1623041460
Angular & Microsoft Login : Using MSAL Interceptor to Call APIs with User Access Token
(00:00): Intro and Summary
(01:27): Configure MSAL Interceptor
(03:55): Call an API with a HTTP Client
(08:11): What is the scope good for?
(10:58): Custom Scopes for Custom APIs
(15:42): Outro
Part 1: https://morioh.com/p/f7d1a7504c57
Github: https://github.com/tamani-coding/angu…
Subscribe: https://www.youtube.com/channel/UCBTwKzJg-BR56tKWO5CT7XA/featured
#angular
1653475560
msgpack.php
A pure PHP implementation of the MessagePack serialization format.
The recommended way to install the library is through Composer:
composer require rybakit/msgpack
To pack values you can either use an instance of a Packer
:
$packer = new Packer();
$packed = $packer->pack($value);
or call a static method on the MessagePack
class:
$packed = MessagePack::pack($value);
In the examples above, the method pack
automatically packs a value depending on its type. However, not all PHP types can be uniquely translated to MessagePack types. For example, the MessagePack format defines map
and array
types, which are represented by a single array
type in PHP. By default, the packer will pack a PHP array as a MessagePack array if it has sequential numeric keys, starting from 0
and as a MessagePack map otherwise:
$mpArr1 = $packer->pack([1, 2]); // MP array [1, 2]
$mpArr2 = $packer->pack([0 => 1, 1 => 2]); // MP array [1, 2]
$mpMap1 = $packer->pack([0 => 1, 2 => 3]); // MP map {0: 1, 2: 3}
$mpMap2 = $packer->pack([1 => 2, 2 => 3]); // MP map {1: 2, 2: 3}
$mpMap3 = $packer->pack(['a' => 1, 'b' => 2]); // MP map {a: 1, b: 2}
However, sometimes you need to pack a sequential array as a MessagePack map. To do this, use the packMap
method:
$mpMap = $packer->packMap([1, 2]); // {0: 1, 1: 2}
Here is a list of type-specific packing methods:
$packer->packNil(); // MP nil
$packer->packBool(true); // MP bool
$packer->packInt(42); // MP int
$packer->packFloat(M_PI); // MP float (32 or 64)
$packer->packFloat32(M_PI); // MP float 32
$packer->packFloat64(M_PI); // MP float 64
$packer->packStr('foo'); // MP str
$packer->packBin("\x80"); // MP bin
$packer->packArray([1, 2]); // MP array
$packer->packMap(['a' => 1]); // MP map
$packer->packExt(1, "\xaa"); // MP ext
Check the "Custom types" section below on how to pack custom types.
The Packer
object supports a number of bitmask-based options for fine-tuning the packing process (defaults are in bold):
Name | Description |
---|---|
FORCE_STR | Forces PHP strings to be packed as MessagePack UTF-8 strings |
FORCE_BIN | Forces PHP strings to be packed as MessagePack binary data |
DETECT_STR_BIN | Detects MessagePack str/bin type automatically |
FORCE_ARR | Forces PHP arrays to be packed as MessagePack arrays |
FORCE_MAP | Forces PHP arrays to be packed as MessagePack maps |
DETECT_ARR_MAP | Detects MessagePack array/map type automatically |
FORCE_FLOAT32 | Forces PHP floats to be packed as 32-bits MessagePack floats |
FORCE_FLOAT64 | Forces PHP floats to be packed as 64-bits MessagePack floats |
The type detection mode (
DETECT_STR_BIN
/DETECT_ARR_MAP
) adds some overhead which can be noticed when you pack large (16- and 32-bit) arrays or strings. However, if you know the value type in advance (for example, you only work with UTF-8 strings or/and associative arrays), you can eliminate this overhead by forcing the packer to use the appropriate type, which will save it from running the auto-detection routine. Another option is to explicitly specify the value type. The library provides 2 auxiliary classes for this,Map
andBin
. Check the "Custom types" section below for details.
Examples:
// detect str/bin type and pack PHP 64-bit floats (doubles) to MP 32-bit floats
$packer = new Packer(PackOptions::DETECT_STR_BIN | PackOptions::FORCE_FLOAT32);
// these will throw MessagePack\Exception\InvalidOptionException
$packer = new Packer(PackOptions::FORCE_STR | PackOptions::FORCE_BIN);
$packer = new Packer(PackOptions::FORCE_FLOAT32 | PackOptions::FORCE_FLOAT64);
To unpack data you can either use an instance of a BufferUnpacker
:
$unpacker = new BufferUnpacker();
$unpacker->reset($packed);
$value = $unpacker->unpack();
or call a static method on the MessagePack
class:
$value = MessagePack::unpack($packed);
If the packed data is received in chunks (e.g. when reading from a stream), use the tryUnpack
method, which attempts to unpack data and returns an array of unpacked messages (if any) instead of throwing an InsufficientDataException
:
while ($chunk = ...) {
$unpacker->append($chunk);
if ($messages = $unpacker->tryUnpack()) {
return $messages;
}
}
If you want to unpack from a specific position in a buffer, use seek
:
$unpacker->seek(42); // set position equal to 42 bytes
$unpacker->seek(-8); // set position to 8 bytes before the end of the buffer
To skip bytes from the current position, use skip
:
$unpacker->skip(10); // set position to 10 bytes ahead of the current position
To get the number of remaining (unread) bytes in the buffer:
$unreadBytesCount = $unpacker->getRemainingCount();
To check whether the buffer has unread data:
$hasUnreadBytes = $unpacker->hasRemaining();
If needed, you can remove already read data from the buffer by calling:
$releasedBytesCount = $unpacker->release();
With the read
method you can read raw (packed) data:
$packedData = $unpacker->read(2); // read 2 bytes
Besides the above methods BufferUnpacker
provides type-specific unpacking methods, namely:
$unpacker->unpackNil(); // PHP null
$unpacker->unpackBool(); // PHP bool
$unpacker->unpackInt(); // PHP int
$unpacker->unpackFloat(); // PHP float
$unpacker->unpackStr(); // PHP UTF-8 string
$unpacker->unpackBin(); // PHP binary string
$unpacker->unpackArray(); // PHP sequential array
$unpacker->unpackMap(); // PHP associative array
$unpacker->unpackExt(); // PHP MessagePack\Type\Ext object
The BufferUnpacker
object supports a number of bitmask-based options for fine-tuning the unpacking process (defaults are in bold):
Name | Description |
---|---|
BIGINT_AS_STR | Converts overflowed integers to strings [1] |
BIGINT_AS_GMP | Converts overflowed integers to GMP objects [2] |
BIGINT_AS_DEC | Converts overflowed integers to Decimal\Decimal objects [3] |
1. The binary MessagePack format has unsigned 64-bit as its largest integer data type, but PHP does not support such integers, which means that an overflow can occur during unpacking.
2. Make sure the GMP extension is enabled.
3. Make sure the Decimal extension is enabled.
Examples:
$packedUint64 = "\xcf"."\xff\xff\xff\xff"."\xff\xff\xff\xff";
$unpacker = new BufferUnpacker($packedUint64);
var_dump($unpacker->unpack()); // string(20) "18446744073709551615"
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_GMP);
var_dump($unpacker->unpack()); // object(GMP) {...}
$unpacker = new BufferUnpacker($packedUint64, UnpackOptions::BIGINT_AS_DEC);
var_dump($unpacker->unpack()); // object(Decimal\Decimal) {...}
In addition to the basic types, the library provides functionality to serialize and deserialize arbitrary types. This can be done in several ways, depending on your use case. Let's take a look at them.
If you need to serialize an instance of one of your classes into one of the basic MessagePack types, the best way to do this is to implement the CanBePacked interface in the class. A good example of such a class is the Map
type class that comes with the library. This type is useful when you want to explicitly specify that a given PHP array should be packed as a MessagePack map without triggering an automatic type detection routine:
$packer = new Packer();
$packedMap = $packer->pack(new Map([1, 2, 3]));
$packedArray = $packer->pack([1, 2, 3]);
More type examples can be found in the src/Type directory.
As with type objects, type transformers are only responsible for serializing values. They should be used when you need to serialize a value that does not implement the CanBePacked interface. Examples of such values could be instances of built-in or third-party classes that you don't own, or non-objects such as resources.
A transformer class must implement the CanPack interface. To use a transformer, it must first be registered in the packer. Here is an example of how to serialize PHP streams into the MessagePack bin
format type using one of the supplied transformers, StreamTransformer
:
$packer = new Packer(null, [new StreamTransformer()]);
$packedBin = $packer->pack(fopen('/path/to/file', 'r+'));
More type transformer examples can be found in the src/TypeTransformer directory.
In contrast to the cases described above, extensions are intended to handle extension types and are responsible for both serialization and deserialization of values (types).
An extension class must implement the Extension interface. To use an extension, it must first be registered in the packer and the unpacker.
The MessagePack specification divides extension types into two groups: predefined and application-specific. Currently, there is only one predefined type in the specification, Timestamp.
Timestamp
The Timestamp extension type is a predefined type. Support for this type in the library is done through the TimestampExtension
class. This class is responsible for handling Timestamp
objects, which represent the number of seconds and optional adjustment in nanoseconds:
$timestampExtension = new TimestampExtension();
$packer = new Packer();
$packer = $packer->extendWith($timestampExtension);
$unpacker = new BufferUnpacker();
$unpacker = $unpacker->extendWith($timestampExtension);
$packedTimestamp = $packer->pack(Timestamp::now());
$timestamp = $unpacker->reset($packedTimestamp)->unpack();
$seconds = $timestamp->getSeconds();
$nanoseconds = $timestamp->getNanoseconds();
When using the MessagePack
class, the Timestamp extension is already registered:
$packedTimestamp = MessagePack::pack(Timestamp::now());
$timestamp = MessagePack::unpack($packedTimestamp);
Application-specific extensions
In addition, the format can be extended with your own types. For example, to make the built-in PHP DateTime
objects first-class citizens in your code, you can create a corresponding extension, as shown in the example. Please note, that custom extensions have to be registered with a unique extension ID (an integer from 0
to 127
).
More extension examples can be found in the examples/MessagePack directory.
To learn more about how extension types can be useful, check out this article.
If an error occurs during packing/unpacking, a PackingFailedException
or an UnpackingFailedException
will be thrown, respectively. In addition, an InsufficientDataException
can be thrown during unpacking.
An InvalidOptionException
will be thrown in case an invalid option (or a combination of mutually exclusive options) is used.
Run tests as follows:
vendor/bin/phpunit
Also, if you already have Docker installed, you can run the tests in a docker container. First, create a container:
./dockerfile.sh | docker build -t msgpack -
The command above will create a container named msgpack
with PHP 8.1 runtime. You may change the default runtime by defining the PHP_IMAGE
environment variable:
PHP_IMAGE='php:8.0-cli' ./dockerfile.sh | docker build -t msgpack -
See a list of various images here.
