Awesome  Rust

Awesome Rust

1649948820

Cargo Chef: Speed Up Rust Docker Builds using Docker Layer Caching

How To Install

You can install cargo-chef from crates.io with

cargo install cargo-chef --locked

How to use

:warning: cargo-chef is not meant to be run locally
Its primary use-case is to speed up container builds by running BEFORE the actual source code is copied over. Don't run it on existing codebases to avoid having files being overwritten.

cargo-chef exposes two commands: prepare and cook:

cargo chef --help

cargo-chef

USAGE:
    cargo chef <SUBCOMMAND>

SUBCOMMANDS:
    cook       Re-hydrate the minimum project skeleton identified by `cargo chef prepare` and
               build it to cache dependencies
    prepare    Analyze the current project to determine the minimum subset of files (Cargo.lock
               and Cargo.toml manifests) required to build it and cache dependencies

prepare examines your project and builds a recipe that captures the set of information required to build your dependencies.

cargo chef prepare --recipe-path recipe.json

Nothing too mysterious going on here, you can examine the recipe.json file: it contains the skeleton of your project (e.g. all the Cargo.toml files with their relative path, the Cargo.lock file is available) plus a few additional pieces of information.
In particular it makes sure that all libraries and binaries are explicitly declared in their respective Cargo.toml files even if they can be found at the canonical default location (src/main.rs for a binary, src/lib.rs for a library).

The recipe.json is the equivalent of the Python requirements.txt file - it is the only input required for cargo chef cook, the command that will build out our dependencies:

cargo chef cook --recipe-path recipe.json

If you want to build in --release mode:

cargo chef cook --release --recipe-path recipe.json

You can leverage it in a Dockerfile:

FROM lukemathwalker/cargo-chef:latest-rust-1.56.0 AS chef
WORKDIR app

FROM chef AS planner
COPY . .
RUN cargo chef prepare --recipe-path recipe.json

FROM chef AS builder 
COPY --from=planner /app/recipe.json recipe.json
# Build dependencies - this is the caching Docker layer!
RUN cargo chef cook --release --recipe-path recipe.json
# Build application
COPY . .
RUN cargo build --release --bin app

# We do not need the Rust toolchain to run the binary!
FROM debian:buster-slim AS runtime
WORKDIR app
COPY --from=builder /app/target/release/app /usr/local/bin
ENTRYPOINT ["/usr/local/bin/app"]

We are using three stages: the first computes the recipe file, the second caches our dependencies and builds the binary, the third is our runtime environment.
As long as your dependencies do not change the recipe.json file will stay the same, therefore the outcome of cargo cargo chef cook --release --recipe-path recipe.json will be cached, massively speeding up your builds (up to 5x measured on some commercial projects).

Pre-built images

We offer lukemathwalker/cargo-chef as a pre-built Docker image equipped with both Rust and cargo-chef.

The tagging scheme is <cargo-chef version>-rust-<rust version>.
For example, 0.1.22-rust-1.56.0.
You can choose to get the latest version of either cargo-chef or rust by using:

  • latest-rust-1.56.0 (use latest cargo-chef with specific Rust version);
  • 0.1.22-rust-latest (use latest Rust with specific cargo-chef version). You can find all the available tags on Dockerhub.

:warning: You must use the same Rust version in all stages
If you use a different Rust version in one of the stages caching will not work as expected.

Without the pre-built image

If you do not want to use the lukemathwalker/cargo-chef image, you can simply install the CLI within the Dockerfile:

FROM rust:1.56.0 AS chef 
# We only pay the installation cost once, 
# it will be cached from the second build onwards
RUN cargo install cargo-chef 
WORKDIR app

FROM chef AS planner
COPY . .
RUN cargo chef prepare  --recipe-path recipe.json

FROM chef AS builder
COPY --from=planner /app/recipe.json recipe.json
# Build dependencies - this is the caching Docker layer!
RUN cargo chef cook --release --recipe-path recipe.json
# Build application
COPY . .
RUN cargo build --release --bin app

# We do not need the Rust toolchain to run the binary!
FROM debian:buster-slim AS runtime
WORKDIR app
COPY --from=builder /app/target/release/app /usr/local/bin
ENTRYPOINT ["/usr/local/bin/app"]

Running the binary in Alpine

If you want to run your application using the alpine distribution you need to create a fully static binary.
The recommended approach is to build for the x86_64-unknown-linux-musl target using muslrust.
cargo-chef works for x86_64-unknown-linux-musl, but we are cross-compiling - the target toolchain must be explicitly specified.

