Dead Simple Python: Project Structure and Imports

The worst part of tutorials is always their simplicity, isn't it? Rarely will you find one with more than one file, far more seldom with multiple directories.

The worst part of tutorials is always their simplicity, isn't it? Rarely will you find one with more than one file, far more seldom with multiple directories.

I've found that structuring a Python project is one of the most often overlooked components of teaching the language. Worse, many developers get it wrong, stumbling through a jumble of common mistakes until they arrive at something that at least works.

Here's the good news: you don't have to be one of them!

In this installment of the Dead Simple Python series, we'll be exploring import statements, modules, packages, and how to fit everything together without tearing your hair out. We'll even touch on VCS, PEP, and the Zen of Python. Buckle up!

Setting Up The Repository

Before we delve into the actual project structure, let's address how this fits into our Version Control System [VCS]...starting with the fact you need a VCS! A few reasons are...

  • Tracking every change you make,
  • Figuring out exactly when you broke something,
  • Being able to see old versions of your code,
  • Backing up your code, and
  • Collaborating with others.

You've got plenty of options available to you. Git is the most obvious, especially if you don't know what else to use. You can host your Git repository for free on GitHub, GitLab, Bitbucket, or Gitote, among others. If you want something other than Git, there's dozens of other options, including Mercurial, Bazaar, Subversion (although if you use that last one, you'll probably be considered something of a dinosaur by your peers.)

I'll be quietly assuming you're using Git for the rest of this guide, as that's what I use exclusively.

Once you've created your repository and cloned a local copy to your computer, you can begin setting up your project. At minimum, you'll need to create the following:

  • A description of your project and its goals.
  • Your project's license, if it's open source. (See for more information about selecting one.)
  • .gitignore: A special file that tells Git what files and directories to ignore. (If you're using another VCS, this file has a different name. Look it up.)
  • A directory with the name of your project.

That's right...our Python code files actually belong in a separate subdirectory! This is very important, as our repository's root directory is going to get mighty cluttered with build files, packaging scripts, virtual environments, and all manner of other things that aren't actually part of the source code.

Just for the sake of example, we'll call our fictional project awesomething.

PEP 8 and Naming

Python style is governed largely by a set of documents called Python Enhancement Proposals, abbreviated PEP. Not all PEPs are actually adopted, of course - that's why they're called "Proposals" - but some are. You can browse the master PEP index on the official Python website. This index is formally referred to as PEP 0.

Right now, we're mainly concerned with PEP 8, first authored by the Python language creator Guido van Rossum back in 2001. It is the document which officially outlines the coding style all Python developers should generally follow. Keep it under your pillow! Learn it, follow it, encourage others to do the same.

(Side Note: PEP 8 makes the point that there are always exceptions to style rules. It's a guide, not a mandate.)

Right now, we're chiefly concerned with the section entitled "Package and Module Names"...

Modules should have short, all-lowercase names. Underscores can be used in the module name if it improves readability. Python packages should also have short, all-lowercase names, although the use of underscores is discouraged.

We'll get to what exactly modules and packages are in a moment, but for now, understand that modules are named by filenames, and packages are named by their directory name.

In other words, filenames should be all lowercase, with underscores if that improves readability. Similarly, directory names should be all lowercase, without underscores if at all avoidable. To put that another way...

  • Do This: awesomething/data/
  • NOT This: awesomething/Data/

I know, I know, long-winded way to make a point, but at least I put a little PEP in your step. (Hello? Is this thing on?)

Packages and Modules

This is going to feel anticlimactic, but here are those promised definitions:

Any Python (.py) file is a module, and a bunch of modules in a directory is a package.

Well...almost. There's one other thing you have to do to a directory to make it a package, and that's to stick a file called into it. You actually don't have to put anything into that file. It just has to be there.

There is other cool stuff you can do with, but it's beyond the scope of this guide, so go read the docs to learn more.

If you do forget in your package, it's going to do something much weirder than just failing, because that makes it an implicit namespace package. There's some nifty things you can do with that special type of package, but I'm not going into that here. As usual, you can learn more by reading the documentation: PEP 420: Implicit Namespace Packages.

(P.S. Thanks to @rhymes and deniska [Freenode IRC] for the heads up about implicit namespace packages.)

