Selection Sort Golang | Data structure | Golang Tutorial

Golang Program for Implementation of Selection Sort.

Selection Sort is called an in-place comparison sort. As the name itself says, it selects the lowest element from the list in every iteration(if sorting in ascending order) and places at the right position.

#golang #selectionsort #selectionsorting #datastructure #algorithm #golangAlgorithm

#golang #selectionsort #go

What is GEEK

Buddha Community

Selection Sort Golang | Data structure | Golang Tutorial
 iOS App Dev

iOS App Dev

1620466520

Your Data Architecture: Simple Best Practices for Your Data Strategy

If you accumulate data on which you base your decision-making as an organization, you should probably think about your data architecture and possible best practices.

If you accumulate data on which you base your decision-making as an organization, you most probably need to think about your data architecture and consider possible best practices. Gaining a competitive edge, remaining customer-centric to the greatest extent possible, and streamlining processes to get on-the-button outcomes can all be traced back to an organization’s capacity to build a future-ready data architecture.

In what follows, we offer a short overview of the overarching capabilities of data architecture. These include user-centricity, elasticity, robustness, and the capacity to ensure the seamless flow of data at all times. Added to these are automation enablement, plus security and data governance considerations. These points from our checklist for what we perceive to be an anticipatory analytics ecosystem.

#big data #data science #big data analytics #data analysis #data architecture #data transformation #data platform #data strategy #cloud data platform #data acquisition

Gerhard  Brink

Gerhard Brink

1620629020

Getting Started With Data Lakes

Frameworks for Efficient Enterprise Analytics

The opportunities big data offers also come with very real challenges that many organizations are facing today. Often, it’s finding the most cost-effective, scalable way to store and process boundless volumes of data in multiple formats that come from a growing number of sources. Then organizations need the analytical capabilities and flexibility to turn this data into insights that can meet their specific business objectives.

This Refcard dives into how a data lake helps tackle these challenges at both ends — from its enhanced architecture that’s designed for efficient data ingestion, storage, and management to its advanced analytics functionality and performance flexibility. You’ll also explore key benefits and common use cases.

Introduction

As technology continues to evolve with new data sources, such as IoT sensors and social media churning out large volumes of data, there has never been a better time to discuss the possibilities and challenges of managing such data for varying analytical insights. In this Refcard, we dig deep into how data lakes solve the problem of storing and processing enormous amounts of data. While doing so, we also explore the benefits of data lakes, their use cases, and how they differ from data warehouses (DWHs).


This is a preview of the Getting Started With Data Lakes Refcard. To read the entire Refcard, please download the PDF from the link above.

#big data #data analytics #data analysis #business analytics #data warehouse #data storage #data lake #data lake architecture #data lake governance #data lake management

Cyrus  Kreiger

Cyrus Kreiger

1617959340

4 Tips To Become A Successful Entry-Level Data Analyst

Companies across every industry rely on big data to make strategic decisions about their business, which is why data analyst roles are constantly in demand. Even as we transition to more automated data collection systems, data analysts remain a crucial piece in the data puzzle. Not only do they build the systems that extract and organize data, but they also make sense of it –– identifying patterns, trends, and formulating actionable insights.

If you think that an entry-level data analyst role might be right for you, you might be wondering what to focus on in the first 90 days on the job. What skills should you have going in and what should you focus on developing in order to advance in this career path?

Let’s take a look at the most important things you need to know.

#data #data-analytics #data-science #data-analysis #big-data-analytics #data-privacy #data-structures #good-company

Cyrus  Kreiger

Cyrus Kreiger

1618039260

How Has COVID-19 Impacted Data Science?

The COVID-19 pandemic disrupted supply chains and brought economies around the world to a standstill. In turn, businesses need access to accurate, timely data more than ever before. As a result, the demand for data analytics is skyrocketing as businesses try to navigate an uncertain future. However, the sudden surge in demand comes with its own set of challenges.

Here is how the COVID-19 pandemic is affecting the data industry and how enterprises can prepare for the data challenges to come in 2021 and beyond.

