笹田  洋介

笹田 洋介

1656950951

通過 7 個簡單的步驟從頭開始學習 Python 編碼

儘管攻讀計算機科學學位,但我不知道大學畢業後如何編碼。我在大學上的編程課理論性很強,我無法應用我學到的概念來解決現實世界的問題。

我想從事數據科學和分析方面的職業,但缺乏在該領域找到工作所需的編程技能。 

即使在編寫了無數編程 YouTube 視頻之後,我發現自己無法自己構建整個項目。我根本不知道從哪裡開始,並且在沒有編碼教程的幫助下努力解決問題。

在陷入看似無休止的嘗試學習 Python 並失敗的循環之後,我終於向一些在該領域頗有建樹的經驗豐富的程序員和數據科學家尋求建議。 

我根據他們給我的建議創建了一個 Python 學習路線圖,並虔誠地遵循它。在每天花費大約 7-8 小時編程三個月後,我對 Python 的熟練程度足以獲得我的第一個數據科學實習機會。

在本文中,我將把我用來學習 Python 的所有資源濃縮成 7 個步驟。為確保每個人都可以訪問此路線圖,我還將為本文中提到的每個資源提供免費的替代方案。

第 1 步:學習基礎知識

如果您是一個完全沒有任何編程知識的初學者,請從學習 Python 的基礎知識開始。這包括以下概念:

  • 變量
  • 運營商
  • 條件語句
  • 控制流
  • 數據結構
  • 方法
  • 功能

這些基本概念是每種編碼語言的支柱,您必須學習它們才能為編程打下堅實的基礎。

要學習 Python 編程的基礎知識,我建議參加由 Jose Portilla 在 Udemy 舉辦的2022 年完整 Python訓練營。Jose Portilla 是一名專業的數據科學和編程培訓師,也是我學習過的最好的導師之一。

編程曾經是一門令人生畏的學科,我有時會覺得不知所措,但 Jose 的教學風格讓我覺得這門學科很有趣。他的課程從簡單的講座和練習開始,然後以易於跟上的速度慢慢增加複雜性。 

如果您想要上述課程的免費替代品,請在 YouTube 上按照FreeCodeCamp 的4 小時 Python 教程編寫代碼來學習該語言的基礎知識。使用W3School 的 Python 學習軌道補充此視頻,其中包含諸如讀/寫文件等主題,這些主題未包含在 FreeCodeCamp 教程中。

第 2 步:練習編碼挑戰

僅在線課程不足以學習編程。

當我第一次嘗試學習編碼時,我犯了一個錯誤,那就是不斷地學習在線課程。我花了很多時間編寫教程,但在嘗試編寫自己的程序時完全迷失了方向。

這種情況稱為教程陷阱。許多程序員在學習在線課程後陷入困境,無法將學到的概念付諸實踐。因此,他們無法解決現實世界的編程挑戰,也無法在沒有教程的幫助下編寫一段代碼。

教程陷阱是一個很容易陷入困境的情況,這就是為什麼我建議只參加一兩門編程在線課程。你不需要更多的東西來學習編碼的基礎知識。

掌握編程基礎知識後,開始將知識付諸實踐。

HackerRank是一個編碼挑戰平台,它以不同的語言呈現各種編程問題。您可以使用 Python 解決網站的挑戰。從最簡單的問題開始,然後逐步解決更高級的問題。

當我第一次開始在 HackerRank 上解決編碼挑戰問題時,即使是最簡單的問題也需要我幾個小時才能完成。隨著我不斷練習和審查其他程序員的解決方案,我開始變得更好,並且能夠以更快的速度解決更困難的問題。

這是 HackerRank 提出的問題類型的示例(隨著您不斷解決這些挑戰,這些挑戰會變得更加困難)