A sample Dockerfile looks like this:

# Using the `rust-musl-builder` as base image, instead of 
# the official Rust toolchain
FROM clux/muslrust:stable AS chef
USER root
RUN cargo install cargo-chef
WORKDIR /app

FROM chef AS planner
COPY . .
RUN cargo chef prepare --recipe-path recipe.json

FROM chef AS builder
COPY --from=planner /app/recipe.json recipe.json
# Notice that we are specifying the --target flag!
RUN cargo chef cook --release --target x86_64-unknown-linux-musl --recipe-path recipe.json
COPY . .
RUN cargo build --release --target x86_64-unknown-linux-musl --bin app

FROM alpine AS runtime
RUN addgroup -S myuser && adduser -S myuser -G myuser
COPY --from=builder /app/target/x86_64-unknown-linux-musl/release/app /usr/local/bin/
USER myuser
CMD ["/usr/local/bin/app"]

Benefits vs Limitations

cargo-chef has been tested on a few OpenSource projects and some of commercial projects, but our testing has definitely not exhausted the range of possibilities when it comes to cargo build customisations and we are sure that there are a few rough edges that will have to be smoothed out - please file issues on GitHub.

Benefits of cargo-chef:

A common alternative is to load a minimal main.rs into a container with Cargo.toml and Cargo.lock to build a Docker layer that consists of only your dependencies (more info here). This is fragile compared to cargo-chef which will instead:

  • automatically pick up all crates in a workspace (and new ones as they are added)
  • keep working when files or crates are moved around, which would instead require manual edits to the Dockerfile using the "manual" approach
  • generate fewer intermediate Docker layers (for workspaces)

Limitations and caveats:

  • cargo cook and cargo build must be executed from the same working directory. If you examine the *.d files under target/debug/deps for one of your projects using cat you will notice that they contain absolute paths referring to the project target directory. If moved around, cargo will not leverage them as cached dependencies;
  • cargo build will build local dependencies (outside of the current project) from scratch, even if they are unchanged, due to the reliance of its fingerprinting logic on timestamps (see this long issue on cargo's repository);

Download Details:
Author: LukeMathWalker
Source Code: https://github.com/LukeMathWalker/cargo-chef
License: View license

#rust  #rustlang  #deployment  #docker 

What is GEEK

Buddha Community

Cargo Chef: Speed Up Rust Docker Builds using Docker Layer Caching
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

Awesome  Rust

Awesome Rust

1649948820

Cargo Chef: Speed Up Rust Docker Builds using Docker Layer Caching

How To Install

You can install cargo-chef from crates.io with

cargo install cargo-chef --locked

How to use

:warning: cargo-chef is not meant to be run locally
Its primary use-case is to speed up container builds by running BEFORE the actual source code is copied over. Don't run it on existing codebases to avoid having files being overwritten.

cargo-chef exposes two commands: prepare and cook:

cargo chef --help

cargo-chef

USAGE:
    cargo chef <SUBCOMMAND>

SUBCOMMANDS:
    cook       Re-hydrate the minimum project skeleton identified by `cargo chef prepare` and
               build it to cache dependencies
    prepare    Analyze the current project to determine the minimum subset of files (Cargo.lock
               and Cargo.toml manifests) required to build it and cache dependencies

prepare examines your project and builds a recipe that captures the set of information required to build your dependencies.

cargo chef prepare --recipe-path recipe.json

Nothing too mysterious going on here, you can examine the recipe.json file: it contains the skeleton of your project (e.g. all the Cargo.toml files with their relative path, the Cargo.lock file is available) plus a few additional pieces of information.
In particular it makes sure that all libraries and binaries are explicitly declared in their respective Cargo.toml files even if they can be found at the canonical default location (src/main.rs for a binary, src/lib.rs for a library).