Then run the unit tests:
docker run --rm -v $PWD:/msgpack -w /msgpack msgpack
To ensure that the unpacking works correctly with malformed/semi-malformed data, you can use a testing technique called Fuzzing. The library ships with a help file (target) for PHP-Fuzzer and can be used as follows:
php-fuzzer fuzz tests/fuzz_buffer_unpacker.php
To check performance, run:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0030 ........ 0.0139
false ................ 0.0037 ........ 0.0144
true ................. 0.0040 ........ 0.0137
7-bit uint #1 ........ 0.0052 ........ 0.0120
7-bit uint #2 ........ 0.0059 ........ 0.0114
7-bit uint #3 ........ 0.0061 ........ 0.0119
5-bit sint #1 ........ 0.0067 ........ 0.0126
5-bit sint #2 ........ 0.0064 ........ 0.0132
5-bit sint #3 ........ 0.0066 ........ 0.0135
8-bit uint #1 ........ 0.0078 ........ 0.0200
8-bit uint #2 ........ 0.0077 ........ 0.0212
8-bit uint #3 ........ 0.0086 ........ 0.0203
16-bit uint #1 ....... 0.0111 ........ 0.0271
16-bit uint #2 ....... 0.0115 ........ 0.0260
16-bit uint #3 ....... 0.0103 ........ 0.0273
32-bit uint #1 ....... 0.0116 ........ 0.0326
32-bit uint #2 ....... 0.0118 ........ 0.0332
32-bit uint #3 ....... 0.0127 ........ 0.0325
64-bit uint #1 ....... 0.0140 ........ 0.0277
64-bit uint #2 ....... 0.0134 ........ 0.0294
64-bit uint #3 ....... 0.0134 ........ 0.0281
8-bit int #1 ......... 0.0086 ........ 0.0241
8-bit int #2 ......... 0.0089 ........ 0.0225
8-bit int #3 ......... 0.0085 ........ 0.0229
16-bit int #1 ........ 0.0118 ........ 0.0280
16-bit int #2 ........ 0.0121 ........ 0.0270
16-bit int #3 ........ 0.0109 ........ 0.0274
32-bit int #1 ........ 0.0128 ........ 0.0346
32-bit int #2 ........ 0.0118 ........ 0.0339
32-bit int #3 ........ 0.0135 ........ 0.0368
64-bit int #1 ........ 0.0138 ........ 0.0276
64-bit int #2 ........ 0.0132 ........ 0.0286
64-bit int #3 ........ 0.0137 ........ 0.0274
64-bit int #4 ........ 0.0180 ........ 0.0285
64-bit float #1 ...... 0.0134 ........ 0.0284
64-bit float #2 ...... 0.0125 ........ 0.0275
64-bit float #3 ...... 0.0126 ........ 0.0283
fix string #1 ........ 0.0035 ........ 0.0133
fix string #2 ........ 0.0094 ........ 0.0216
fix string #3 ........ 0.0094 ........ 0.0222
fix string #4 ........ 0.0091 ........ 0.0241
8-bit string #1 ...... 0.0122 ........ 0.0301
8-bit string #2 ...... 0.0118 ........ 0.0304
8-bit string #3 ...... 0.0119 ........ 0.0315
16-bit string #1 ..... 0.0150 ........ 0.0388
16-bit string #2 ..... 0.1545 ........ 0.1665
32-bit string ........ 0.1570 ........ 0.1756
wide char string #1 .. 0.0091 ........ 0.0236
wide char string #2 .. 0.0122 ........ 0.0313
8-bit binary #1 ...... 0.0100 ........ 0.0302
8-bit binary #2 ...... 0.0123 ........ 0.0324
8-bit binary #3 ...... 0.0126 ........ 0.0327
16-bit binary ........ 0.0168 ........ 0.0372
32-bit binary ........ 0.1588 ........ 0.1754
fix array #1 ......... 0.0042 ........ 0.0131
fix array #2 ......... 0.0294 ........ 0.0367
fix array #3 ......... 0.0412 ........ 0.0472
16-bit array #1 ...... 0.1378 ........ 0.1596
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.1865 ........ 0.2283
fix map #1 ........... 0.0725 ........ 0.1048
fix map #2 ........... 0.0319 ........ 0.0405
fix map #3 ........... 0.0356 ........ 0.0665
fix map #4 ........... 0.0465 ........ 0.0497
16-bit map #1 ........ 0.2540 ........ 0.3028
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.2372 ........ 0.2710
fixext 1 ............. 0.0283 ........ 0.0358
fixext 2 ............. 0.0291 ........ 0.0371
fixext 4 ............. 0.0302 ........ 0.0355
fixext 8 ............. 0.0288 ........ 0.0384
fixext 16 ............ 0.0293 ........ 0.0359
8-bit ext ............ 0.0302 ........ 0.0439
16-bit ext ........... 0.0334 ........ 0.0499
32-bit ext ........... 0.1845 ........ 0.1888
32-bit timestamp #1 .. 0.0337 ........ 0.0547
32-bit timestamp #2 .. 0.0335 ........ 0.0560
64-bit timestamp #1 .. 0.0371 ........ 0.0575
64-bit timestamp #2 .. 0.0374 ........ 0.0542
64-bit timestamp #3 .. 0.0356 ........ 0.0533
96-bit timestamp #1 .. 0.0362 ........ 0.0699
96-bit timestamp #2 .. 0.0381 ........ 0.0701
96-bit timestamp #3 .. 0.0367 ........ 0.0687
=============================================
Total 2.7618 4.0820
Skipped 4 4
Failed 0 0
Ignored 0 0
With JIT:
php -n -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
=============================================
Test/Target Packer BufferUnpacker
---------------------------------------------
nil .................. 0.0005 ........ 0.0054
false ................ 0.0004 ........ 0.0059
true ................. 0.0004 ........ 0.0059
7-bit uint #1 ........ 0.0010 ........ 0.0047
7-bit uint #2 ........ 0.0010 ........ 0.0046
7-bit uint #3 ........ 0.0010 ........ 0.0046
5-bit sint #1 ........ 0.0025 ........ 0.0046
5-bit sint #2 ........ 0.0023 ........ 0.0046
5-bit sint #3 ........ 0.0024 ........ 0.0045
8-bit uint #1 ........ 0.0043 ........ 0.0081
8-bit uint #2 ........ 0.0043 ........ 0.0079
8-bit uint #3 ........ 0.0041 ........ 0.0080
16-bit uint #1 ....... 0.0064 ........ 0.0095
16-bit uint #2 ....... 0.0064 ........ 0.0091
16-bit uint #3 ....... 0.0064 ........ 0.0094
32-bit uint #1 ....... 0.0085 ........ 0.0114
32-bit uint #2 ....... 0.0077 ........ 0.0122
32-bit uint #3 ....... 0.0077 ........ 0.0120
64-bit uint #1 ....... 0.0085 ........ 0.0159
64-bit uint #2 ....... 0.0086 ........ 0.0157
64-bit uint #3 ....... 0.0086 ........ 0.0158
8-bit int #1 ......... 0.0042 ........ 0.0080
8-bit int #2 ......... 0.0042 ........ 0.0080
8-bit int #3 ......... 0.0042 ........ 0.0081
16-bit int #1 ........ 0.0065 ........ 0.0095
16-bit int #2 ........ 0.0065 ........ 0.0090
16-bit int #3 ........ 0.0056 ........ 0.0085
32-bit int #1 ........ 0.0067 ........ 0.0107
32-bit int #2 ........ 0.0066 ........ 0.0106
32-bit int #3 ........ 0.0063 ........ 0.0104
64-bit int #1 ........ 0.0072 ........ 0.0162
64-bit int #2 ........ 0.0073 ........ 0.0174
64-bit int #3 ........ 0.0072 ........ 0.0164
64-bit int #4 ........ 0.0077 ........ 0.0161
64-bit float #1 ...... 0.0053 ........ 0.0135
64-bit float #2 ...... 0.0053 ........ 0.0135
64-bit float #3 ...... 0.0052 ........ 0.0135
fix string #1 ....... -0.0002 ........ 0.0044
fix string #2 ........ 0.0035 ........ 0.0067
fix string #3 ........ 0.0035 ........ 0.0077
fix string #4 ........ 0.0033 ........ 0.0078
8-bit string #1 ...... 0.0059 ........ 0.0110
8-bit string #2 ...... 0.0063 ........ 0.0121
8-bit string #3 ...... 0.0064 ........ 0.0124
16-bit string #1 ..... 0.0099 ........ 0.0146
16-bit string #2 ..... 0.1522 ........ 0.1474
32-bit string ........ 0.1511 ........ 0.1483
wide char string #1 .. 0.0039 ........ 0.0084
wide char string #2 .. 0.0073 ........ 0.0123
8-bit binary #1 ...... 0.0040 ........ 0.0112
8-bit binary #2 ...... 0.0075 ........ 0.0123
8-bit binary #3 ...... 0.0077 ........ 0.0129
16-bit binary ........ 0.0096 ........ 0.0145
32-bit binary ........ 0.1535 ........ 0.1479
fix array #1 ......... 0.0008 ........ 0.0061
fix array #2 ......... 0.0121 ........ 0.0165
fix array #3 ......... 0.0193 ........ 0.0222
16-bit array #1 ...... 0.0607 ........ 0.0479
16-bit array #2 ........... S ............. S
32-bit array .............. S ............. S
complex array ........ 0.0749 ........ 0.0824
fix map #1 ........... 0.0329 ........ 0.0431
fix map #2 ........... 0.0161 ........ 0.0189
fix map #3 ........... 0.0205 ........ 0.0262
fix map #4 ........... 0.0252 ........ 0.0205
16-bit map #1 ........ 0.1016 ........ 0.0927
16-bit map #2 ............. S ............. S
32-bit map ................ S ............. S
complex map .......... 0.1096 ........ 0.1030
fixext 1 ............. 0.0157 ........ 0.0161
fixext 2 ............. 0.0175 ........ 0.0183
fixext 4 ............. 0.0156 ........ 0.0185
fixext 8 ............. 0.0163 ........ 0.0184
fixext 16 ............ 0.0164 ........ 0.0182
8-bit ext ............ 0.0158 ........ 0.0207
16-bit ext ........... 0.0203 ........ 0.0219
32-bit ext ........... 0.1614 ........ 0.1539
32-bit timestamp #1 .. 0.0195 ........ 0.0249
32-bit timestamp #2 .. 0.0188 ........ 0.0260
64-bit timestamp #1 .. 0.0207 ........ 0.0281
64-bit timestamp #2 .. 0.0212 ........ 0.0291
64-bit timestamp #3 .. 0.0207 ........ 0.0295
96-bit timestamp #1 .. 0.0222 ........ 0.0358
96-bit timestamp #2 .. 0.0228 ........ 0.0353
96-bit timestamp #3 .. 0.0210 ........ 0.0319
=============================================
Total 1.6432 1.9674
Skipped 4 4
Failed 0 0
Ignored 0 0
You may change default benchmark settings by defining the following environment variables:
Name | Default |
---|---|
MP_BENCH_TARGETS | pure_p,pure_u , see a list of available targets |
MP_BENCH_ITERATIONS | 100_000 |
MP_BENCH_DURATION | not set |
MP_BENCH_ROUNDS | 3 |
MP_BENCH_TESTS | -@slow , see a list of available tests |
For example:
export MP_BENCH_TARGETS=pure_p
export MP_BENCH_ITERATIONS=1000000
export MP_BENCH_ROUNDS=5
# a comma separated list of test names
export MP_BENCH_TESTS='complex array, complex map'
# or a group name
# export MP_BENCH_TESTS='-@slow' // @pecl_comp
# or a regexp
# export MP_BENCH_TESTS='/complex (array|map)/'
Another example, benchmarking both the library and the PECL extension:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0031 ........ 0.0141 ...... 0.0055 ........ 0.0064
false ................ 0.0039 ........ 0.0154 ...... 0.0056 ........ 0.0053
true ................. 0.0038 ........ 0.0139 ...... 0.0056 ........ 0.0044
7-bit uint #1 ........ 0.0061 ........ 0.0110 ...... 0.0059 ........ 0.0046
7-bit uint #2 ........ 0.0065 ........ 0.0119 ...... 0.0042 ........ 0.0029
7-bit uint #3 ........ 0.0054 ........ 0.0117 ...... 0.0045 ........ 0.0025
5-bit sint #1 ........ 0.0047 ........ 0.0103 ...... 0.0038 ........ 0.0022
5-bit sint #2 ........ 0.0048 ........ 0.0117 ...... 0.0038 ........ 0.0022
5-bit sint #3 ........ 0.0046 ........ 0.0102 ...... 0.0038 ........ 0.0023
8-bit uint #1 ........ 0.0063 ........ 0.0174 ...... 0.0039 ........ 0.0031
8-bit uint #2 ........ 0.0063 ........ 0.0167 ...... 0.0040 ........ 0.0029
8-bit uint #3 ........ 0.0063 ........ 0.0168 ...... 0.0039 ........ 0.0030
16-bit uint #1 ....... 0.0092 ........ 0.0222 ...... 0.0049 ........ 0.0030
16-bit uint #2 ....... 0.0096 ........ 0.0227 ...... 0.0042 ........ 0.0046
16-bit uint #3 ....... 0.0123 ........ 0.0274 ...... 0.0059 ........ 0.0051
32-bit uint #1 ....... 0.0136 ........ 0.0331 ...... 0.0060 ........ 0.0048
32-bit uint #2 ....... 0.0130 ........ 0.0336 ...... 0.0070 ........ 0.0048
32-bit uint #3 ....... 0.0127 ........ 0.0329 ...... 0.0051 ........ 0.0048
64-bit uint #1 ....... 0.0126 ........ 0.0268 ...... 0.0055 ........ 0.0049
64-bit uint #2 ....... 0.0135 ........ 0.0281 ...... 0.0052 ........ 0.0046
64-bit uint #3 ....... 0.0131 ........ 0.0274 ...... 0.0069 ........ 0.0044
8-bit int #1 ......... 0.0077 ........ 0.0236 ...... 0.0058 ........ 0.0044
8-bit int #2 ......... 0.0087 ........ 0.0244 ...... 0.0058 ........ 0.0048
8-bit int #3 ......... 0.0084 ........ 0.0241 ...... 0.0055 ........ 0.0049
16-bit int #1 ........ 0.0112 ........ 0.0271 ...... 0.0048 ........ 0.0045
16-bit int #2 ........ 0.0124 ........ 0.0292 ...... 0.0057 ........ 0.0049
16-bit int #3 ........ 0.0118 ........ 0.0270 ...... 0.0058 ........ 0.0050
32-bit int #1 ........ 0.0137 ........ 0.0366 ...... 0.0058 ........ 0.0051
32-bit int #2 ........ 0.0133 ........ 0.0366 ...... 0.0056 ........ 0.0049
32-bit int #3 ........ 0.0129 ........ 0.0350 ...... 0.0052 ........ 0.0048
64-bit int #1 ........ 0.0145 ........ 0.0254 ...... 0.0034 ........ 0.0025
64-bit int #2 ........ 0.0097 ........ 0.0214 ...... 0.0034 ........ 0.0025
64-bit int #3 ........ 0.0096 ........ 0.0287 ...... 0.0059 ........ 0.0050
64-bit int #4 ........ 0.0143 ........ 0.0277 ...... 0.0059 ........ 0.0046
64-bit float #1 ...... 0.0134 ........ 0.0281 ...... 0.0057 ........ 0.0052
64-bit float #2 ...... 0.0141 ........ 0.0281 ...... 0.0057 ........ 0.0050
64-bit float #3 ...... 0.0144 ........ 0.0282 ...... 0.0057 ........ 0.0050
fix string #1 ........ 0.0036 ........ 0.0143 ...... 0.0066 ........ 0.0053
fix string #2 ........ 0.0107 ........ 0.0222 ...... 0.0065 ........ 0.0068
fix string #3 ........ 0.0116 ........ 0.0245 ...... 0.0063 ........ 0.0069
fix string #4 ........ 0.0105 ........ 0.0253 ...... 0.0083 ........ 0.0077
8-bit string #1 ...... 0.0126 ........ 0.0318 ...... 0.0075 ........ 0.0088
8-bit string #2 ...... 0.0121 ........ 0.0295 ...... 0.0076 ........ 0.0086
8-bit string #3 ...... 0.0125 ........ 0.0293 ...... 0.0130 ........ 0.0093
16-bit string #1 ..... 0.0159 ........ 0.0368 ...... 0.0117 ........ 0.0086
16-bit string #2 ..... 0.1547 ........ 0.1686 ...... 0.1516 ........ 0.1373
32-bit string ........ 0.1558 ........ 0.1729 ...... 0.1511 ........ 0.1396
wide char string #1 .. 0.0098 ........ 0.0237 ...... 0.0066 ........ 0.0065
wide char string #2 .. 0.0128 ........ 0.0291 ...... 0.0061 ........ 0.0082
