaScript was Mocha which was named by Marc Andreessen, Marc Andreessen is the founder of Netscape and in the same year Mocha was renamed LiveScript, and later in December 1995, it was renamed JavaScript which is still in trend.
JavaScript is a client-side scripting language used with HTML (Hypertext Markup Language). JavaScript is an Interpreted / Oriented language called JS in programming language JavaScript code can be run on any normal web browser. To run the code of JavaScript, we have to enable JavaScript of Web Browser. But some web browsers already have JavaScript enabled.
Today almost all websites are using it as web technology, mind is that there is maximum scope in JavaScript in the coming time, so if you want to become a programmer, then you can be very beneficial to learn JavaScript.
In JavaScript, ‘document.write‘ is used to represent a string on a browser.
<script type="text/javascript">
document.write("Hello World!");
</script>
<script type="text/javascript">
//single line comment
/* document.write("Hello"); */
</script>
#javascript #javascript code #javascript hello world #what is javascript #who invented javascript
1616670795
It is said that a digital resource a business has must be interactive in nature, so the website or the business app should be interactive. How do you make the app interactive? With the use of JavaScript.
Does your business need an interactive website or app?
Hire Dedicated JavaScript Developer from WebClues Infotech as the developer we offer is highly skilled and expert in what they do. Our developers are collaborative in nature and work with complete transparency with the customers.
The technology used to develop the overall app by the developers from WebClues Infotech is at par with the latest available technology.
Get your business app with JavaScript
For more inquiry click here https://bit.ly/31eZyDZ
Book Free Interview: https://bit.ly/3dDShFg
#hire dedicated javascript developers #hire javascript developers #top javascript developers for hire #hire javascript developer #hire a freelancer for javascript developer #hire the best javascript developers
1589255577
As a JavaScript developer of any level, you need to understand its foundational concepts and some of the new ideas that help us developing code. In this article, we are going to review 16 basic concepts. So without further ado, let’s get to it.
#javascript-interview #javascript-development #javascript-fundamental #javascript #javascript-tips
1626321063
PixelCrayons: Our JavaScript web development service offers you a feature-packed & dynamic web application that effectively caters to your business challenges and provide you the best RoI. Our JavaScript web development company works on all major frameworks & libraries like Angular, React, Nodejs, Vue.js, to name a few.
With 15+ years of domain expertise, we have successfully delivered 13800+ projects and have successfully garnered 6800+ happy customers with 97%+ client retention rate.
Looking for professional JavaScript web app development services? We provide custom JavaScript development services applying latest version frameworks and libraries to propel businesses to the next level. Our well-defined and manageable JS development processes are balanced between cost, time and quality along with clear communication.
Our JavaScript development companies offers you strict NDA, 100% money back guarantee and agile/DevOps approach.
#javascript development company #javascript development services #javascript web development #javascript development #javascript web development services #javascript web development company