The recipe.json is the equivalent of the Python requirements.txt file - it is the only input required for cargo chef cook, the command that will build out our dependencies:

cargo chef cook --recipe-path recipe.json

If you want to build in --release mode:

cargo chef cook --release --recipe-path recipe.json

You can leverage it in a Dockerfile:

FROM lukemathwalker/cargo-chef:latest-rust-1.56.0 AS chef
WORKDIR app

FROM chef AS planner
COPY . .
RUN cargo chef prepare --recipe-path recipe.json

FROM chef AS builder 
COPY --from=planner /app/recipe.json recipe.json
# Build dependencies - this is the caching Docker layer!
RUN cargo chef cook --release --recipe-path recipe.json
# Build application
COPY . .
RUN cargo build --release --bin app

# We do not need the Rust toolchain to run the binary!
FROM debian:buster-slim AS runtime
WORKDIR app
COPY --from=builder /app/target/release/app /usr/local/bin
ENTRYPOINT ["/usr/local/bin/app"]

We are using three stages: the first computes the recipe file, the second caches our dependencies and builds the binary, the third is our runtime environment.
As long as your dependencies do not change the recipe.json file will stay the same, therefore the outcome of cargo cargo chef cook --release --recipe-path recipe.json will be cached, massively speeding up your builds (up to 5x measured on some commercial projects).

Pre-built images

We offer lukemathwalker/cargo-chef as a pre-built Docker image equipped with both Rust and cargo-chef.

The tagging scheme is <cargo-chef version>-rust-<rust version>.
For example, 0.1.22-rust-1.56.0.
You can choose to get the latest version of either cargo-chef or rust by using:

  • latest-rust-1.56.0 (use latest cargo-chef with specific Rust version);
  • 0.1.22-rust-latest (use latest Rust with specific cargo-chef version). You can find all the available tags on Dockerhub.

:warning: You must use the same Rust version in all stages
If you use a different Rust version in one of the stages caching will not work as expected.

Without the pre-built image

If you do not want to use the lukemathwalker/cargo-chef image, you can simply install the CLI within the Dockerfile:

FROM rust:1.56.0 AS chef 
# We only pay the installation cost once, 
# it will be cached from the second build onwards
RUN cargo install cargo-chef 
WORKDIR app

FROM chef AS planner
COPY . .
RUN cargo chef prepare  --recipe-path recipe.json

FROM chef AS builder
COPY --from=planner /app/recipe.json recipe.json
# Build dependencies - this is the caching Docker layer!
RUN cargo chef cook --release --recipe-path recipe.json
# Build application
COPY . .
RUN cargo build --release --bin app

# We do not need the Rust toolchain to run the binary!
FROM debian:buster-slim AS runtime
WORKDIR app
COPY --from=builder /app/target/release/app /usr/local/bin
ENTRYPOINT ["/usr/local/bin/app"]

Running the binary in Alpine

If you want to run your application using the alpine distribution you need to create a fully static binary.
The recommended approach is to build for the x86_64-unknown-linux-musl target using muslrust.
cargo-chef works for x86_64-unknown-linux-musl, but we are cross-compiling - the target toolchain must be explicitly specified.

A sample Dockerfile looks like this:

# Using the `rust-musl-builder` as base image, instead of 
# the official Rust toolchain
FROM clux/muslrust:stable AS chef
USER root
RUN cargo install cargo-chef
WORKDIR /app

FROM chef AS planner
COPY . .
RUN cargo chef prepare --recipe-path recipe.json

FROM chef AS builder
COPY --from=planner /app/recipe.json recipe.json
# Notice that we are specifying the --target flag!
RUN cargo chef cook --release --target x86_64-unknown-linux-musl --recipe-path recipe.json
COPY . .
RUN cargo build --release --target x86_64-unknown-linux-musl --bin app

FROM alpine AS runtime
RUN addgroup -S myuser && adduser -S myuser -G myuser
COPY --from=builder /app/target/x86_64-unknown-linux-musl/release/app /usr/local/bin/
USER myuser
CMD ["/usr/local/bin/app"]

Benefits vs Limitations

cargo-chef has been tested on a few OpenSource projects and some of commercial projects, but our testing has definitely not exhausted the range of possibilities when it comes to cargo build customisations and we are sure that there are a few rough edges that will have to be smoothed out - please file issues on GitHub.