公司也經常使用 HackerRank 在求職面試過程中評估候選人,因此在平台上練習編碼挑戰將使您更容易通過技術數據科學面試。

第 3 步:用於數據分析的 Python

一旦你在 HackerRank 這樣的網站上解決了編碼問題,你就會對 Python 編程有相當強的掌握。 

然後,您需要學習使用這些編碼技能來處理和分析大量數據。Python 擁有大量可用於數據操作和分析的庫,例如 Pandas、Matplotlib 和 Seaborn。 

要學習 Python 進行數據分析,您可以參加 Jose Portilla 的Python 數據分析和可視化課程。

另一種方法是 Datacamp 的 Python 探索性數據分析課程。本課程的第一個模塊可以免費學習,因此您可以在購買前試用。

如果您想要一門完全免費的課程,請查看使用 Python 進行數據分析,這是 FreeCodeCamp 提供的 4 小時 YouTube 教程。

第 4 步:用於機器學習的 Python

作為一名數據科學家,您必須知道如何使用 Scikit-Learn 等 Python 包構建和解釋預測算法的性能。

機器學習基礎與 Python 是 Datacamp 的一門很棒的課程,您可以學習在 Python 中實現機器學習模型。

本課程將帶您了解如何使用 Scikit-Learn 庫構建、訓練和評估有監督和無監督 ML 算法。此外,您還將了解支持向量機等線性分類器及其背後的內部工作原理。

最後,本課程將教您使用 Keras 框架在 Python 中實現深度學習算法。

如果您想要本課程的免費替代品,我建議您按照 Krish Naik 的Python 機器學習播放列表進行編碼。此播放列表包含上述 Datacamp 課程中涵蓋的所有概念,儘管順序和教學風格可能略有不同。

第 5 步:用於數據收集的 Python

許多公司依靠公開可用的外部數據來構建機器學習項目。作為一名數據科學家,您可能需要從在線資源中收集政府報告、社會情緒和評論等數據。

為了實現這一點,您需要能夠自動從網頁中提取大量數據?——通過 API 或網頁抓取。Python 有像 BeautifulSoup 這樣的內置庫,可以幫助您收集外部數據並輕鬆解析它。

如果您想學習構建自動化的網絡爬蟲,Datacamp 的Python網絡爬蟲課程是一個很好的起點。本課程的免費替代品是 FreeCodeCamp 的Web Scraping with BeautifulSoup教程。

您還可以在我不久前創建的這個網絡抓取教程中編寫代碼。

第 6 步:項目

完成上述所有步驟後,您應該對 Python 編程有足夠的掌握,可以開始創建自己的項目。

構建端到端項目是提高編碼技能的最佳方法之一。如果您沒有技術學位,項目將使招聘經理對您的編程技能充滿信心。

許多沒有任何技術背景的數據科學有志者僅僅通過項目展示他們的工作就成功地過渡到了該領域。

構建展示各種技能的項目非常重要。

數據科學家的角色通常涉及使用編程工具來收集數據、執行探索性分析和可視化以及構建預測模型。

確保創建各種項目來展示您完成上述所有工作的能力,因為這將幫助您在僅具備其中一兩個領域技能的其他候選人中脫穎而出。

如果您想在 Python 中構建數據科學項目,但不確定從哪裡開始,請閱讀本文了解有助於您的簡歷脫穎而出的項目創意

第 7 步:打造出眾的投資組合

現在您已經學習了 Python 並創建了項目來展示您的語言技能,您可以構建一個作品集以在一個地方展示您的所有工作。

我建議建立一個投資組合網站並在線託管。通過這種方式,人們可以在一個地方、一個鏈接中查看您的所有工作。

當我申請第一次數據科學實習時,我剛剛向招聘經理髮送了一個指向我的投資組合網站的鏈接。雖然當時網站還不完整,只展示了三個項目,但足以讓他印象深刻,打電話給我面試?——甚至沒有詢問我的學位、成績或技術背景。