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0040 ........ 0.0129 ...... 0.0120 ........ 0.0058
fix array #2 ......... 0.0279 ........ 0.0390 ...... 0.0143 ........ 0.0165
fix array #3 ......... 0.0415 ........ 0.0463 ...... 0.0162 ........ 0.0187
16-bit array #1 ...... 0.1349 ........ 0.1628 ...... 0.0334 ........ 0.0341
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0345 ........ 0.0391 ...... 0.0143 ........ 0.0168
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0459 ........ 0.0473 ...... 0.0151 ........ 0.0163
16-bit map #1 ........ 0.2518 ........ 0.2962 ...... 0.0400 ........ 0.0490
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.2380 ........ 0.2682 ...... 0.0545 ........ 0.0579
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 1.5625 2.3866 0.7735 0.7243
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
With JIT:
MP_BENCH_TARGETS=pure_p,pure_u,pecl_p,pecl_u \
php -n -dextension=msgpack.so -dzend_extension=opcache.so \
-dpcre.jit=1 -dopcache.jit_buffer_size=64M -dopcache.jit=tracing -dopcache.enable=1 -dopcache.enable_cli=1 \
tests/bench.php
Example output
Filter: MessagePack\Tests\Perf\Filter\ListFilter
Rounds: 3
Iterations: 100000
===========================================================================
Test/Target Packer BufferUnpacker msgpack_pack msgpack_unpack
---------------------------------------------------------------------------
nil .................. 0.0001 ........ 0.0052 ...... 0.0053 ........ 0.0042
false ................ 0.0007 ........ 0.0060 ...... 0.0057 ........ 0.0043
true ................. 0.0008 ........ 0.0060 ...... 0.0056 ........ 0.0041
7-bit uint #1 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0041
7-bit uint #2 ........ 0.0021 ........ 0.0043 ...... 0.0062 ........ 0.0041
7-bit uint #3 ........ 0.0022 ........ 0.0044 ...... 0.0061 ........ 0.0040
5-bit sint #1 ........ 0.0030 ........ 0.0048 ...... 0.0062 ........ 0.0040
5-bit sint #2 ........ 0.0032 ........ 0.0046 ...... 0.0062 ........ 0.0040
5-bit sint #3 ........ 0.0031 ........ 0.0046 ...... 0.0062 ........ 0.0040
8-bit uint #1 ........ 0.0054 ........ 0.0079 ...... 0.0062 ........ 0.0050
8-bit uint #2 ........ 0.0051 ........ 0.0079 ...... 0.0064 ........ 0.0044
8-bit uint #3 ........ 0.0051 ........ 0.0082 ...... 0.0062 ........ 0.0044
16-bit uint #1 ....... 0.0077 ........ 0.0094 ...... 0.0065 ........ 0.0045
16-bit uint #2 ....... 0.0077 ........ 0.0094 ...... 0.0063 ........ 0.0045
16-bit uint #3 ....... 0.0077 ........ 0.0095 ...... 0.0064 ........ 0.0047
32-bit uint #1 ....... 0.0088 ........ 0.0119 ...... 0.0063 ........ 0.0043
32-bit uint #2 ....... 0.0089 ........ 0.0117 ...... 0.0062 ........ 0.0039
32-bit uint #3 ....... 0.0089 ........ 0.0118 ...... 0.0063 ........ 0.0044
64-bit uint #1 ....... 0.0097 ........ 0.0155 ...... 0.0063 ........ 0.0045
64-bit uint #2 ....... 0.0095 ........ 0.0153 ...... 0.0061 ........ 0.0045
64-bit uint #3 ....... 0.0096 ........ 0.0156 ...... 0.0063 ........ 0.0047
8-bit int #1 ......... 0.0053 ........ 0.0083 ...... 0.0062 ........ 0.0044
8-bit int #2 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0044
8-bit int #3 ......... 0.0052 ........ 0.0080 ...... 0.0062 ........ 0.0043
16-bit int #1 ........ 0.0089 ........ 0.0097 ...... 0.0069 ........ 0.0046
16-bit int #2 ........ 0.0075 ........ 0.0093 ...... 0.0063 ........ 0.0043
16-bit int #3 ........ 0.0075 ........ 0.0094 ...... 0.0062 ........ 0.0046
32-bit int #1 ........ 0.0086 ........ 0.0122 ...... 0.0063 ........ 0.0044
32-bit int #2 ........ 0.0087 ........ 0.0120 ...... 0.0066 ........ 0.0046
32-bit int #3 ........ 0.0086 ........ 0.0121 ...... 0.0060 ........ 0.0044
64-bit int #1 ........ 0.0096 ........ 0.0149 ...... 0.0060 ........ 0.0045
64-bit int #2 ........ 0.0096 ........ 0.0157 ...... 0.0062 ........ 0.0044
64-bit int #3 ........ 0.0096 ........ 0.0160 ...... 0.0063 ........ 0.0046
64-bit int #4 ........ 0.0097 ........ 0.0157 ...... 0.0061 ........ 0.0044
64-bit float #1 ...... 0.0079 ........ 0.0153 ...... 0.0056 ........ 0.0044
64-bit float #2 ...... 0.0079 ........ 0.0152 ...... 0.0057 ........ 0.0045
64-bit float #3 ...... 0.0079 ........ 0.0155 ...... 0.0057 ........ 0.0044
fix string #1 ........ 0.0010 ........ 0.0045 ...... 0.0071 ........ 0.0044
fix string #2 ........ 0.0048 ........ 0.0075 ...... 0.0070 ........ 0.0060
fix string #3 ........ 0.0048 ........ 0.0086 ...... 0.0068 ........ 0.0060
fix string #4 ........ 0.0050 ........ 0.0088 ...... 0.0070 ........ 0.0059
8-bit string #1 ...... 0.0081 ........ 0.0129 ...... 0.0069 ........ 0.0062
8-bit string #2 ...... 0.0086 ........ 0.0128 ...... 0.0069 ........ 0.0065
8-bit string #3 ...... 0.0086 ........ 0.0126 ...... 0.0115 ........ 0.0065
16-bit string #1 ..... 0.0105 ........ 0.0137 ...... 0.0128 ........ 0.0068
16-bit string #2 ..... 0.1510 ........ 0.1486 ...... 0.1526 ........ 0.1391
32-bit string ........ 0.1517 ........ 0.1475 ...... 0.1504 ........ 0.1370
wide char string #1 .. 0.0044 ........ 0.0085 ...... 0.0067 ........ 0.0057
wide char string #2 .. 0.0081 ........ 0.0125 ...... 0.0069 ........ 0.0063
8-bit binary #1 ........... I ............. I ........... F ............. I
8-bit binary #2 ........... I ............. I ........... F ............. I
8-bit binary #3 ........... I ............. I ........... F ............. I
16-bit binary ............. I ............. I ........... F ............. I
32-bit binary ............. I ............. I ........... F ............. I
fix array #1 ......... 0.0014 ........ 0.0059 ...... 0.0132 ........ 0.0055
fix array #2 ......... 0.0146 ........ 0.0156 ...... 0.0155 ........ 0.0148
fix array #3 ......... 0.0211 ........ 0.0229 ...... 0.0179 ........ 0.0180
16-bit array #1 ...... 0.0673 ........ 0.0498 ...... 0.0343 ........ 0.0388
16-bit array #2 ........... S ............. S ........... S ............. S
32-bit array .............. S ............. S ........... S ............. S
complex array ............. I ............. I ........... F ............. F
fix map #1 ................ I ............. I ........... F ............. I
fix map #2 ........... 0.0148 ........ 0.0180 ...... 0.0156 ........ 0.0179
fix map #3 ................ I ............. I ........... F ............. I
fix map #4 ........... 0.0252 ........ 0.0201 ...... 0.0214 ........ 0.0167
16-bit map #1 ........ 0.1027 ........ 0.0836 ...... 0.0388 ........ 0.0510
16-bit map #2 ............. S ............. S ........... S ............. S
32-bit map ................ S ............. S ........... S ............. S
complex map .......... 0.1104 ........ 0.1010 ...... 0.0556 ........ 0.0602
fixext 1 .................. I ............. I ........... F ............. F
fixext 2 .................. I ............. I ........... F ............. F
fixext 4 .................. I ............. I ........... F ............. F
fixext 8 .................. I ............. I ........... F ............. F
fixext 16 ................. I ............. I ........... F ............. F
8-bit ext ................. I ............. I ........... F ............. F
16-bit ext ................ I ............. I ........... F ............. F
32-bit ext ................ I ............. I ........... F ............. F
32-bit timestamp #1 ....... I ............. I ........... F ............. F
32-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #1 ....... I ............. I ........... F ............. F
64-bit timestamp #2 ....... I ............. I ........... F ............. F
64-bit timestamp #3 ....... I ............. I ........... F ............. F
96-bit timestamp #1 ....... I ............. I ........... F ............. F
96-bit timestamp #2 ....... I ............. I ........... F ............. F
96-bit timestamp #3 ....... I ............. I ........... F ............. F
===========================================================================
Total 0.9642 1.0909 0.8224 0.7213
Skipped 4 4 4 4
Failed 0 0 24 17
Ignored 24 24 0 7
Note that the msgpack extension (v2.1.2) doesn't support ext, bin and UTF-8 str types.
The library is released under the MIT License. See the bundled LICENSE file for details.
Author: rybakit
Source Code: https://github.com/rybakit/msgpack.php
License: MIT License
1648803600
I founded this project, because I wanted to publish the code I wrote in the last two years, when I tried to write enhanced checking for PostgreSQL upstream. It was not fully successful - integration into upstream requires some larger plpgsql refactoring - probably it will not be done in next years (now is Dec 2013). But written code is fully functional and can be used in production (and it is used in production). So, I created this extension to be available for all plpgsql developers.
If you like it and if you would to join to development of this extension, register yourself to postgresql extension hacking google group.
Features
I invite any ideas, patches, bugreports.
plpgsql_check is next generation of plpgsql_lint. It allows to check source code by explicit call plpgsql_check_function.
PostgreSQL PostgreSQL 10, 11, 12, 13 and 14 are supported.
The SQL statements inside PL/pgSQL functions are checked by validator for semantic errors. These errors can be found by plpgsql_check_function:
Active mode
postgres=# CREATE EXTENSION plpgsql_check;
LOAD
postgres=# CREATE TABLE t1(a int, b int);
CREATE TABLE
postgres=#
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
AS $function$
DECLARE r record;
BEGIN
FOR r IN SELECT * FROM t1
LOOP
RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
END LOOP;
END;
$function$;
CREATE FUNCTION
postgres=# select f1(); -- execution doesn't find a bug due to empty table t1
f1
────
(1 row)
postgres=# \x
Expanded display is on.
postgres=# select * from plpgsql_check_function_tb('f1()');
─[ RECORD 1 ]───────────────────────────
functionid │ f1
lineno │ 6
statement │ RAISE
sqlstate │ 42703
message │ record "r" has no field "c"
detail │ [null]
hint │ [null]
level │ error
position │ 0
query │ [null]
postgres=# \sf+ f1
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
1 AS $function$
2 DECLARE r record;
3 BEGIN
4 FOR r IN SELECT * FROM t1
5 LOOP
6 RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
7 END LOOP;
8 END;
9 $function$
Function plpgsql_check_function() has three possible formats: text, json or xml
select * from plpgsql_check_function('f1()', fatal_errors := false);
plpgsql_check_function
------------------------------------------------------------------------
error:42703:4:SQL statement:column "c" of relation "t1" does not exist
Query: update t1 set c = 30
-- ^
error:42P01:7:RAISE:missing FROM-clause entry for table "r"
Query: SELECT r.c
-- ^
error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)
postgres=# select * from plpgsql_check_function('fx()', format:='xml');
plpgsql_check_function
────────────────────────────────────────────────────────────────
<Function oid="16400"> ↵
<Issue> ↵
<Level>error</level> ↵
<Sqlstate>42P01</Sqlstate> ↵
<Message>relation "foo111" does not exist</Message> ↵
<Stmt lineno="3">RETURN</Stmt> ↵
<Query position="23">SELECT (select a from foo111)</Query>↵
</Issue> ↵
</Function>
(1 row)
You can set level of warnings via function's parameters:
'fx()'::regprocedure
or 16799::regprocedure
. Possible alternative is using a name only, when function's name is unique - like 'fx'
. When the name is not unique or the function doesn't exists it raises a error.relid DEFAULT 0
- oid of relation assigned with trigger function. It is necessary for check of any trigger function.
fatal_errors boolean DEFAULT true
- stop on first error
other_warnings boolean DEFAULT true
- show warnings like different attributes number in assignmenet on left and right side, variable overlaps function's parameter, unused variables, unwanted casting, ..
extra_warnings boolean DEFAULT true
- show warnings like missing RETURN
, shadowed variables, dead code, never read (unused) function's parameter, unmodified variables, modified auto variables, ..
performance_warnings boolean DEFAULT false
- performance related warnings like declared type with type modificator, casting, implicit casts in where clause (can be reason why index is not used), ..
security_warnings boolean DEFAULT false
- security related checks like SQL injection vulnerability detection
anyelementtype regtype DEFAULT 'int'
- a real type used instead anyelement type
anyenumtype regtype DEFAULT '-'
- a real type used instead anyenum type
anyrangetype regtype DEFAULT 'int4range'
- a real type used instead anyrange type
anycompatibletype DEFAULT 'int'
- a real type used instead anycompatible type
anycompatiblerangetype DEFAULT 'int4range'
- a real type used instead anycompatible range type
without_warnings DEFAULT false
- disable all warnings
all_warnings DEFAULT false
- enable all warnings
newtable DEFAULT NULL
, oldtable DEFAULT NULL
- the names of NEW or OLD transitive tables. These parameters are required when transitive tables are used.