So, if we look at our project structure, awesomething is actually a package, and it can contain other packages. Thus, we might call awesomething our top-level package, and all the packages underneath its subpackages. This is going to be really important once we get to importing stuff.

Let's look at one a snapshot of my real-world projects, omission, to get an idea of how we're structuring stuff...

├── omission
│   ├──
│   ├── common
│   │   ├──
│   │   ├──
│   │   ├──
│   │   └──
│   ├── data
│   │   ├──
│   │   ├──
│   │   ├──
│   │   ├──
│   │   └──
│   ├── game
│   │   ├──
│   │   ├──
│   │   ├──
│   │   ├──
│   │   └──
│   ├──
│   ├──
│   ├── resources
│   └── tests
│       ├──
│       ├──
│       ├──
│       ├──
│       ├──
│       ├──
│       └──
├── pylintrc
└── .gitignore

(In case you're wondering, I used the UNIX program tree to make that little diagram above.)

You'll see that I have one top-level package called omission, with four sub-packages: common, data, game, and tests. I also have the directory resources, but that only contains game audio, images, etc. (omitted here for brevity). resources is NOT a package, as it doesn't contain an

I also have another special file in my top-level package: This is the file that is run when we execute our top-level package directly via python -m omission. We'll talk about what goes in that in a bit.

How import Works

If you've written any meaningful Python code before, you're almost certainly familiar with the import statement. For example...

import re

It is helpful to know that, when we import a module, we are actually running it. This means that any import statements in the module are also being run.

For example, has several import statements of its own, which are executed when we say import re. That doesn't mean they're available to the file we imported re from, but it does mean those files have to exist. If (for some unlikely reason) got deleted on your environment, and you ran import re, it would fail with an error...

Traceback (most recent call last):
File "", line 1, in 
import re
File "", line 122, in 
import enum
ModuleNotFoundError: No module named 'enum'

Naturally, reading that, you might get a bit confused. I've had people ask me why the outer module (in this example, re) can't be found. Others have wondered why the inner module (enum here) is being imported at all, since they didn't ask for it directly in their code. The answer is simple: we imported re, and that imports enum.

Of course, the above scenario is fictional: import enum and import re are never going to fail under normal circumstances, because both modules are part of Python's core library. It's just a silly example. ;)

Import Dos and Don'ts

There are actually a number of ways of importing, but most of them should rarely, if ever be used.

For all of the examples below, we'll imagine that we have a file called

def close():

def open():
print("Thank you for making a simple door very happy.")

Just for example, we will run the rest of the code in this section in the Python interactive shell, from the same directory as

If we want to run the function open(), we have to first import the module smart_door. The easiest way to do this is...

import smart_door

We would actually say that smart_door is the namespace of open() and close(). Python developers really like namespaces, because they make it obvious where functions and whatnot are coming from.

(By the way, don't confuse namespace with implicit namespace package. They're two different things.)

The Zen of Python, also known as PEP 20, defines the philosophy behind the Python language. The last line has a statement that addresses this:

Namespaces are one honking great idea -- let's do more of those!

At a certain point, however, namespaces can become a pain, especially with nested packages. is just ugly. Thankfully, we do have a way around having to use the namespace every time we call the function.

If we want to be able to use the open() function without constantly having to precede it with its module name, we can do this instead...

from smart_door import open

Note, however, that neither close() nor smart_door.close() will not work in that last scenario, because we didn't import the function outright. To use it, we'd have to change the code to this...

from smart_door import open, close

In that terrible nested-package nightmare earlier, we can now say from import doThing, and then just use doThing() directly. Alternatively, if we want a LITTLE bit of namespace, we can say from import whatever, and say whatever.doThing().

The import system is deliciously flexible like that.

Before long, though, you'll probably find yourself saying "But I have hundreds of functions in my module, and I want to use them all!" This is the point at which many developers go off the rails, by doing this...

from smart_door import *

This is very, very bad! Simply put, it imports everything in the module directly, and that's a problem. Imagine the following code...

from smart_door import *
from gzip import *

What do you suppose will happen? The answer is, will be the function that gets called, since that's the last version of open() that was imported, and thus defined, in our code. has been shadowed - we can't call it as open(), which means we effectively can't call it at all.

Of course, since we usually don't know, or at least don't remember, every single function, class, and variable in every module that gets imported, we can easily wind up with a whole lot of messes.

The Zen of Python addresses this scenario as well...