我使用 GitHub 頁面創建了我的作品集,您可以在此處了解我是如何做到的。

如果您想要一個更簡單、無代碼的替代方案,您可以使用 Wix 或 WordPress 等網站構建器來構建您的投資組合網站。

記住,熟能生巧。

學習編碼可能會讓人不知所措,並且是許多數據科學有志者在嘗試進入該領域時遇到的障礙。然而,有經驗的程序員和新手程序員只有一個區別,那就是實踐。隨著您繼續構建項目並嘗試編程挑戰,您的編碼技能將會提高。

來源:  https ://www.kdnuggets.com

#python #datascience 

What is GEEK

Buddha Community

通過 7 個簡單的步驟從頭開始學習 Python 編碼
Ray  Patel

Ray Patel

1619510796

Lambda, Map, Filter functions in python

Welcome to my Blog, In this article, we will learn python lambda function, Map function, and filter function.

Lambda function in python: Lambda is a one line anonymous function and lambda takes any number of arguments but can only have one expression and python lambda syntax is

Syntax: x = lambda arguments : expression

Now i will show you some python lambda function examples:

#python #anonymous function python #filter function in python #lambda #lambda python 3 #map python #python filter #python filter lambda #python lambda #python lambda examples #python map

Shardul Bhatt

Shardul Bhatt

1626775355

Why use Python for Software Development

No programming language is pretty much as diverse as Python. It enables building cutting edge applications effortlessly. Developers are as yet investigating the full capability of end-to-end Python development services in various areas. 

By areas, we mean FinTech, HealthTech, InsureTech, Cybersecurity, and that's just the beginning. These are New Economy areas, and Python has the ability to serve every one of them. The vast majority of them require massive computational abilities. Python's code is dynamic and powerful - equipped for taking care of the heavy traffic and substantial algorithmic capacities. 

Programming advancement is multidimensional today. Endeavor programming requires an intelligent application with AI and ML capacities. Shopper based applications require information examination to convey a superior client experience. Netflix, Trello, and Amazon are genuine instances of such applications. Python assists with building them effortlessly. 

5 Reasons to Utilize Python for Programming Web Apps 

Python can do such numerous things that developers can't discover enough reasons to admire it. Python application development isn't restricted to web and enterprise applications. It is exceptionally adaptable and superb for a wide range of uses.

Robust frameworks 

Python is known for its tools and frameworks. There's a structure for everything. Django is helpful for building web applications, venture applications, logical applications, and mathematical processing. Flask is another web improvement framework with no conditions. 

Web2Py, CherryPy, and Falcon offer incredible capabilities to customize Python development services. A large portion of them are open-source frameworks that allow quick turn of events. 

Simple to read and compose 

Python has an improved sentence structure - one that is like the English language. New engineers for Python can undoubtedly understand where they stand in the development process. The simplicity of composing allows quick application building. 

The motivation behind building Python, as said by its maker Guido Van Rossum, was to empower even beginner engineers to comprehend the programming language. The simple coding likewise permits developers to roll out speedy improvements without getting confused by pointless subtleties. 

Utilized by the best 

Alright - Python isn't simply one more programming language. It should have something, which is the reason the business giants use it. Furthermore, that too for different purposes. Developers at Google use Python to assemble framework organization systems, parallel information pusher, code audit, testing and QA, and substantially more. Netflix utilizes Python web development services for its recommendation algorithm and media player. 

Massive community support 

Python has a steadily developing community that offers enormous help. From amateurs to specialists, there's everybody. There are a lot of instructional exercises, documentation, and guides accessible for Python web development solutions. 

Today, numerous universities start with Python, adding to the quantity of individuals in the community. Frequently, Python designers team up on various tasks and help each other with algorithmic, utilitarian, and application critical thinking. 

Progressive applications 

Python is the greatest supporter of data science, Machine Learning, and Artificial Intelligence at any enterprise software development company. Its utilization cases in cutting edge applications are the most compelling motivation for its prosperity. Python is the second most well known tool after R for data analytics.