When you want to check any trigger, you have to enter a relation that will be used together with trigger function
CREATE TABLE bar(a int, b int);
postgres=# \sf+ foo_trg
CREATE OR REPLACE FUNCTION public.foo_trg()
RETURNS trigger
LANGUAGE plpgsql
1 AS $function$
2 BEGIN
3 NEW.c := NEW.a + NEW.b;
4 RETURN NEW;
5 END;
6 $function$
Missing relation specification
postgres=# select * from plpgsql_check_function('foo_trg()');
ERROR: missing trigger relation
HINT: Trigger relation oid must be valid
Correct trigger checking (with specified relation)
postgres=# select * from plpgsql_check_function('foo_trg()', 'bar');
plpgsql_check_function
--------------------------------------------------------
error:42703:3:assignment:record "new" has no field "c"
(1 row)
For triggers with transitive tables you can set a oldtable
or newtable
parameters:
create or replace function footab_trig_func()
returns trigger as $$
declare x int;
begin
if false then
-- should be ok;
select count(*) from newtab into x;
-- should fail;
select count(*) from newtab where d = 10 into x;
end if;
return null;
end;
$$ language plpgsql;
select * from plpgsql_check_function('footab_trig_func','footab', newtable := 'newtab');
You can use the plpgsql_check_function for mass check functions and mass check triggers. Please, test following queries:
-- check all nontrigger plpgsql functions
SELECT p.oid, p.proname, plpgsql_check_function(p.oid)
FROM pg_catalog.pg_namespace n
JOIN pg_catalog.pg_proc p ON pronamespace = n.oid
JOIN pg_catalog.pg_language l ON p.prolang = l.oid
WHERE l.lanname = 'plpgsql' AND p.prorettype <> 2279;
or
SELECT p.proname, tgrelid::regclass, cf.*
FROM pg_proc p
JOIN pg_trigger t ON t.tgfoid = p.oid
JOIN pg_language l ON p.prolang = l.oid
JOIN pg_namespace n ON p.pronamespace = n.oid,
LATERAL plpgsql_check_function(p.oid, t.tgrelid) cf
WHERE n.nspname = 'public' and l.lanname = 'plpgsql'
or
-- check all plpgsql functions (functions or trigger functions with defined triggers)
SELECT
(pcf).functionid::regprocedure, (pcf).lineno, (pcf).statement,
(pcf).sqlstate, (pcf).message, (pcf).detail, (pcf).hint, (pcf).level,
(pcf)."position", (pcf).query, (pcf).context
FROM
(
SELECT
plpgsql_check_function_tb(pg_proc.oid, COALESCE(pg_trigger.tgrelid, 0)) AS pcf
FROM pg_proc
LEFT JOIN pg_trigger
ON (pg_trigger.tgfoid = pg_proc.oid)
WHERE
prolang = (SELECT lang.oid FROM pg_language lang WHERE lang.lanname = 'plpgsql') AND
pronamespace <> (SELECT nsp.oid FROM pg_namespace nsp WHERE nsp.nspname = 'pg_catalog') AND
-- ignore unused triggers
(pg_proc.prorettype <> (SELECT typ.oid FROM pg_type typ WHERE typ.typname = 'trigger') OR
pg_trigger.tgfoid IS NOT NULL)
OFFSET 0
) ss
ORDER BY (pcf).functionid::regprocedure::text, (pcf).lineno
Passive mode
Functions should be checked on start - plpgsql_check module must be loaded.
plpgsql_check.mode = [ disabled | by_function | fresh_start | every_start ]
plpgsql_check.fatal_errors = [ yes | no ]
plpgsql_check.show_nonperformance_warnings = false
plpgsql_check.show_performance_warnings = false
Default mode is by_function, that means that the enhanced check is done only in active mode - by plpgsql_check_function. fresh_start
means cold start.
You can enable passive mode by
load 'plpgsql'; -- 1.1 and higher doesn't need it
load 'plpgsql_check';
set plpgsql_check.mode = 'every_start';
SELECT fx(10); -- run functions - function is checked before runtime starts it
Limits
plpgsql_check should find almost all errors on really static code. When developer use some PLpgSQL's dynamic features like dynamic SQL or record data type, then false positives are possible. These should be rare - in well written code - and then the affected function should be redesigned or plpgsql_check should be disabled for this function.
CREATE OR REPLACE FUNCTION f1()
RETURNS void AS $$
DECLARE r record;
BEGIN
FOR r IN EXECUTE 'SELECT * FROM t1'
LOOP
RAISE NOTICE '%', r.c;
END LOOP;
END;
$$ LANGUAGE plpgsql SET plpgsql.enable_check TO false;
A usage of plpgsql_check adds a small overhead (in enabled passive mode) and you should use it only in develop or preprod environments.
This module doesn't check queries that are assembled in runtime. It is not possible to identify results of dynamic queries - so plpgsql_check cannot to set correct type to record variables and cannot to check a dependent SQLs and expressions.
When type of record's variable is not know, you can assign it explicitly with pragma type
:
DECLARE r record;
BEGIN
EXECUTE format('SELECT * FROM %I', _tablename) INTO r;
PERFORM plpgsql_check_pragma('type: r (id int, processed bool)');
IF NOT r.processed THEN
...
Attention: The SQL injection check can detect only some SQL injection vulnerabilities. This tool cannot be used for security audit! Some issues should not be detected. This check can raise false alarms too - probably when variable is sanitized by other command or when value is of some compose type.
plpgsql_check should not to detect structure of referenced cursors. A reference on cursor in PLpgSQL is implemented as name of global cursor. In check time, the name is not known (not in all possibilities), and global cursor doesn't exist. It is significant break for any static analyse. PLpgSQL cannot to set correct type for record variables and cannot to check a dependent SQLs and expressions. A solution is same like dynamic SQL. Don't use record variable as target when you use refcursor type or disable plpgsql_check for these functions.
CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
rec_var record;
BEGIN
FETCH refcur_var INTO rec_var; -- this is STOP for plpgsql_check
RAISE NOTICE '%', rec_var; -- record rec_var is not assigned yet error
In this case a record type should not be used (use known rowtype instead):
CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
rec_var some_rowtype;
BEGIN
FETCH refcur_var INTO rec_var;
RAISE NOTICE '%', rec_var;
plpgsql_check cannot verify queries over temporary tables that are created in plpgsql's function runtime. For this use case it is necessary to create a fake temp table or disable plpgsql_check for this function.
In reality temp tables are stored in own (per user) schema with higher priority than persistent tables. So you can do (with following trick safetly):
CREATE OR REPLACE FUNCTION public.disable_dml()
RETURNS trigger
LANGUAGE plpgsql AS $function$
BEGIN
RAISE EXCEPTION SQLSTATE '42P01'
USING message = format('this instance of %I table doesn''t allow any DML operation', TG_TABLE_NAME),
hint = format('you should to run "CREATE TEMP TABLE %1$I(LIKE %1$I INCLUDING ALL);" statement',
TG_TABLE_NAME);
RETURN NULL;
END;
$function$;
CREATE TABLE foo(a int, b int); -- doesn't hold data ever
CREATE TRIGGER foo_disable_dml
BEFORE INSERT OR UPDATE OR DELETE ON foo
EXECUTE PROCEDURE disable_dml();
postgres=# INSERT INTO foo VALUES(10,20);
ERROR: this instance of foo table doesn't allow any DML operation
HINT: you should to run "CREATE TEMP TABLE foo(LIKE foo INCLUDING ALL);" statement
postgres=#
CREATE TABLE
postgres=# INSERT INTO foo VALUES(10,20);
INSERT 0 1
This trick emulates GLOBAL TEMP tables partially and it allows a statical validation. Other possibility is using a [template foreign data wrapper] (https://github.com/okbob/template_fdw)
You can use pragma table
and create ephemeral table:
BEGIN
CREATE TEMP TABLE xxx(a int);
PERFORM plpgsql_check_pragma('table: xxx(a int)');
INSERT INTO xxx VALUES(10);
Dependency list
A function plpgsql_show_dependency_tb can show all functions, operators and relations used inside processed function:
postgres=# select * from plpgsql_show_dependency_tb('testfunc(int,float)');
┌──────────┬───────┬────────┬─────────┬────────────────────────────┐
│ type │ oid │ schema │ name │ params │
╞══════════╪═══════╪════════╪═════════╪════════════════════════════╡
│ FUNCTION │ 36008 │ public │ myfunc1 │ (integer,double precision) │
│ FUNCTION │ 35999 │ public │ myfunc2 │ (integer,double precision) │
│ OPERATOR │ 36007 │ public │ ** │ (integer,integer) │
│ RELATION │ 36005 │ public │ myview │ │
│ RELATION │ 36002 │ public │ mytable │ │
└──────────┴───────┴────────┴─────────┴────────────────────────────┘
(4 rows)
Profiler
The plpgsql_check contains simple profiler of plpgsql functions and procedures. It can work with/without a access to shared memory. It depends on shared_preload_libraries
config. When plpgsql_check was initialized by shared_preload_libraries
, then it can allocate shared memory, and function's profiles are stored there. When plpgsql_check cannot to allocate shared momory, the profile is stored in session memory.
Due dependencies, shared_preload_libraries
should to contains plpgsql
first
postgres=# show shared_preload_libraries ;
┌──────────────────────────┐
│ shared_preload_libraries │
╞══════════════════════════╡
│ plpgsql,plpgsql_check │
└──────────────────────────┘
(1 row)
The profiler is active when GUC plpgsql_check.profiler
is on. The profiler doesn't require shared memory, but if there are not shared memory, then the profile is limmitted just to active session.
When plpgsql_check is initialized by shared_preload_libraries
, another GUC is available to configure the amount of shared memory used by the profiler: plpgsql_check.profiler_max_shared_chunks
. This defines the maximum number of statements chunk that can be stored in shared memory. For each plpgsql function (or procedure), the whole content is split into chunks of 30 statements. If needed, multiple chunks can be used to store the whole content of a single function. A single chunk is 1704 bytes. The default value for this GUC is 15000, which should be enough for big projects containing hundred of thousands of statements in plpgsql, and will consume about 24MB of memory. If your project doesn't require that much number of chunks, you can set this parameter to a smaller number in order to decrease the memory usage. The minimum value is 50 (which should consume about 83kB of memory), and the maximum value is 100000 (which should consume about 163MB of memory). Changing this parameter requires a PostgreSQL restart.
The profiler will also retrieve the query identifier for each instruction that contains an expression or optimizable statement. Note that this requires pg_stat_statements, or another similar third-party extension), to be installed. There are some limitations to the query identifier retrieval:
Attention: A update of shared profiles can decrease performance on servers under higher load.