Benefits of cargo-chef:

A common alternative is to load a minimal main.rs into a container with Cargo.toml and Cargo.lock to build a Docker layer that consists of only your dependencies (more info here). This is fragile compared to cargo-chef which will instead:

  • automatically pick up all crates in a workspace (and new ones as they are added)
  • keep working when files or crates are moved around, which would instead require manual edits to the Dockerfile using the "manual" approach
  • generate fewer intermediate Docker layers (for workspaces)

Limitations and caveats:

  • cargo cook and cargo build must be executed from the same working directory. If you examine the *.d files under target/debug/deps for one of your projects using cat you will notice that they contain absolute paths referring to the project target directory. If moved around, cargo will not leverage them as cached dependencies;
  • cargo build will build local dependencies (outside of the current project) from scratch, even if they are unchanged, due to the reliance of its fingerprinting logic on timestamps (see this long issue on cargo's repository);

Download Details:
Author: LukeMathWalker
Source Code: https://github.com/LukeMathWalker/cargo-chef
License: View license

#rust  #rustlang  #deployment  #docker 

Serde Rust: Serialization Framework for Rust

Serde

*Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.*

You may be looking for:

Serde in action

Click to show Cargo.toml. Run this code in the playground.

[dependencies]

# The core APIs, including the Serialize and Deserialize traits. Always
# required when using Serde. The "derive" feature is only required when
# using #[derive(Serialize, Deserialize)] to make Serde work with structs
# and enums defined in your crate.
serde = { version = "1.0", features = ["derive"] }

# Each data format lives in its own crate; the sample code below uses JSON
# but you may be using a different one.
serde_json = "1.0"

 

use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, Debug)]
struct Point {
    x: i32,
    y: i32,
}

fn main() {
    let point = Point { x: 1, y: 2 };

    // Convert the Point to a JSON string.
    let serialized = serde_json::to_string(&point).unwrap();

    // Prints serialized = {"x":1,"y":2}
    println!("serialized = {}", serialized);

    // Convert the JSON string back to a Point.
    let deserialized: Point = serde_json::from_str(&serialized).unwrap();

    // Prints deserialized = Point { x: 1, y: 2 }
    println!("deserialized = {:?}", deserialized);
}

Getting help

Serde is one of the most widely used Rust libraries so any place that Rustaceans congregate will be able to help you out. For chat, consider trying the #rust-questions or #rust-beginners channels of the unofficial community Discord (invite: https://discord.gg/rust-lang-community), the #rust-usage or #beginners channels of the official Rust Project Discord (invite: https://discord.gg/rust-lang), or the #general stream in Zulip. For asynchronous, consider the [rust] tag on StackOverflow, the /r/rust subreddit which has a pinned weekly easy questions post, or the Rust Discourse forum. It's acceptable to file a support issue in this repo but they tend not to get as many eyes as any of the above and may get closed without a response after some time.

Download Details:
Author: serde-rs
Source Code: https://github.com/serde-rs/serde
License: View license

#rust  #rustlang 

Why Use WordPress? What Can You Do With WordPress?

Can you use WordPress for anything other than blogging? To your surprise, yes. WordPress is more than just a blogging tool, and it has helped thousands of websites and web applications to thrive. The use of WordPress powers around 40% of online projects, and today in our blog, we would visit some amazing uses of WordPress other than blogging.
What Is The Use Of WordPress?

WordPress is the most popular website platform in the world. It is the first choice of businesses that want to set a feature-rich and dynamic Content Management System. So, if you ask what WordPress is used for, the answer is – everything. It is a super-flexible, feature-rich and secure platform that offers everything to build unique websites and applications. Let’s start knowing them:

1. Multiple Websites Under A Single Installation
WordPress Multisite allows you to develop multiple sites from a single WordPress installation. You can download WordPress and start building websites you want to launch under a single server. Literally speaking, you can handle hundreds of sites from one single dashboard, which now needs applause.
It is a highly efficient platform that allows you to easily run several websites under the same login credentials. One of the best things about WordPress is the themes it has to offer. You can simply download them and plugin for various sites and save space on sites without losing their speed.

