Waylon  Bruen

Waylon Bruen

1628270040

Top Practices for Tracing and Debugging Microservices

This article was last updated in January 2020. Applications have, traditionally, been developed as “monoliths.” This term describes how application code is compiled and delivered. Monoliths are compiled and/or packaged into a single binary, or a bundle of code, and deployed as a single unit. That single unit contains hundreds, sometimes thousands of lines of code. The functionality packed into that deployable artefact is most, if not all, of the functions of the application.

#microservices 

What is GEEK

Buddha Community

Top Practices for Tracing and Debugging Microservices
Einar  Hintz

Einar Hintz

1599055326

Testing Microservices Applications

The shift towards microservices and modular applications makes testing more important and more challenging at the same time. You have to make sure that the microservices running in containers perform well and as intended, but you can no longer rely on conventional testing strategies to get the job done.

This is where new testing approaches are needed. Testing your microservices applications require the right approach, a suitable set of tools, and immense attention to details. This article will guide you through the process of testing your microservices and talk about the challenges you will have to overcome along the way. Let’s get started, shall we?

A Brave New World

Traditionally, testing a monolith application meant configuring a test environment and setting up all of the application components in a way that matched the production environment. It took time to set up the testing environment, and there were a lot of complexities around the process.

Testing also requires the application to run in full. It is not possible to test monolith apps on a per-component basis, mainly because there is usually a base code that ties everything together, and the app is designed to run as a complete app to work properly.

Microservices running in containers offer one particular advantage: universal compatibility. You don’t have to match the testing environment with the deployment architecture exactly, and you can get away with testing individual components rather than the full app in some situations.

Of course, you will have to embrace the new cloud-native approach across the pipeline. Rather than creating critical dependencies between microservices, you need to treat each one as a semi-independent module.

The only monolith or centralized portion of the application is the database, but this too is an easy challenge to overcome. As long as you have a persistent database running on your test environment, you can perform tests at any time.

Keep in mind that there are additional things to focus on when testing microservices.

  • Microservices rely on network communications to talk to each other, so network reliability and requirements must be part of the testing.
  • Automation and infrastructure elements are now added as codes, and you have to make sure that they also run properly when microservices are pushed through the pipeline
  • While containerization is universal, you still have to pay attention to specific dependencies and create a testing strategy that allows for those dependencies to be included

Test containers are the method of choice for many developers. Unlike monolith apps, which lets you use stubs and mocks for testing, microservices need to be tested in test containers. Many CI/CD pipelines actually integrate production microservices as part of the testing process.

Contract Testing as an Approach

As mentioned before, there are many ways to test microservices effectively, but the one approach that developers now use reliably is contract testing. Loosely coupled microservices can be tested in an effective and efficient way using contract testing, mainly because this testing approach focuses on contracts; in other words, it focuses on how components or microservices communicate with each other.

Syntax and semantics construct how components communicate with each other. By defining syntax and semantics in a standardized way and testing microservices based on their ability to generate the right message formats and meet behavioral expectations, you can rest assured knowing that the microservices will behave as intended when deployed.

#testing #software testing #test automation #microservice architecture #microservice #test #software test automation #microservice best practices #microservice deployment #microservice components

Carmen  Grimes

Carmen Grimes

1595498460

Contact Tracing App: The Technology, Approach to fight COVID-19/Corona

As COVID-19 staggeringly lands blows to nations across the world, governments are considering ways to see their citizens through this pandemic. At the moment, a WHO situation report clocks the number of confirmed cases above two million along with more than one hundred thousand deaths. With vaccines dubbed as the best possible chance to tackle COVID-19 having no precise time frame of being ready, the talk is quickly shifting away to Contact Tracing Applications.

Contact tracing apps are digital solutions that use mobile technology to power the process of manual contact tracing. The apps follow a user’s movement, either by the use of Bluetooth technology, QR codes, or geo-location data while also tracking and keeping data from other user phones nearby. If one user gets diagnosed, the apps alert other users that they may have been exposed to the virus. As such, Contact Tracing Applications are being welcomed and perceived as an important approach to stem the spread of COVID-19 by providing a more accurate platform with data and information about affected individuals.

How Contact Tracing App Works

contact-tracing-app-devathon-

As mentioned above, contact tracing apps leverage mobile technology to trace cases of possible infection more accurately. But how exactly? Once installed and operative, the phone runs the app simultaneously with Bluetooth or location data to transmit signals with unique keys or IDs to phones in the designated range of connection. Similarly, the other phones with the app installed to detect and send back the signals.