The profile can be displayed by function plpgsql_profiler_function_tb
:
postgres=# select lineno, avg_time, source from plpgsql_profiler_function_tb('fx(int)');
┌────────┬──────────┬───────────────────────────────────────────────────────────────────┐
│ lineno │ avg_time │ source │
╞════════╪══════════╪═══════════════════════════════════════════════════════════════════╡
│ 1 │ │ │
│ 2 │ │ declare result int = 0; │
│ 3 │ 0.075 │ begin │
│ 4 │ 0.202 │ for i in 1..$1 loop │
│ 5 │ 0.005 │ select result + i into result; select result + i into result; │
│ 6 │ │ end loop; │
│ 7 │ 0 │ return result; │
│ 8 │ │ end; │
└────────┴──────────┴───────────────────────────────────────────────────────────────────┘
(9 rows)
The profile per statements (not per line) can be displayed by function plpgsql_profiler_function_statements_tb:
CREATE OR REPLACE FUNCTION public.fx1(a integer)
RETURNS integer
LANGUAGE plpgsql
1 AS $function$
2 begin
3 if a > 10 then
4 raise notice 'ahoj';
5 return -1;
6 else
7 raise notice 'nazdar';
8 return 1;
9 end if;
10 end;
11 $function$
postgres=# select stmtid, parent_stmtid, parent_note, lineno, exec_stmts, stmtname
from plpgsql_profiler_function_statements_tb('fx1');
┌────────┬───────────────┬─────────────┬────────┬────────────┬─────────────────┐
│ stmtid │ parent_stmtid │ parent_note │ lineno │ exec_stmts │ stmtname │
╞════════╪═══════════════╪═════════════╪════════╪════════════╪═════════════════╡
│ 0 │ ∅ │ ∅ │ 2 │ 0 │ statement block │
│ 1 │ 0 │ body │ 3 │ 0 │ IF │
│ 2 │ 1 │ then body │ 4 │ 0 │ RAISE │
│ 3 │ 1 │ then body │ 5 │ 0 │ RETURN │
│ 4 │ 1 │ else body │ 7 │ 0 │ RAISE │
│ 5 │ 1 │ else body │ 8 │ 0 │ RETURN │
└────────┴───────────────┴─────────────┴────────┴────────────┴─────────────────┘
(6 rows)
All stored profiles can be displayed by calling function plpgsql_profiler_functions_all
:
postgres=# select * from plpgsql_profiler_functions_all();
┌───────────────────────┬────────────┬────────────┬──────────┬─────────────┬──────────┬──────────┐
│ funcoid │ exec_count │ total_time │ avg_time │ stddev_time │ min_time │ max_time │
╞═══════════════════════╪════════════╪════════════╪══════════╪═════════════╪══════════╪══════════╡
│ fxx(double precision) │ 1 │ 0.01 │ 0.01 │ 0.00 │ 0.01 │ 0.01 │
└───────────────────────┴────────────┴────────────┴──────────┴─────────────┴──────────┴──────────┘
(1 row)
There are two functions for cleaning stored profiles: plpgsql_profiler_reset_all()
and plpgsql_profiler_reset(regprocedure)
.
plpgsql_check provides two functions:
plpgsql_coverage_statements(name)
plpgsql_coverage_branches(name)
There is another very good PLpgSQL profiler - https://bitbucket.org/openscg/plprofiler
My extension is designed to be simple for use and practical. Nothing more or less.
plprofiler is more complex. It build call graphs and from this graph it can creates flame graph of execution times.
Both extensions can be used together with buildin PostgreSQL's feature - tracking functions.
set track_functions to 'pl';
...
select * from pg_stat_user_functions;
Tracer
plpgsql_check provides a tracing possibility - in this mode you can see notices on start or end functions (terse and default verbosity) and start or end statements (verbose verbosity). For default and verbose verbosity the content of function arguments is displayed. The content of related variables are displayed when verbosity is verbose.
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #0 ->> start of inline_code_block (Oid=0)
NOTICE: #2 ->> start of function fx(integer,integer,date,text) (Oid=16405)
NOTICE: #2 call by inline_code_block line 1 at PERFORM
NOTICE: #2 "a" => '10', "b" => null, "c" => '2020-08-03', "d" => 'stěhule'
NOTICE: #4 ->> start of function fx(integer) (Oid=16404)
NOTICE: #4 call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: #4 "a" => '10'
NOTICE: #4 <<- end of function fx (elapsed time=0.098 ms)
NOTICE: #2 <<- end of function fx (elapsed time=0.399 ms)
NOTICE: #0 <<- end of block (elapsed time=0.754 ms)
The number after #
is a execution frame counter (this number is related to deep of error context stack). It allows to pair start end and of function.
Tracing is enabled by setting plpgsql_check.tracer
to on
. Attention - enabling this behaviour has significant negative impact on performance (unlike the profiler). You can set a level for output used by tracer plpgsql_check.tracer_errlevel
(default is notice
). The output content is limited by length specified by plpgsql_check.tracer_variable_max_length
configuration variable.
In terse verbose mode the output is reduced:
postgres=# set plpgsql_check.tracer_verbosity TO terse;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #0 start of inline code block (oid=0)
NOTICE: #2 start of fx (oid=16405)
NOTICE: #4 start of fx (oid=16404)
NOTICE: #4 end of fx
NOTICE: #2 end of fx
NOTICE: #0 end of inline code block
In verbose mode the output is extended about statement details:
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #0 ->> start of block inline_code_block (oid=0)
NOTICE: #0.1 1 --> start of PERFORM
NOTICE: #2 ->> start of function fx(integer,integer,date,text) (oid=16405)
NOTICE: #2 call by inline_code_block line 1 at PERFORM
NOTICE: #2 "a" => '10', "b" => null, "c" => '2020-08-04', "d" => 'stěhule'
NOTICE: #2.1 1 --> start of PERFORM
NOTICE: #2.1 "a" => '10'
NOTICE: #4 ->> start of function fx(integer) (oid=16404)
NOTICE: #4 call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: #4 "a" => '10'
NOTICE: #4.1 6 --> start of assignment
NOTICE: #4.1 "a" => '10', "b" => '20'
NOTICE: #4.1 <-- end of assignment (elapsed time=0.076 ms)
NOTICE: #4.1 "res" => '130'
NOTICE: #4.2 7 --> start of RETURN
NOTICE: #4.2 "res" => '130'
NOTICE: #4.2 <-- end of RETURN (elapsed time=0.054 ms)
NOTICE: #4 <<- end of function fx (elapsed time=0.373 ms)
NOTICE: #2.1 <-- end of PERFORM (elapsed time=0.589 ms)
NOTICE: #2 <<- end of function fx (elapsed time=0.727 ms)
NOTICE: #0.1 <-- end of PERFORM (elapsed time=1.147 ms)
NOTICE: #0 <<- end of block (elapsed time=1.286 ms)
Special feature of tracer is tracing of ASSERT
statement when plpgsql_check.trace_assert
is on
. When plpgsql_check.trace_assert_verbosity
is DEFAULT
, then all function's or procedure's variables are displayed when assert expression is false. When this configuration is VERBOSE
then all variables from all plpgsql frames are displayed. This behaviour is independent on plpgsql.check_asserts
value. It can be used, although the assertions are disabled in plpgsql runtime.
postgres=# set plpgsql_check.tracer to off;
postgres=# set plpgsql_check.trace_assert_verbosity TO verbose;
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE: "a" => '10', "res" => null, "b" => '20'
NOTICE: #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE: #0 PL/pgSQL function inline_code_block line 1 at PERFORM
ERROR: assertion failed
CONTEXT: PL/pgSQL function fx(integer) line 12 at ASSERT
SQL statement "SELECT fx(a)"
PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
SQL statement "SELECT fx(10,null, 'now', e'stěhule')"
PL/pgSQL function inline_code_block line 1 at PERFORM
postgres=# set plpgsql.check_asserts to off;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE: "a" => '10', "res" => null, "b" => '20'
NOTICE: #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE: #0 PL/pgSQL function inline_code_block line 1 at PERFORM
DO
Tracer prints content of variables or function arguments. For security definer function, this content can hold security sensitive data. This is reason why tracer is disabled by default and should be enabled only with super user rights plpgsql_check.enable_tracer
.
Pragma
You can configure plpgsql_check behave inside checked function with "pragma" function. This is a analogy of PL/SQL or ADA language of PRAGMA feature. PLpgSQL doesn't support PRAGMA, but plpgsql_check detects function named plpgsql_check_pragma
and get options from parameters of this function. These plpgsql_check options are valid to end of group of statements.
CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
BEGIN
...
-- for following statements disable check
PERFORM plpgsql_check_pragma('disable:check');
...
-- enable check again
PERFORM plpgsql_check_pragma('enable:check');
...
END;
$$ LANGUAGE plpgsql;
The function plpgsql_check_pragma
is immutable function that returns one. It is defined by plpgsql_check
extension. You can declare alternative plpgsql_check_pragma
function like:
CREATE OR REPLACE FUNCTION plpgsql_check_pragma(VARIADIC args[])
RETURNS int AS $$
SELECT 1
$$ LANGUAGE sql IMMUTABLE;
Using pragma function in declaration part of top block sets options on function level too.
CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE
aux int := plpgsql_check_pragma('disable:extra_warnings');
...
Shorter syntax for pragma is supported too:
CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE r record;
BEGIN
PERFORM 'PRAGMA:TYPE:r (a int, b int)';
PERFORM 'PRAGMA:TABLE: x (like pg_class)';
...
echo:str
- print string (for testing)
status:check
,status:tracer
, status:other_warnings
, status:performance_warnings
, status:extra_warnings
,status:security_warnings
enable:check
,enable:tracer
, enable:other_warnings
, enable:performance_warnings
, enable:extra_warnings
,enable:security_warnings
disable:check
,disable:tracer
, disable:other_warnings
, disable:performance_warnings
, disable:extra_warnings
,disable:security_warnings
type:varname typename
or type:varname (fieldname type, ...)
- set type to variable of record type
table: name (column_name type, ...)
or table: name (like tablename)
- create ephereal table
Pragmas enable:tracer
and disable:tracer
are active for Postgres 12 and higher
Compilation
You need a development environment for PostgreSQL extensions:
make clean
make install
result:
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 clean
rm -f plpgsql_check.so libplpgsql_check.a libplpgsql_check.pc
rm -f plpgsql_check.o
rm -rf results/ regression.diffs regression.out tmp_check/ log/
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 all
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -I. -I./ -I/usr/local/pgsql/include/server -I/usr/local/pgsql/include/internal -D_GNU_SOURCE -c -o plpgsql_check.o plpgsql_check.c
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -shared -o plpgsql_check.so plpgsql_check.o -L/usr/local/pgsql/lib -Wl,--as-needed -Wl,-rpath,'/usr/local/pgsql/lib',--enable-new-dtags
[pavel@localhost plpgsql_check]$ su root
Password: *******
[root@localhost plpgsql_check]# make USE_PGXS=1 install
/usr/bin/mkdir -p '/usr/local/pgsql/lib'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/install -c -m 755 plpgsql_check.so '/usr/local/pgsql/lib/plpgsql_check.so'
/usr/bin/install -c -m 644 plpgsql_check.control '/usr/local/pgsql/share/extension/'
/usr/bin/install -c -m 644 plpgsql_check--0.9.sql '/usr/local/pgsql/share/extension/'
[root@localhost plpgsql_check]# exit
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 installcheck
/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/test/regress/pg_regress --inputdir=./ --psqldir='/usr/local/pgsql/bin' --dbname=pl_regression --load-language=plpgsql --dbname=contrib_regression plpgsql_check_passive plpgsql_check_active plpgsql_check_active-9.5
(using postmaster on Unix socket, default port)
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing plpgsql ==============
CREATE LANGUAGE
============== running regression test queries ==============
test plpgsql_check_passive ... ok
test plpgsql_check_active ... ok
test plpgsql_check_active-9.5 ... ok
=====================
All 3 tests passed.
=====================
Sometimes successful compilation can require libicu-dev package (PostgreSQL 10 and higher - when pg was compiled with ICU support)
sudo apt install libicu-dev
You can check precompiled dll libraries http://okbob.blogspot.cz/2015/02/plpgsqlcheck-is-available-for-microsoft.html
or compile by self:
plpgsql_check.dll
to PostgreSQL\14\lib
plpgsql_check.control
and plpgsql_check--2.1.sql
to PostgreSQL\14\share\extension
Compilation against PostgreSQL 10 requires libICU!
Licence
Copyright (c) Pavel Stehule (pavel.stehule@gmail.com)
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Note
If you like it, send a postcard to address
Pavel Stehule
Skalice 12
256 01 Benesov u Prahy
Czech Republic
I invite any questions, comments, bug reports, patches on mail address pavel.stehule@gmail.com
Author: okbob
Source Code: https://github.com/okbob/plpgsql_check
License: View license
1648900800
I founded this project, because I wanted to publish the code I wrote in the last two years, when I tried to write enhanced checking for PostgreSQL upstream. It was not fully successful - integration into upstream requires some larger plpgsql refactoring - probably it will not be done in next years (now is Dec 2013). But written code is fully functional and can be used in production (and it is used in production). So, I created this extension to be available for all plpgsql developers.
If you like it and if you would to join to development of this extension, register yourself to postgresql extension hacking google group.
Features
I invite any ideas, patches, bugreports.
plpgsql_check is next generation of plpgsql_lint. It allows to check source code by explicit call plpgsql_check_function.
PostgreSQL PostgreSQL 10, 11, 12, 13 and 14 are supported.