#big data #data #data analysis #data security #data integration #etl #data warehouse #data breach #elt

August  Larson

August Larson

1662480600

The Most Commonly Used Data Structures in Python

In any programming language, we need to deal with data.  Now, one of the most fundamental things that we need to work with the data is to store, manage, and access it efficiently in an organized way so it can be utilized whenever required for our purposes. Data Structures are used to take care of all our needs.

What are Data Structures?

Data Structures are fundamental building blocks of a programming language. It aims to provide a systematic approach to fulfill all the requirements mentioned previously in the article. The data structures in Python are List, Tuple, Dictionary, and Set. They are regarded as implicit or built-in Data Structures in Python. We can use these data structures and apply numerous methods to them to manage, relate, manipulate and utilize our data.

We also have custom Data Structures that are user-defined namely Stack, Queue, Tree, Linked List, and Graph. They allow users to have full control over their functionality and use them for advanced programming purposes. However, we will be focussing on the built-in Data Structures for this article.

Implicit Data Structures Python

Implicit Data Structures Python

LIST

Lists help us to store our data sequentially with multiple data types. They are comparable to arrays with the exception that they can store different data types like strings and numbers at the same time. Every item or element in a list has an assigned index. Since Python uses 0-based indexing, the first element has an index of 0 and the counting goes on. The last element of a list starts with -1 which can be used to access the elements from the last to the first. To create a list we have to write the items inside the square brackets.

One of the most important things to remember about lists is that they are Mutable. This simply means that we can change an element in a list by accessing it directly as part of the assignment statement using the indexing operator.  We can also perform operations on our list to get desired output. Let’s go through the code to gain a better understanding of list and list operations.

1. Creating a List

#creating the list
my_list = ['p', 'r', 'o', 'b', 'e']
print(my_list)

Output

['p', 'r', 'o', 'b', 'e']

2. Accessing items from the List

#accessing the list 
 
#accessing the first item of the list
my_list[0]

Output

'p'
#accessing the third item of the list
my_list[2]
'o'

3. Adding new items to the list

#adding item to the list
my_list + ['k']

Output

['p', 'r', 'o', 'b', 'e', 'k']

4. Removing Items

#removing item from the list
#Method 1:
 
#Deleting list items
my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm']
 
# delete one item
del my_list[2]
 
print(my_list)
 
# delete multiple items
del my_list[1:5]
 
print(my_list)

Output

['p', 'r', 'b', 'l', 'e', 'm']
['p', 'm']
#Method 2:
 
#with remove fucntion
my_list = ['p','r','o','k','l','y','m']
my_list.remove('p')
 
 
print(my_list)
 
#Method 3:
 
#with pop function
print(my_list.pop(1))
 
# Output: ['r', 'k', 'l', 'y', 'm']
print(my_list)

Output

['r', 'o', 'k', 'l', 'y', 'm']
o
['r', 'k', 'l', 'y', 'm']

5. Sorting List

#sorting of list in ascending order
 
my_list.sort()
print(my_list)

Output

['k', 'l', 'm', 'r', 'y']
#sorting of list in descending order
 
my_list.sort(reverse=True)
print(my_list)

Output

['y', 'r', 'm', 'l', 'k']

6. Finding the length of a List

#finding the length of list
 
len(my_list)

Output

5

TUPLE

Tuples are very similar to lists with a key difference that a tuple is IMMUTABLE, unlike a list. Once we create a tuple or have a tuple, we are not allowed to change the elements inside it. However, if we have an element inside a tuple, which is a list itself, only then we can access or change within that list. To create a tuple, we have to write the items inside the parenthesis. Like the lists, we have similar methods which can be used with tuples. Let’s go through some code snippets to understand using tuples.