2. WordPress Social Network
WordPress can be used for high-end projects such as Social Media Network. If you don’t have the money and patience to hire a coder and invest months in building a feature-rich social media site, go for WordPress. It is one of the most amazing uses of WordPress. Its stunning CMS is unbeatable. And you can build sites as good as Facebook or Reddit etc. It can just make the process a lot easier.
To set up a social media network, you would have to download a WordPress Plugin called BuddyPress. It would allow you to connect a community page with ease and would provide all the necessary features of a community or social media. It has direct messaging, activity stream, user groups, extended profiles, and so much more. You just have to download and configure it.
If BuddyPress doesn’t meet all your needs, don’t give up on your dreams. You can try out WP Symposium or PeepSo. There are also several themes you can use to build a social network.

3. Create A Forum For Your Brand’s Community
Communities are very important for your business. They help you stay in constant connection with your users and consumers. And allow you to turn them into a loyal customer base. Meanwhile, there are many good technologies that can be used for building a community page – the good old WordPress is still the best.
It is the best community development technology. If you want to build your online community, you need to consider all the amazing features you get with WordPress. Plugins such as BB Press is an open-source, template-driven PHP/ MySQL forum software. It is very simple and doesn’t hamper the experience of the website.
Other tools such as wpFoRo and Asgaros Forum are equally good for creating a community blog. They are lightweight tools that are easy to manage and integrate with your WordPress site easily. However, there is only one tiny problem; you need to have some technical knowledge to build a WordPress Community blog page.

4. Shortcodes
Since we gave you a problem in the previous section, we would also give you a perfect solution for it. You might not know to code, but you have shortcodes. Shortcodes help you execute functions without having to code. It is an easy way to build an amazing website, add new features, customize plugins easily. They are short lines of code, and rather than memorizing multiple lines; you can have zero technical knowledge and start building a feature-rich website or application.
There are also plugins like Shortcoder, Shortcodes Ultimate, and the Basics available on WordPress that can be used, and you would not even have to remember the shortcodes.

5. Build Online Stores
If you still think about why to use WordPress, use it to build an online store. You can start selling your goods online and start selling. It is an affordable technology that helps you build a feature-rich eCommerce store with WordPress.
WooCommerce is an extension of WordPress and is one of the most used eCommerce solutions. WooCommerce holds a 28% share of the global market and is one of the best ways to set up an online store. It allows you to build user-friendly and professional online stores and has thousands of free and paid extensions. Moreover as an open-source platform, and you don’t have to pay for the license.
Apart from WooCommerce, there are Easy Digital Downloads, iThemes Exchange, Shopify eCommerce plugin, and so much more available.

6. Security Features
WordPress takes security very seriously. It offers tons of external solutions that help you in safeguarding your WordPress site. While there is no way to ensure 100% security, it provides regular updates with security patches and provides several plugins to help with backups, two-factor authorization, and more.
By choosing hosting providers like WP Engine, you can improve the security of the website. It helps in threat detection, manage patching and updates, and internal security audits for the customers, and so much more.

Read More

#use of wordpress #use wordpress for business website #use wordpress for website #what is use of wordpress #why use wordpress #why use wordpress to build a website

Iliana  Welch

Iliana Welch

1595249460

Docker Explained: Docker Architecture | Docker Registries

Following the second video about Docker basics, in this video, I explain Docker architecture and explain the different building blocks of the docker engine; docker client, API, Docker Daemon. I also explain what a docker registry is and I finish the video with a demo explaining and illustrating how to use Docker hub

In this video lesson you will learn:

  • What is Docker Host
  • What is Docker Engine
  • Learn about Docker Architecture
  • Learn about Docker client and Docker Daemon
  • Docker Hub and Registries
  • Simple demo to understand using images from registries

#docker #docker hub #docker host #docker engine #docker architecture #api