The SQL statements inside PL/pgSQL functions are checked by validator for semantic errors. These errors can be found by plpgsql_check_function:
Active mode
postgres=# CREATE EXTENSION plpgsql_check;
LOAD
postgres=# CREATE TABLE t1(a int, b int);
CREATE TABLE
postgres=#
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
AS $function$
DECLARE r record;
BEGIN
FOR r IN SELECT * FROM t1
LOOP
RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
END LOOP;
END;
$function$;
CREATE FUNCTION
postgres=# select f1(); -- execution doesn't find a bug due to empty table t1
f1
────
(1 row)
postgres=# \x
Expanded display is on.
postgres=# select * from plpgsql_check_function_tb('f1()');
─[ RECORD 1 ]───────────────────────────
functionid │ f1
lineno │ 6
statement │ RAISE
sqlstate │ 42703
message │ record "r" has no field "c"
detail │ [null]
hint │ [null]
level │ error
position │ 0
query │ [null]
postgres=# \sf+ f1
CREATE OR REPLACE FUNCTION public.f1()
RETURNS void
LANGUAGE plpgsql
1 AS $function$
2 DECLARE r record;
3 BEGIN
4 FOR r IN SELECT * FROM t1
5 LOOP
6 RAISE NOTICE '%', r.c; -- there is bug - table t1 missing "c" column
7 END LOOP;
8 END;
9 $function$
Function plpgsql_check_function() has three possible formats: text, json or xml
select * from plpgsql_check_function('f1()', fatal_errors := false);
plpgsql_check_function
------------------------------------------------------------------------
error:42703:4:SQL statement:column "c" of relation "t1" does not exist
Query: update t1 set c = 30
-- ^
error:42P01:7:RAISE:missing FROM-clause entry for table "r"
Query: SELECT r.c
-- ^
error:42601:7:RAISE:too few parameters specified for RAISE
(7 rows)
postgres=# select * from plpgsql_check_function('fx()', format:='xml');
plpgsql_check_function
────────────────────────────────────────────────────────────────
<Function oid="16400"> ↵
<Issue> ↵
<Level>error</level> ↵
<Sqlstate>42P01</Sqlstate> ↵
<Message>relation "foo111" does not exist</Message> ↵
<Stmt lineno="3">RETURN</Stmt> ↵
<Query position="23">SELECT (select a from foo111)</Query>↵
</Issue> ↵
</Function>
(1 row)
You can set level of warnings via function's parameters:
'fx()'::regprocedure
or 16799::regprocedure
. Possible alternative is using a name only, when function's name is unique - like 'fx'
. When the name is not unique or the function doesn't exists it raises a error.relid DEFAULT 0
- oid of relation assigned with trigger function. It is necessary for check of any trigger function.
fatal_errors boolean DEFAULT true
- stop on first error
other_warnings boolean DEFAULT true
- show warnings like different attributes number in assignmenet on left and right side, variable overlaps function's parameter, unused variables, unwanted casting, ..
extra_warnings boolean DEFAULT true
- show warnings like missing RETURN
, shadowed variables, dead code, never read (unused) function's parameter, unmodified variables, modified auto variables, ..
performance_warnings boolean DEFAULT false
- performance related warnings like declared type with type modificator, casting, implicit casts in where clause (can be reason why index is not used), ..
security_warnings boolean DEFAULT false
- security related checks like SQL injection vulnerability detection
anyelementtype regtype DEFAULT 'int'
- a real type used instead anyelement type
anyenumtype regtype DEFAULT '-'
- a real type used instead anyenum type
anyrangetype regtype DEFAULT 'int4range'
- a real type used instead anyrange type
anycompatibletype DEFAULT 'int'
- a real type used instead anycompatible type
anycompatiblerangetype DEFAULT 'int4range'
- a real type used instead anycompatible range type
without_warnings DEFAULT false
- disable all warnings
all_warnings DEFAULT false
- enable all warnings
newtable DEFAULT NULL
, oldtable DEFAULT NULL
- the names of NEW or OLD transitive tables. These parameters are required when transitive tables are used.
When you want to check any trigger, you have to enter a relation that will be used together with trigger function
CREATE TABLE bar(a int, b int);
postgres=# \sf+ foo_trg
CREATE OR REPLACE FUNCTION public.foo_trg()
RETURNS trigger
LANGUAGE plpgsql
1 AS $function$
2 BEGIN
3 NEW.c := NEW.a + NEW.b;
4 RETURN NEW;
5 END;
6 $function$
Missing relation specification
postgres=# select * from plpgsql_check_function('foo_trg()');
ERROR: missing trigger relation
HINT: Trigger relation oid must be valid
Correct trigger checking (with specified relation)
postgres=# select * from plpgsql_check_function('foo_trg()', 'bar');
plpgsql_check_function
--------------------------------------------------------
error:42703:3:assignment:record "new" has no field "c"
(1 row)
For triggers with transitive tables you can set a oldtable
or newtable
parameters:
create or replace function footab_trig_func()
returns trigger as $$
declare x int;
begin
if false then
-- should be ok;
select count(*) from newtab into x;
-- should fail;
select count(*) from newtab where d = 10 into x;
end if;
return null;
end;
$$ language plpgsql;
select * from plpgsql_check_function('footab_trig_func','footab', newtable := 'newtab');
You can use the plpgsql_check_function for mass check functions and mass check triggers. Please, test following queries:
-- check all nontrigger plpgsql functions
SELECT p.oid, p.proname, plpgsql_check_function(p.oid)
FROM pg_catalog.pg_namespace n
JOIN pg_catalog.pg_proc p ON pronamespace = n.oid
JOIN pg_catalog.pg_language l ON p.prolang = l.oid
WHERE l.lanname = 'plpgsql' AND p.prorettype <> 2279;
or
SELECT p.proname, tgrelid::regclass, cf.*
FROM pg_proc p
JOIN pg_trigger t ON t.tgfoid = p.oid
JOIN pg_language l ON p.prolang = l.oid
JOIN pg_namespace n ON p.pronamespace = n.oid,
LATERAL plpgsql_check_function(p.oid, t.tgrelid) cf
WHERE n.nspname = 'public' and l.lanname = 'plpgsql'
or
-- check all plpgsql functions (functions or trigger functions with defined triggers)
SELECT
(pcf).functionid::regprocedure, (pcf).lineno, (pcf).statement,
(pcf).sqlstate, (pcf).message, (pcf).detail, (pcf).hint, (pcf).level,
(pcf)."position", (pcf).query, (pcf).context
FROM
(
SELECT
plpgsql_check_function_tb(pg_proc.oid, COALESCE(pg_trigger.tgrelid, 0)) AS pcf
FROM pg_proc
LEFT JOIN pg_trigger
ON (pg_trigger.tgfoid = pg_proc.oid)
WHERE
prolang = (SELECT lang.oid FROM pg_language lang WHERE lang.lanname = 'plpgsql') AND
pronamespace <> (SELECT nsp.oid FROM pg_namespace nsp WHERE nsp.nspname = 'pg_catalog') AND
-- ignore unused triggers
(pg_proc.prorettype <> (SELECT typ.oid FROM pg_type typ WHERE typ.typname = 'trigger') OR
pg_trigger.tgfoid IS NOT NULL)
OFFSET 0
) ss
ORDER BY (pcf).functionid::regprocedure::text, (pcf).lineno
Passive mode
Functions should be checked on start - plpgsql_check module must be loaded.
plpgsql_check.mode = [ disabled | by_function | fresh_start | every_start ]
plpgsql_check.fatal_errors = [ yes | no ]
plpgsql_check.show_nonperformance_warnings = false
plpgsql_check.show_performance_warnings = false
Default mode is by_function, that means that the enhanced check is done only in active mode - by plpgsql_check_function. fresh_start
means cold start.
You can enable passive mode by
load 'plpgsql'; -- 1.1 and higher doesn't need it
load 'plpgsql_check';
set plpgsql_check.mode = 'every_start';
SELECT fx(10); -- run functions - function is checked before runtime starts it
Limits
plpgsql_check should find almost all errors on really static code. When developer use some PLpgSQL's dynamic features like dynamic SQL or record data type, then false positives are possible. These should be rare - in well written code - and then the affected function should be redesigned or plpgsql_check should be disabled for this function.
CREATE OR REPLACE FUNCTION f1()
RETURNS void AS $$
DECLARE r record;
BEGIN
FOR r IN EXECUTE 'SELECT * FROM t1'
LOOP
RAISE NOTICE '%', r.c;
END LOOP;
END;
$$ LANGUAGE plpgsql SET plpgsql.enable_check TO false;
A usage of plpgsql_check adds a small overhead (in enabled passive mode) and you should use it only in develop or preprod environments.
This module doesn't check queries that are assembled in runtime. It is not possible to identify results of dynamic queries - so plpgsql_check cannot to set correct type to record variables and cannot to check a dependent SQLs and expressions.
When type of record's variable is not know, you can assign it explicitly with pragma type
:
DECLARE r record;
BEGIN
EXECUTE format('SELECT * FROM %I', _tablename) INTO r;
PERFORM plpgsql_check_pragma('type: r (id int, processed bool)');
IF NOT r.processed THEN
...
Attention: The SQL injection check can detect only some SQL injection vulnerabilities. This tool cannot be used for security audit! Some issues should not be detected. This check can raise false alarms too - probably when variable is sanitized by other command or when value is of some compose type.
plpgsql_check should not to detect structure of referenced cursors. A reference on cursor in PLpgSQL is implemented as name of global cursor. In check time, the name is not known (not in all possibilities), and global cursor doesn't exist. It is significant break for any static analyse. PLpgSQL cannot to set correct type for record variables and cannot to check a dependent SQLs and expressions. A solution is same like dynamic SQL. Don't use record variable as target when you use refcursor type or disable plpgsql_check for these functions.
CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
rec_var record;
BEGIN
FETCH refcur_var INTO rec_var; -- this is STOP for plpgsql_check
RAISE NOTICE '%', rec_var; -- record rec_var is not assigned yet error
In this case a record type should not be used (use known rowtype instead):
CREATE OR REPLACE FUNCTION foo(refcur_var refcursor)
RETURNS void AS $$
DECLARE
rec_var some_rowtype;
BEGIN
FETCH refcur_var INTO rec_var;
RAISE NOTICE '%', rec_var;
plpgsql_check cannot verify queries over temporary tables that are created in plpgsql's function runtime. For this use case it is necessary to create a fake temp table or disable plpgsql_check for this function.
In reality temp tables are stored in own (per user) schema with higher priority than persistent tables. So you can do (with following trick safetly):
CREATE OR REPLACE FUNCTION public.disable_dml()
RETURNS trigger
LANGUAGE plpgsql AS $function$
BEGIN
RAISE EXCEPTION SQLSTATE '42P01'
USING message = format('this instance of %I table doesn''t allow any DML operation', TG_TABLE_NAME),
hint = format('you should to run "CREATE TEMP TABLE %1$I(LIKE %1$I INCLUDING ALL);" statement',
TG_TABLE_NAME);
RETURN NULL;
END;
$function$;
CREATE TABLE foo(a int, b int); -- doesn't hold data ever
CREATE TRIGGER foo_disable_dml
BEFORE INSERT OR UPDATE OR DELETE ON foo
EXECUTE PROCEDURE disable_dml();
postgres=# INSERT INTO foo VALUES(10,20);
ERROR: this instance of foo table doesn't allow any DML operation
HINT: you should to run "CREATE TEMP TABLE foo(LIKE foo INCLUDING ALL);" statement
postgres=#
CREATE TABLE
postgres=# INSERT INTO foo VALUES(10,20);
INSERT 0 1
This trick emulates GLOBAL TEMP tables partially and it allows a statical validation. Other possibility is using a [template foreign data wrapper] (https://github.com/okbob/template_fdw)
You can use pragma table
and create ephemeral table:
BEGIN
CREATE TEMP TABLE xxx(a int);
PERFORM plpgsql_check_pragma('table: xxx(a int)');
INSERT INTO xxx VALUES(10);
Dependency list
A function plpgsql_show_dependency_tb can show all functions, operators and relations used inside processed function:
postgres=# select * from plpgsql_show_dependency_tb('testfunc(int,float)');
┌──────────┬───────┬────────┬─────────┬────────────────────────────┐
│ type │ oid │ schema │ name │ params │
╞══════════╪═══════╪════════╪═════════╪════════════════════════════╡
│ FUNCTION │ 36008 │ public │ myfunc1 │ (integer,double precision) │
│ FUNCTION │ 35999 │ public │ myfunc2 │ (integer,double precision) │
│ OPERATOR │ 36007 │ public │ ** │ (integer,integer) │
│ RELATION │ 36005 │ public │ myview │ │
│ RELATION │ 36002 │ public │ mytable │ │
└──────────┴───────┴────────┴─────────┴────────────────────────────┘
(4 rows)
Profiler
The plpgsql_check contains simple profiler of plpgsql functions and procedures. It can work with/without a access to shared memory. It depends on shared_preload_libraries
config. When plpgsql_check was initialized by shared_preload_libraries
, then it can allocate shared memory, and function's profiles are stored there. When plpgsql_check cannot to allocate shared momory, the profile is stored in session memory.
Due dependencies, shared_preload_libraries
should to contains plpgsql
first
postgres=# show shared_preload_libraries ;
┌──────────────────────────┐
│ shared_preload_libraries │
╞══════════════════════════╡
│ plpgsql,plpgsql_check │
└──────────────────────────┘
(1 row)
The profiler is active when GUC plpgsql_check.profiler
is on. The profiler doesn't require shared memory, but if there are not shared memory, then the profile is limmitted just to active session.
When plpgsql_check is initialized by shared_preload_libraries
, another GUC is available to configure the amount of shared memory used by the profiler: plpgsql_check.profiler_max_shared_chunks
. This defines the maximum number of statements chunk that can be stored in shared memory. For each plpgsql function (or procedure), the whole content is split into chunks of 30 statements. If needed, multiple chunks can be used to store the whole content of a single function. A single chunk is 1704 bytes. The default value for this GUC is 15000, which should be enough for big projects containing hundred of thousands of statements in plpgsql, and will consume about 24MB of memory. If your project doesn't require that much number of chunks, you can set this parameter to a smaller number in order to decrease the memory usage. The minimum value is 50 (which should consume about 83kB of memory), and the maximum value is 100000 (which should consume about 163MB of memory). Changing this parameter requires a PostgreSQL restart.
The profiler will also retrieve the query identifier for each instruction that contains an expression or optimizable statement. Note that this requires pg_stat_statements, or another similar third-party extension), to be installed. There are some limitations to the query identifier retrieval:
Attention: A update of shared profiles can decrease performance on servers under higher load.