1. Creating a Tuple

#creating of tuple
 
my_tuple = ("apple", "banana", "guava")
print(my_tuple)

Output

('apple', 'banana', 'guava')

2. Accessing items from a Tuple

#accessing first element in tuple
 
my_tuple[1]

Output

'banana'

3. Length of a Tuple

#for finding the lenght of tuple
 
len(my_tuple)

Output

3

4. Converting a Tuple to List

#converting tuple into a list
 
my_tuple_list = list(my_tuple)
type(my_tuple_list)

Output

list

5. Reversing a Tuple

#Reversing a tuple
 
tuple(sorted(my_tuple, reverse=True)) 

Output

('guava', 'banana', 'apple')

6. Sorting a Tuple

#sorting tuple in ascending order
 
tuple(sorted(my_tuple)) 

Output

('apple', 'banana', 'guava')

7. Removing elements from Tuple

For removing elements from the tuple, we first converted the tuple into a list as we did in one of our methods above( Point No. 4) then followed the same process of the list, and explicitly removed an entire tuple, just using the del statement.

DICTIONARY

Dictionary is a collection which simply means that it is used to store a value with some key and extract the value given the key. We can think of it as a set of key: value pairs and every key in a dictionary is supposed to be unique so that we can access the corresponding values accordingly.

A dictionary is denoted by the use of curly braces { } containing the key: value pairs. Each of the pairs in a dictionary is comma separated. The elements in a dictionary are un-ordered the sequence does not matter while we are accessing or storing them.

They are MUTABLE which means that we can add, delete or update elements in a dictionary. Here are some code examples to get a better understanding of a dictionary in python.

An important point to note is that we can’t use a mutable object as a key in the dictionary. So, a list is not allowed as a key in the dictionary.

1. Creating a Dictionary

#creating a dictionary
 
my_dict = {
    1:'Delhi',
    2:'Patna',
    3:'Bangalore'
}
print(my_dict)

Output

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}

Here, integers are the keys of the dictionary and the city name associated with integers are the values of the dictionary.

2. Accessing items from a Dictionary

#access an item
 
print(my_dict[1])

Output

'Delhi'

3. Length of a Dictionary

#length of the dictionary
 
len(my_dict)

Output

3

4. Sorting a Dictionary

#sorting based on the key 
 
Print(sorted(my_dict.items()))
 
 
#sorting based on the values of dictionary
 
print(sorted(my_dict.values()))

Output

[(1, 'Delhi'), (2, 'Bangalore'), (3, 'Patna')]
 
['Bangalore', 'Delhi', 'Patna']

5. Adding elements in Dictionary

#adding a new item in dictionary 
 
my_dict[4] = 'Lucknow'
print(my_dict)

Output

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore', 4: 'Lucknow'}

6. Removing elements from Dictionary

#for deleting an item from dict using the specific key
 
my_dict.pop(4)
print(my_dict)
 
#for deleting last item from the list
 
my_dict.popitem()
 
#for clearing the dictionary
 
my_dict.clear()
print(my_dict)

Output

{1: 'Delhi', 2: 'Patna', 3: 'Bangalore'}
(3, 'Bangalore')
{}

SET

Set is another data type in python which is an unordered collection with no duplicate elements. Common use cases for a set are to remove duplicate values and to perform membership testing. Curly braces or the set() function can be used to create sets. One thing to keep in mind is that while creating an empty set, we have to use set(), and not { }. The latter creates an empty dictionary.

Here are some code examples to get a better understanding of sets in python.

1. Creating a Set

#creating set
 
my_set = {"apple", "mango", "strawberry", "apple"}
print(my_set)

Output

{'apple', 'strawberry', 'mango'}

2. Accessing items from a Set

#to test for an element inside the set
 
"apple" in my_set

Output

True

3. Length of a Set

print(len(my_set))

Output

3

4. Sorting a Set

print(sorted(my_set))

Output

['apple', 'mango', 'strawberry']

5. Adding elements in Set

my_set.add("guava")
print(my_set)

Output

{'apple', 'guava', 'mango', 'strawberry'}

6. Removing elements from Set

my_set.remove("mango")
print(my_set)

Output

{'apple', 'guava', 'strawberry'}

Conclusion

In this article, we went through the most commonly used data structures in python and also saw various methods associated with them.

Link: https://www.askpython.com/python/data

#python #datastructures