For instance, if ‘Individual A’ has the app installed and goes outdoors to run some errands, they will interact with other individuals. In such a case, supposing all the other individuals had functional Contact Tracing Apps, each phone would exchange and store the contact data anonymously. It is important to note that the data collected only covers the app range distance to disregard irrelevant contacts and that their keys repeatedly change as individuals move. In any event that ‘Individual A’ tests positive for COVID-19 through confirmed tests, users who were previously within the proximity of ‘Individual A’ are alerted. Consequently, they are notified to check for symptoms, self-isolate, or get tested. Each time a person tests positive, the app notifies and advises the affected individuals.

In a nutshell, Contact Tracing Apps automate and supplement the traditional concept of tracing contacts to achieve extensive and realistic results in the least time possible.

What are the Benefits of Contact Tracing Apps?

Contract Tracing Apps are assets that offer indispensable solutions to health institutions and the public against COVID-19. There are several reasons why many governments are urging their citizens to use digital contact tracing apps to combat the spread of COVID-19. They include:

  1. The apps are more effective than manual tracing. While not perfect, their predictive algorithms frequently observe individuals detect new cases and analyze the probability one was infected. If one has contact with an asymptomatic individual, they are immediately notified and advised accordingly. Therefore, this saves time, energy, and resources that would have otherwise been overused.
  2. Contact tracing apps facilitate the relaxation of imposed restrictions or lockdowns. With a large number of infected people identified by the apps and put under surveillance, healthy citizens can be allowed to go about their duties. This may be a significant turning point to try and revive economies.
  3. Users’ private data is encrypted and secured. Even if you test positive, other users will only get notifications of possible infections. Your information is protected from both other users and developers of the app.
  4. They will increase the capacity to test and detect COVID-19 cases. With infected users alert, users who come in contact with affected persons come forward to be tested and treated with a higher recovery chance.

Future of Contact Tracing Apps?

Currently, the role of contact tracing apps is limited to accurately identifying infected individuals and their contacts as well as facilitating a quicker response to the Covid-19 threat.

Beyond that, the use of contact tracing apps is projected to take a different turn. One key area bound to change is how people’s privacy is handled. Tech institutions are under growing pressure to devise ways to develop privacy-preserving Contact Tracing Apps.

This will earn the users-trust, which is a pillar for these apps to help contain the disease. Technically, the technology will also have to improve drastically. The apps will have to seamlessly integrate with the user’s phone lifestyle causing minimal or no interference. With most applications having an open-source code, Artificial Intelligence, Beacon Technology, and Big Data solutions will be increasingly harnessed to power and improve them. The apps may also cut across various types of industries apart from health institutions.

How Can It Help to Trace COVID-19 and Reduce the Spread of the Virus?

contact-tracing-app-devathon-3

Contact Tracing Apps will effectively help stem lowering the cases of COVID-19. By using the apps, officials are able to monitor high-risk individuals easily. Also, should any new case arise, both users and health officials get notified they will swiftly act to trace, test, or isolate infected individuals.

Unlike traditional contact tracing, which may not get all contacts, these apps ensure that once Covid-19 cases are detected, they are all treated early, and those other individuals are not exposed to the infection. They also ward off users from high-risk areas. In the long run, they help break the COVID-19 chain by preventing further spread. Illustratively, an online publication by  CNBC states that more than 500,000 using a Singapore-registered mobile number downloaded the TraceTogether app within the first 24 hours of its launch. Subsequently, together with other government efforts, Singapore has since lowered the infection rate and eased restrictions.

If Contact Tracing Apps are implemented and used alongside other policies, we may as well be a few steps way to curbing this virus.

#android app #ios app #mobile app development #news #technology #contact tracing #contact tracing app #contact tracing app approach #contact tracing app technology #contact tracing coronavirus #contact tracing process #corona virus detecting app #corona virus tracing app #corona virus tracker #corona virus tracker live

The Service Mesh in the Microservices World - DZone Microservices

The software industry has come a long journey and throughout this journey, Software Architecture has evolved a lot. Starting with 1-tier (Single-node), 2-tier (Client/ Server), 3-tier, and Distributed are some of the Software Architectural patterns we saw in this journey.