The profile can be displayed by function plpgsql_profiler_function_tb
:
postgres=# select lineno, avg_time, source from plpgsql_profiler_function_tb('fx(int)');
┌────────┬──────────┬───────────────────────────────────────────────────────────────────┐
│ lineno │ avg_time │ source │
╞════════╪══════════╪═══════════════════════════════════════════════════════════════════╡
│ 1 │ │ │
│ 2 │ │ declare result int = 0; │
│ 3 │ 0.075 │ begin │
│ 4 │ 0.202 │ for i in 1..$1 loop │
│ 5 │ 0.005 │ select result + i into result; select result + i into result; │
│ 6 │ │ end loop; │
│ 7 │ 0 │ return result; │
│ 8 │ │ end; │
└────────┴──────────┴───────────────────────────────────────────────────────────────────┘
(9 rows)
The profile per statements (not per line) can be displayed by function plpgsql_profiler_function_statements_tb:
CREATE OR REPLACE FUNCTION public.fx1(a integer)
RETURNS integer
LANGUAGE plpgsql
1 AS $function$
2 begin
3 if a > 10 then
4 raise notice 'ahoj';
5 return -1;
6 else
7 raise notice 'nazdar';
8 return 1;
9 end if;
10 end;
11 $function$
postgres=# select stmtid, parent_stmtid, parent_note, lineno, exec_stmts, stmtname
from plpgsql_profiler_function_statements_tb('fx1');
┌────────┬───────────────┬─────────────┬────────┬────────────┬─────────────────┐
│ stmtid │ parent_stmtid │ parent_note │ lineno │ exec_stmts │ stmtname │
╞════════╪═══════════════╪═════════════╪════════╪════════════╪═════════════════╡
│ 0 │ ∅ │ ∅ │ 2 │ 0 │ statement block │
│ 1 │ 0 │ body │ 3 │ 0 │ IF │
│ 2 │ 1 │ then body │ 4 │ 0 │ RAISE │
│ 3 │ 1 │ then body │ 5 │ 0 │ RETURN │
│ 4 │ 1 │ else body │ 7 │ 0 │ RAISE │
│ 5 │ 1 │ else body │ 8 │ 0 │ RETURN │
└────────┴───────────────┴─────────────┴────────┴────────────┴─────────────────┘
(6 rows)
All stored profiles can be displayed by calling function plpgsql_profiler_functions_all
:
postgres=# select * from plpgsql_profiler_functions_all();
┌───────────────────────┬────────────┬────────────┬──────────┬─────────────┬──────────┬──────────┐
│ funcoid │ exec_count │ total_time │ avg_time │ stddev_time │ min_time │ max_time │
╞═══════════════════════╪════════════╪════════════╪══════════╪═════════════╪══════════╪══════════╡
│ fxx(double precision) │ 1 │ 0.01 │ 0.01 │ 0.00 │ 0.01 │ 0.01 │
└───────────────────────┴────────────┴────────────┴──────────┴─────────────┴──────────┴──────────┘
(1 row)
There are two functions for cleaning stored profiles: plpgsql_profiler_reset_all()
and plpgsql_profiler_reset(regprocedure)
.
plpgsql_check provides two functions:
plpgsql_coverage_statements(name)
plpgsql_coverage_branches(name)
There is another very good PLpgSQL profiler - https://bitbucket.org/openscg/plprofiler
My extension is designed to be simple for use and practical. Nothing more or less.
plprofiler is more complex. It build call graphs and from this graph it can creates flame graph of execution times.
Both extensions can be used together with buildin PostgreSQL's feature - tracking functions.
set track_functions to 'pl';
...
select * from pg_stat_user_functions;
Tracer
plpgsql_check provides a tracing possibility - in this mode you can see notices on start or end functions (terse and default verbosity) and start or end statements (verbose verbosity). For default and verbose verbosity the content of function arguments is displayed. The content of related variables are displayed when verbosity is verbose.
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #0 ->> start of inline_code_block (Oid=0)
NOTICE: #2 ->> start of function fx(integer,integer,date,text) (Oid=16405)
NOTICE: #2 call by inline_code_block line 1 at PERFORM
NOTICE: #2 "a" => '10', "b" => null, "c" => '2020-08-03', "d" => 'stěhule'
NOTICE: #4 ->> start of function fx(integer) (Oid=16404)
NOTICE: #4 call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: #4 "a" => '10'
NOTICE: #4 <<- end of function fx (elapsed time=0.098 ms)
NOTICE: #2 <<- end of function fx (elapsed time=0.399 ms)
NOTICE: #0 <<- end of block (elapsed time=0.754 ms)
The number after #
is a execution frame counter (this number is related to deep of error context stack). It allows to pair start end and of function.
Tracing is enabled by setting plpgsql_check.tracer
to on
. Attention - enabling this behaviour has significant negative impact on performance (unlike the profiler). You can set a level for output used by tracer plpgsql_check.tracer_errlevel
(default is notice
). The output content is limited by length specified by plpgsql_check.tracer_variable_max_length
configuration variable.
In terse verbose mode the output is reduced:
postgres=# set plpgsql_check.tracer_verbosity TO terse;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #0 start of inline code block (oid=0)
NOTICE: #2 start of fx (oid=16405)
NOTICE: #4 start of fx (oid=16404)
NOTICE: #4 end of fx
NOTICE: #2 end of fx
NOTICE: #0 end of inline code block
In verbose mode the output is extended about statement details:
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #0 ->> start of block inline_code_block (oid=0)
NOTICE: #0.1 1 --> start of PERFORM
NOTICE: #2 ->> start of function fx(integer,integer,date,text) (oid=16405)
NOTICE: #2 call by inline_code_block line 1 at PERFORM
NOTICE: #2 "a" => '10', "b" => null, "c" => '2020-08-04', "d" => 'stěhule'
NOTICE: #2.1 1 --> start of PERFORM
NOTICE: #2.1 "a" => '10'
NOTICE: #4 ->> start of function fx(integer) (oid=16404)
NOTICE: #4 call by fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: #4 "a" => '10'
NOTICE: #4.1 6 --> start of assignment
NOTICE: #4.1 "a" => '10', "b" => '20'
NOTICE: #4.1 <-- end of assignment (elapsed time=0.076 ms)
NOTICE: #4.1 "res" => '130'
NOTICE: #4.2 7 --> start of RETURN
NOTICE: #4.2 "res" => '130'
NOTICE: #4.2 <-- end of RETURN (elapsed time=0.054 ms)
NOTICE: #4 <<- end of function fx (elapsed time=0.373 ms)
NOTICE: #2.1 <-- end of PERFORM (elapsed time=0.589 ms)
NOTICE: #2 <<- end of function fx (elapsed time=0.727 ms)
NOTICE: #0.1 <-- end of PERFORM (elapsed time=1.147 ms)
NOTICE: #0 <<- end of block (elapsed time=1.286 ms)
Special feature of tracer is tracing of ASSERT
statement when plpgsql_check.trace_assert
is on
. When plpgsql_check.trace_assert_verbosity
is DEFAULT
, then all function's or procedure's variables are displayed when assert expression is false. When this configuration is VERBOSE
then all variables from all plpgsql frames are displayed. This behaviour is independent on plpgsql.check_asserts
value. It can be used, although the assertions are disabled in plpgsql runtime.
postgres=# set plpgsql_check.tracer to off;
postgres=# set plpgsql_check.trace_assert_verbosity TO verbose;
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE: "a" => '10', "res" => null, "b" => '20'
NOTICE: #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE: #0 PL/pgSQL function inline_code_block line 1 at PERFORM
ERROR: assertion failed
CONTEXT: PL/pgSQL function fx(integer) line 12 at ASSERT
SQL statement "SELECT fx(a)"
PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
SQL statement "SELECT fx(10,null, 'now', e'stěhule')"
PL/pgSQL function inline_code_block line 1 at PERFORM
postgres=# set plpgsql.check_asserts to off;
SET
postgres=# do $$ begin perform fx(10,null, 'now', e'stěhule'); end; $$;
NOTICE: #4 PLpgSQL assert expression (false) on line 12 of fx(integer) is false
NOTICE: "a" => '10', "res" => null, "b" => '20'
NOTICE: #2 PL/pgSQL function fx(integer,integer,date,text) line 1 at PERFORM
NOTICE: "a" => '10', "b" => null, "c" => '2020-08-05', "d" => 'stěhule'
NOTICE: #0 PL/pgSQL function inline_code_block line 1 at PERFORM
DO
Tracer prints content of variables or function arguments. For security definer function, this content can hold security sensitive data. This is reason why tracer is disabled by default and should be enabled only with super user rights plpgsql_check.enable_tracer
.
Pragma
You can configure plpgsql_check behave inside checked function with "pragma" function. This is a analogy of PL/SQL or ADA language of PRAGMA feature. PLpgSQL doesn't support PRAGMA, but plpgsql_check detects function named plpgsql_check_pragma
and get options from parameters of this function. These plpgsql_check options are valid to end of group of statements.
CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
BEGIN
...
-- for following statements disable check
PERFORM plpgsql_check_pragma('disable:check');
...
-- enable check again
PERFORM plpgsql_check_pragma('enable:check');
...
END;
$$ LANGUAGE plpgsql;
The function plpgsql_check_pragma
is immutable function that returns one. It is defined by plpgsql_check
extension. You can declare alternative plpgsql_check_pragma
function like:
CREATE OR REPLACE FUNCTION plpgsql_check_pragma(VARIADIC args[])
RETURNS int AS $$
SELECT 1
$$ LANGUAGE sql IMMUTABLE;
Using pragma function in declaration part of top block sets options on function level too.
CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE
aux int := plpgsql_check_pragma('disable:extra_warnings');
...
Shorter syntax for pragma is supported too:
CREATE OR REPLACE FUNCTION test()
RETURNS void AS $$
DECLARE r record;
BEGIN
PERFORM 'PRAGMA:TYPE:r (a int, b int)';
PERFORM 'PRAGMA:TABLE: x (like pg_class)';
...
echo:str
- print string (for testing)
status:check
,status:tracer
, status:other_warnings
, status:performance_warnings
, status:extra_warnings
,status:security_warnings
enable:check
,enable:tracer
, enable:other_warnings
, enable:performance_warnings
, enable:extra_warnings
,enable:security_warnings
disable:check
,disable:tracer
, disable:other_warnings
, disable:performance_warnings
, disable:extra_warnings
,disable:security_warnings
type:varname typename
or type:varname (fieldname type, ...)
- set type to variable of record type
table: name (column_name type, ...)
or table: name (like tablename)
- create ephereal table
Pragmas enable:tracer
and disable:tracer
are active for Postgres 12 and higher
Compilation
You need a development environment for PostgreSQL extensions:
make clean
make install
result:
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 clean
rm -f plpgsql_check.so libplpgsql_check.a libplpgsql_check.pc
rm -f plpgsql_check.o
rm -rf results/ regression.diffs regression.out tmp_check/ log/
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 all
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -I. -I./ -I/usr/local/pgsql/include/server -I/usr/local/pgsql/include/internal -D_GNU_SOURCE -c -o plpgsql_check.o plpgsql_check.c
clang -O2 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fpic -I/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/pl/plpgsql/src -shared -o plpgsql_check.so plpgsql_check.o -L/usr/local/pgsql/lib -Wl,--as-needed -Wl,-rpath,'/usr/local/pgsql/lib',--enable-new-dtags
[pavel@localhost plpgsql_check]$ su root
Password: *******
[root@localhost plpgsql_check]# make USE_PGXS=1 install
/usr/bin/mkdir -p '/usr/local/pgsql/lib'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/mkdir -p '/usr/local/pgsql/share/extension'
/usr/bin/install -c -m 755 plpgsql_check.so '/usr/local/pgsql/lib/plpgsql_check.so'
/usr/bin/install -c -m 644 plpgsql_check.control '/usr/local/pgsql/share/extension/'
/usr/bin/install -c -m 644 plpgsql_check--0.9.sql '/usr/local/pgsql/share/extension/'
[root@localhost plpgsql_check]# exit
[pavel@localhost plpgsql_check]$ make USE_PGXS=1 installcheck
/usr/local/pgsql/lib/pgxs/src/makefiles/../../src/test/regress/pg_regress --inputdir=./ --psqldir='/usr/local/pgsql/bin' --dbname=pl_regression --load-language=plpgsql --dbname=contrib_regression plpgsql_check_passive plpgsql_check_active plpgsql_check_active-9.5
(using postmaster on Unix socket, default port)
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing plpgsql ==============
CREATE LANGUAGE
============== running regression test queries ==============
test plpgsql_check_passive ... ok
test plpgsql_check_active ... ok
test plpgsql_check_active-9.5 ... ok
=====================
All 3 tests passed.
=====================
Sometimes successful compilation can require libicu-dev package (PostgreSQL 10 and higher - when pg was compiled with ICU support)
sudo apt install libicu-dev
You can check precompiled dll libraries http://okbob.blogspot.cz/2015/02/plpgsqlcheck-is-available-for-microsoft.html
or compile by self:
plpgsql_check.dll
to PostgreSQL\14\lib
plpgsql_check.control
and plpgsql_check--2.1.sql
to PostgreSQL\14\share\extension
Compilation against PostgreSQL 10 requires libICU!
Licence
Copyright (c) Pavel Stehule (pavel.stehule@gmail.com)
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Note
If you like it, send a postcard to address
Pavel Stehule
Skalice 12
256 01 Benesov u Prahy
Czech Republic
I invite any questions, comments, bug reports, patches on mail address pavel.stehule@gmail.com
Author: okbob
Source Code: https://github.com/okbob/plpgsql_check
License: View license
1595396220
As more and more data is exposed via APIs either as API-first companies or for the explosion of single page apps/JAMStack, API security can no longer be an afterthought. The hard part about APIs is that it provides direct access to large amounts of data while bypassing browser precautions. Instead of worrying about SQL injection and XSS issues, you should be concerned about the bad actor who was able to paginate through all your customer records and their data.