The simplicity of getting sorted out, overseeing, and visualizing information through unique libraries makes it ideal for data based applications. TensorFlow for neural networks and OpenCV for computer vision are two of Python's most well known use cases for Machine learning applications.

Summary

Thinking about the advances in programming and innovation, Python is a YES for an assorted scope of utilizations. Game development, web application development services, GUI advancement, ML and AI improvement, Enterprise and customer applications - every one of them uses Python to its full potential. 

The disadvantages of Python web improvement arrangements are regularly disregarded by developers and organizations because of the advantages it gives. They focus on quality over speed and performance over blunders. That is the reason it's a good idea to utilize Python for building the applications of the future.

#python development services #python development company #python app development #python development #python in web development #python software development

Art  Lind

Art Lind

1602968400

Python Tricks Every Developer Should Know

Python is awesome, it’s one of the easiest languages with simple and intuitive syntax but wait, have you ever thought that there might ways to write your python code simpler?

In this tutorial, you’re going to learn a variety of Python tricks that you can use to write your Python code in a more readable and efficient way like a pro.

Let’s get started

Swapping value in Python

Instead of creating a temporary variable to hold the value of the one while swapping, you can do this instead

>>> FirstName = "kalebu"
>>> LastName = "Jordan"
>>> FirstName, LastName = LastName, FirstName 
>>> print(FirstName, LastName)
('Jordan', 'kalebu')

#python #python-programming #python3 #python-tutorials #learn-python #python-tips #python-skills #python-development

Art  Lind

Art Lind

1602666000

How to Remove all Duplicate Files on your Drive via Python

Today you’re going to learn how to use Python programming in a way that can ultimately save a lot of space on your drive by removing all the duplicates.

Intro

In many situations you may find yourself having duplicates files on your disk and but when it comes to tracking and checking them manually it can tedious.

Heres a solution

Instead of tracking throughout your disk to see if there is a duplicate, you can automate the process using coding, by writing a program to recursively track through the disk and remove all the found duplicates and that’s what this article is about.

But How do we do it?

If we were to read the whole file and then compare it to the rest of the files recursively through the given directory it will take a very long time, then how do we do it?

The answer is hashing, with hashing can generate a given string of letters and numbers which act as the identity of a given file and if we find any other file with the same identity we gonna delete it.

There’s a variety of hashing algorithms out there such as

  • md5
  • sha1
  • sha224, sha256, sha384 and sha512

#python-programming #python-tutorials #learn-python #python-project #python3 #python #python-skills #python-tips

How To Compare Tesla and Ford Company By Using Magic Methods in Python

Magic Methods are the special methods which gives us the ability to access built in syntactical features such as ‘<’, ‘>’, ‘==’, ‘+’ etc…

You must have worked with such methods without knowing them to be as magic methods. Magic methods can be identified with their names which start with __ and ends with __ like init, call, str etc. These methods are also called Dunder Methods, because of their name starting and ending with Double Underscore (Dunder).

Now there are a number of such special methods, which you might have come across too, in Python. We will just be taking an example of a few of them to understand how they work and how we can use them.

1. init

class AnyClass:
    def __init__():
        print("Init called on its own")
obj = AnyClass()

The first example is _init, _and as the name suggests, it is used for initializing objects. Init method is called on its own, ie. whenever an object is created for the class, the init method is called on its own.

The output of the above code will be given below. Note how we did not call the init method and it got invoked as we created an object for class AnyClass.

Init called on its own

2. add

Let’s move to some other example, add gives us the ability to access the built in syntax feature of the character +. Let’s see how,

class AnyClass:
    def __init__(self, var):
        self.some_var = var
    def __add__(self, other_obj):
        print("Calling the add method")
        return self.some_var + other_obj.some_var
obj1 = AnyClass(5)
obj2 = AnyClass(6)
obj1 + obj2

#python3 #python #python-programming #python-web-development #python-tutorials #python-top-story #python-tips #learn-python