The Problem

The majority of software companies are moving from Monolithic architecture to Microservices architecture, and Microservices architecture is taking over the software industry day-by-day. While monolithic architecture has many benefits, it also has so many shortcomings when catering to modern software development needs. With those shortcomings of monolithic architecture, it is very difficult to meet the demand of the modern-world software requirements and as a result, microservices architecture is taking control of the software development aggressively. The Microservices architecture enables us to deploy our applications more frequently, independently, and reliably meeting modern-day software application development requirements.

#microservice architecture #istio #microservice best practices #linkerd #microservice communication #microservice design #envoy proxy #kubernetes architecture #api gateways #service mesh architecture

Lokesh Kumar

1603438098

Top 10 Trending Technologies Must Learn in 2021 | igmGuru

Technology has taken a place of more productiveness and give the best to the world. In the current situation, everything is done through the technical process, you don’t have to bother about doing task, everything will be done automatically.This is an article which has some important technologies which are new in the market are explained according to the career preferences. So let’s have a look into the top trending technologies followed in 2021 and its impression in the coming future in the world.

  1. Data Science
    First in the list of newest technologies is surprisingly Data Science. Data Science is the automation that helps to be reasonable for complicated data. The data is produces in a very large amount every day by several companies which comprise sales data, customer profile information, server data, business data, and financial structures. Almost all of the data which is in the form of big data is very indeterminate. The character of a data scientist is to convert the indeterminate datasets into determinate datasets. Then these structured data will examine to recognize trends and patterns. These trends and patterns are beneficial to understand the company’s business performance, customer retention, and how they can be enhanced.

  2. DevOps
    Next one is DevOps, This technology is a mixture of two different things and they are development (Dev) and operations (Ops). This process and technology provide value to their customers in a continuous manner. This technology plays an important role in different aspects and they can be- IT operations, development, security, quality, and engineering to synchronize and cooperate to develop the best and more definitive products. By embracing a culture of DevOps with creative tools and techniques, because through that company will gain the capacity to preferable comeback to consumer requirement, expand the confidence in the request they construct, and accomplish business goals faster. This makes DevOps come into the top 10 trending technologies.

  3. Machine learning
    Next one is Machine learning which is constantly established in all the categories of companies or industries, generating a high command for skilled professionals. The machine learning retailing business is looking forward to enlarging to $8.81 billion by 2022. Machine learning practices is basically use for data mining, data analytics, and pattern recognition. In today’s scenario, Machine learning has its own reputed place in the industry. This makes machine learning come into the top 10 trending technologies. Get the best machine learning course and make yourself future-ready.

To want to know more click on Top 10 Trending Technologies in 2021

You may also read more blogs mentioned below

How to Become a Salesforce Developer

Python VS R Programming

The Scope of Hadoop and Big Data in 2021

#top trending technologies #top 10 trending technologies #top 10 trending technologies in 2021 #top trending technologies in 2021 #top 5 trending technologies in 2021 #top 5 trending technologies

Tia  Gottlieb

Tia Gottlieb

1597438200

What Is a Microservice Architecture? Why Is It Important Now?

We have been building software applications for many years using various tools, technologies, architectural patterns and best practices. It is evident that many software applications become large complex monolith over a period for various reasons. A monolith software application is like a large ball of spaghetti with criss-cross dependencies among its constituent modules. It becomes more complex to develop, deploy and maintain monoliths, constraining the agility and competitive advantages of development teams. Also, let us not undermine the challenge of clearing any sort of technical debt monoliths accumulate, as changing part of monolith code may have cascading impact of destabilizing a working software in production.

Over the years, architectural patterns such as Service Oriented Architecture (SOA) and Microservices have emerged as alternatives to Monoliths.

SOA was arguably the first architectural pattern aimed at solving the typical monolith issues by breaking down a large complex software application to sub-systems or “services”. All these services communicate over a common enterprise service bus (ESB). However, these sub-systems or services are actually mid-sized monoliths, as they share the same database. Also, more and more service-aware logic gets added to ESB and it becomes the single point of failure.

Microservice as an architectural pattern has gathered steam due to large scale adoption by companies like Amazon, Netflix, SoundCloud, Spotify etc. It breaks downs a large software application to a number of loosely coupled microservices. Each microservice is responsible for doing specific discrete tasks, can have its own database and can communicate with other microservices through Application Programming Interfaces (APIs) to solve a large complex business problem. Each microservice can be developed, deployed and maintained independently as long as it operates without breaching a well-defined set of APIs called contract to communicate with other microservices.

#microservice architecture #microservice #scaling #thought leadership #microservices build #microservice