Typical prevention mechanisms like Captchas and browser fingerprinting won’t work since APIs by design need to handle a very large number of API accesses even by a single customer. So where do you start? The first thing is to put yourself in the shoes of a hacker and then instrument your APIs to detect and block common attacks along with unknown unknowns for zero-day exploits. Some of these are on the OWASP Security API list, but not all.
Most APIs provide access to resources that are lists of entities such as /users
or /widgets
. A client such as a browser would typically filter and paginate through this list to limit the number items returned to a client like so:
First Call: GET /items?skip=0&take=10
Second Call: GET /items?skip=10&take=10
However, if that entity has any PII or other information, then a hacker could scrape that endpoint to get a dump of all entities in your database. This could be most dangerous if those entities accidently exposed PII or other sensitive information, but could also be dangerous in providing competitors or others with adoption and usage stats for your business or provide scammers with a way to get large email lists. See how Venmo data was scraped
A naive protection mechanism would be to check the take count and throw an error if greater than 100 or 1000. The problem with this is two-fold:
skip = 0
while True: response = requests.post('https://api.acmeinc.com/widgets?take=10&skip=' + skip), headers={'Authorization': 'Bearer' + ' ' + sys.argv[1]}) print("Fetched 10 items") sleep(randint(100,1000)) skip += 10
To secure against pagination attacks, you should track how many items of a single resource are accessed within a certain time period for each user or API key rather than just at the request level. By tracking API resource access at the user level, you can block a user or API key once they hit a threshold such as “touched 1,000,000 items in a one hour period”. This is dependent on your API use case and can even be dependent on their subscription with you. Like a Captcha, this can slow down the speed that a hacker can exploit your API, like a Captcha if they have to create a new user account manually to create a new API key.
Most APIs are protected by some sort of API key or JWT (JSON Web Token). This provides a natural way to track and protect your API as API security tools can detect abnormal API behavior and block access to an API key automatically. However, hackers will want to outsmart these mechanisms by generating and using a large pool of API keys from a large number of users just like a web hacker would use a large pool of IP addresses to circumvent DDoS protection.
The easiest way to secure against these types of attacks is by requiring a human to sign up for your service and generate API keys. Bot traffic can be prevented with things like Captcha and 2-Factor Authentication. Unless there is a legitimate business case, new users who sign up for your service should not have the ability to generate API keys programmatically. Instead, only trusted customers should have the ability to generate API keys programmatically. Go one step further and ensure any anomaly detection for abnormal behavior is done at the user and account level, not just for each API key.
APIs are used in a way that increases the probability credentials are leaked:
If a key is exposed due to user error, one may think you as the API provider has any blame. However, security is all about reducing surface area and risk. Treat your customer data as if it’s your own and help them by adding guards that prevent accidental key exposure.
The easiest way to prevent key exposure is by leveraging two tokens rather than one. A refresh token is stored as an environment variable and can only be used to generate short lived access tokens. Unlike the refresh token, these short lived tokens can access the resources, but are time limited such as in hours or days.
The customer will store the refresh token with other API keys. Then your SDK will generate access tokens on SDK init or when the last access token expires. If a CURL command gets pasted into a GitHub issue, then a hacker would need to use it within hours reducing the attack vector (unless it was the actual refresh token which is low probability)
APIs open up entirely new business models where customers can access your API platform programmatically. However, this can make DDoS protection tricky. Most DDoS protection is designed to absorb and reject a large number of requests from bad actors during DDoS attacks but still need to let the good ones through. This requires fingerprinting the HTTP requests to check against what looks like bot traffic. This is much harder for API products as all traffic looks like bot traffic and is not coming from a browser where things like cookies are present.
The magical part about APIs is almost every access requires an API Key. If a request doesn’t have an API key, you can automatically reject it which is lightweight on your servers (Ensure authentication is short circuited very early before later middleware like request JSON parsing). So then how do you handle authenticated requests? The easiest is to leverage rate limit counters for each API key such as to handle X requests per minute and reject those above the threshold with a 429 HTTP response.
There are a variety of algorithms to do this such as leaky bucket and fixed window counters.
APIs are no different than web servers when it comes to good server hygiene. Data can be leaked due to misconfigured SSL certificate or allowing non-HTTPS traffic. For modern applications, there is very little reason to accept non-HTTPS requests, but a customer could mistakenly issue a non HTTP request from their application or CURL exposing the API key. APIs do not have the protection of a browser so things like HSTS or redirect to HTTPS offer no protection.
Test your SSL implementation over at Qualys SSL Test or similar tool. You should also block all non-HTTP requests which can be done within your load balancer. You should also remove any HTTP headers scrub any error messages that leak implementation details. If your API is used only by your own apps or can only be accessed server-side, then review Authoritative guide to Cross-Origin Resource Sharing for REST APIs
APIs provide access to dynamic data that’s scoped to each API key. Any caching implementation should have the ability to scope to an API key to prevent cross-pollution. Even if you don’t cache anything in your infrastructure, you could expose your customers to security holes. If a customer with a proxy server was using multiple API keys such as one for development and one for production, then they could see cross-pollinated data.
#api management #api security #api best practices #api providers #security analytics #api management policies #api access tokens #api access #api security risks #api access keys
1652450400
En este artículo, aprenderá los conceptos básicos de las variables globales.
Para empezar, aprenderá cómo declarar variables en Python y qué significa realmente el término 'ámbito de variable'.
Luego, aprenderá las diferencias entre variables locales y globales y comprenderá cómo definir variables globales y cómo usar la global
palabra clave.
Puede pensar en las variables como contenedores de almacenamiento .
Son contenedores de almacenamiento para almacenar datos, información y valores que le gustaría guardar en la memoria de la computadora. Luego puede hacer referencia a ellos o incluso manipularlos en algún momento a lo largo de la vida del programa.
Una variable tiene un nombre simbólico y puede pensar en ese nombre como la etiqueta en el contenedor de almacenamiento que actúa como su identificador.
El nombre de la variable será una referencia y un puntero a los datos almacenados en su interior. Por lo tanto, no es necesario recordar los detalles de sus datos e información; solo necesita hacer referencia al nombre de la variable que contiene esos datos e información.
Al dar un nombre a una variable, asegúrese de que sea descriptivo de los datos que contiene. Los nombres de las variables deben ser claros y fácilmente comprensibles tanto para usted en el futuro como para los otros desarrolladores con los que puede estar trabajando.
Ahora, veamos cómo crear una variable en Python.
Al declarar variables en Python, no necesita especificar su tipo de datos.
Por ejemplo, en el lenguaje de programación C, debe mencionar explícitamente el tipo de datos que contendrá la variable.
Entonces, si quisiera almacenar su edad, que es un número entero, o int
tipo, esto es lo que tendría que hacer en C:
#include <stdio.h>
int main(void)
{
int age = 28;
// 'int' is the data type
// 'age' is the name
// 'age' is capable of holding integer values
// positive/negative whole numbers or 0
// '=' is the assignment operator
// '28' is the value
}
Sin embargo, así es como escribirías lo anterior en Python:
age = 28
#'age' is the variable name, or identifier
# '=' is the assignment operator
#'28' is the value assigned to the variable, so '28' is the value of 'age'
El nombre de la variable siempre está en el lado izquierdo y el valor que desea asignar va en el lado derecho después del operador de asignación.
Tenga en cuenta que puede cambiar los valores de las variables a lo largo de la vida de un programa:
my_age = 28
print(f"My age in 2022 is {my_age}.")
my_age = 29
print(f"My age in 2023 will be {my_age}.")
#output
#My age in 2022 is 28.
#My age in 2023 will be 29.
Mantienes el mismo nombre de variable my_age
, pero solo cambias el valor de 28
a 29
.
El alcance de la variable se refiere a las partes y los límites de un programa de Python donde una variable está disponible, accesible y visible.
Hay cuatro tipos de alcance para las variables de Python, que también se conocen como la regla LEGB :
En el resto de este artículo, se centrará en aprender a crear variables con alcance global y comprenderá la diferencia entre los alcances de variables locales y globales.
Las variables definidas dentro del cuerpo de una función tienen alcance local , lo que significa que solo se puede acceder a ellas dentro de esa función en particular. En otras palabras, son 'locales' para esa función.
Solo puede acceder a una variable local llamando a la función.
def learn_to_code():
#create local variable
coding_website = "freeCodeCamp"
print(f"The best place to learn to code is with {coding_website}!")
#call function
learn_to_code()
#output
#The best place to learn to code is with freeCodeCamp!
Mire lo que sucede cuando trato de acceder a esa variable con un alcance local desde fuera del cuerpo de la función:
def learn_to_code():
#create local variable
coding_website = "freeCodeCamp"
print(f"The best place to learn to code is with {coding_website}!")
#try to print local variable 'coding_website' from outside the function
print(coding_website)
#output
#NameError: name 'coding_website' is not defined
Plantea un NameError
porque no es 'visible' en el resto del programa. Solo es 'visible' dentro de la función donde se definió.
Cuando define una variable fuera de una función, como en la parte superior del archivo, tiene un alcance global y se conoce como variable global.
Se accede a una variable global desde cualquier parte del programa.
Puede usarlo dentro del cuerpo de una función, así como acceder desde fuera de una función:
#create a global variable
coding_website = "freeCodeCamp"
def learn_to_code():
#access the variable 'coding_website' inside the function
print(f"The best place to learn to code is with {coding_website}!")
#call the function
learn_to_code()
#access the variable 'coding_website' from outside the function
print(coding_website)
#output
#The best place to learn to code is with freeCodeCamp!
#freeCodeCamp
¿Qué sucede cuando hay una variable global y local, y ambas tienen el mismo nombre?
#global variable
city = "Athens"
def travel_plans():
#local variable with the same name as the global variable
city = "London"
print(f"I want to visit {city} next year!")
#call function - this will output the value of local variable
travel_plans()
#reference global variable - this will output the value of global variable
print(f"I want to visit {city} next year!")
#output
#I want to visit London next year!
#I want to visit Athens next year!
En el ejemplo anterior, tal vez no esperaba ese resultado específico.
Tal vez pensaste que el valor de city
cambiaría cuando le asignara un valor diferente dentro de la función.
Tal vez esperabas que cuando hice referencia a la variable global con la línea print(f" I want to visit {city} next year!")
, la salida sería en #I want to visit London next year!
lugar de #I want to visit Athens next year!
.
Sin embargo, cuando se llamó a la función, imprimió el valor de la variable local.
Luego, cuando hice referencia a la variable global fuera de la función, se imprimió el valor asignado a la variable global.
No interfirieron entre sí.
Dicho esto, usar el mismo nombre de variable para variables globales y locales no se considera una buena práctica. Asegúrese de que sus variables no tengan el mismo nombre, ya que puede obtener algunos resultados confusos cuando ejecute su programa.
global
palabra clave en Python¿Qué sucede si tiene una variable global pero desea cambiar su valor dentro de una función?
Mira lo que sucede cuando trato de hacer eso:
#global variable
city = "Athens"
def travel_plans():
#First, this is like when I tried to access the global variable defined outside the function.
# This works fine on its own, as you saw earlier on.
print(f"I want to visit {city} next year!")
#However, when I then try to re-assign a different value to the global variable 'city' from inside the function,
#after trying to print it,
#it will throw an error
city = "London"
print(f"I want to visit {city} next year!")
#call function
travel_plans()
#output
#UnboundLocalError: local variable 'city' referenced before assignment
Por defecto, Python piensa que quieres usar una variable local dentro de una función.
Entonces, cuando intento imprimir el valor de la variable por primera vez y luego reasignar un valor a la variable a la que intento acceder, Python se confunde.
La forma de cambiar el valor de una variable global dentro de una función es usando la global
palabra clave:
#global variable
city = "Athens"
#print value of global variable
print(f"I want to visit {city} next year!")
def travel_plans():
global city
#print initial value of global variable
print(f"I want to visit {city} next year!")
#assign a different value to global variable from within function
city = "London"
#print new value
print(f"I want to visit {city} next year!")
#call function
travel_plans()
#print value of global variable
print(f"I want to visit {city} next year!")
Utilice la global
palabra clave antes de hacer referencia a ella en la función, ya que obtendrá el siguiente error: SyntaxError: name 'city' is used prior to global declaration
.
Anteriormente, vio que no podía acceder a las variables creadas dentro de las funciones ya que tienen un alcance local.
La global
palabra clave cambia la visibilidad de las variables declaradas dentro de las funciones.
def learn_to_code():
global coding_website
coding_website = "freeCodeCamp"
print(f"The best place to learn to code is with {coding_website}!")
#call function
learn_to_code()
#access variable from within the function
print(coding_website)
#output
#The best place to learn to code is with freeCodeCamp!
#freeCodeCamp
¡Y ahí lo tienes! Ahora conoce los conceptos básicos de las variables globales en Python y puede distinguir las diferencias entre las variables locales y globales.
Espero que hayas encontrado útil este artículo.
Comenzará desde lo básico y aprenderá de una manera interactiva y amigable para principiantes. También construirá cinco proyectos al final para poner en práctica y ayudar a reforzar lo que ha aprendido.
¡Gracias por leer y feliz codificación!
Fuente: https://www.freecodecamp.org/news/python-global-variables-examples/