Explicit is better than implicit.

You should never have to guess where a function or variable is coming from. Somewhere in the file should be code that explicitly tells us where it comes from. The first two scenarios demonstrate that.

I should also mention that the earlier is something Python developers do NOT like to see. Also from the Zen of Python...

Flat is better than nested.

Some nesting of packages is okay, but when your project starts looking like an elaborate set of Matryoshka dolls, you've done something wrong. Organize your modules into packages, but keep it reasonably simple.

Importing Within Your Project

That project file structure we created earlier is about to come in very handy. Recall my omission project...

├── omission
│ ├──
│ ├── common
│ │ ├──
│ │ ├──
│ │ ├──
│ │ └──
│ ├── data
│ │ ├──
│ │ ├──
│ │ ├──
│ │ ├──
│ │ └──
│ ├── game
│ │ ├──
│ │ ├──
│ │ ├──
│ │ ├──
│ │ └──
│ ├──
│ ├──
│ ├── resources
│ └── tests
│ ├──
│ ├──
│ ├──
│ ├──
│ ├──
│ ├──
│ └──
├── pylintrc
└── .gitignore

In my game_round_settings module, defined by omission/data/, I want to use my GameMode class. That class is defined in omission/common/ How do I get to it?

Because I defined omission as a package, and organized my modules into subpackages, it's actually pretty easy. In, I say...

from omission.common.game_enums import GameMode

This is called an absolute import. It starts at the top-level package, omission, and walks down into the common package, where it looks for

Some developers come to me with import statements more like from common.game_enums import GameMode, and wonder why it doesn't work. Simply put, the data package (where lives) has no knowledge of its sibling packages.

It does, however, know about its parents. Because of this, Python has something called relative imports that lets us do the same thing like this instead...

from ..common.game_enums import GameMode

The .. means "this package's direct parent package", which in this case, is omission. So, the import steps back one level, walks down into common, and finds

There's a lot of debate about whether to use absolute or relative imports. Personally, I prefer to use absolute imports whenever possible, because it makes the code a lot more readable. You can make up your own mind, however. The only important part is that the result is obvious - there should be no mystery where anything comes from.

(Continued Reading: Real Python - Absolute vs Relative Imports in Python

There is one other lurking gotcha here! In omission/data/, I have this line:

from import GameRoundSettings

Surely, since both these modules are in the same package, we should be able to just say from game_round_settings import GameRoundSettings, right?

Wrong! It will actually fail to locate This is because we are running the top-level package omission, which means the search path (where Python looks for modules, and in what order) works differently.

However, we can use a relative import instead:

from .game_round_settings import GameRoundSettings

In that case, the single . means "this package".

If you're familiar with the typical UNIX file system, this should start to make sense. .. means "back one level", and . means "the current location". Of course, Python takes it one step further: ... means "back two levels", "back three levels", and so forth.

However, keep in mind that those "levels" aren't just plain directories, here. They're packages. If you have two distinct packages in a plain directory that is NOT a package, you can't use relative imports to jump from one to another. You'll have to work with the Python search path for that, and that's beyond the scope of this guide. (See the docs at the end of this article.)

Remember when I mentioned creating a in our top-level package? That is a special file that is executed when we run the package directly with Python. My omission package can be run from the root of my repository with python -m omission.

Here's the contents of that file:

from omission import app

if name == 'main':

Yep, that's actually it! I'm importing my module app from the top-level package omission.

Remember, I could also have said from . import app instead. Alternatively, if I wanted to just say run() instead of, I could have done from import run or from .app import run. In the end, it doesn't make much technical difference HOW I do that import, so long as the code is readable.

(Side Note: We could debate whether it's logical for me to have a separate for my main run() function, but I have my reasons...and they're beyond the scope of this guide.)

The part that confuses most folks at first is the whole if name == 'main' statement. Python doesn't have much boilerplate - code that must be used pretty universally with little to no modification - but this is one of those rare bits.

name is a special string attribute of every Python module. If I were to stick the line print(name) at the top of omission/data/, when that module got imported (and thus run), we'd see "" printed out.

When a module is run directly via python -m some_module, that module is assigned a special value of name: "main".

Thus, if name == 'main:` is actually checking if the module is being executed as the main module. If it is, it runs the code under the conditional.

You can see this in action another way. If I added the following to the bottom of

if name == 'main':



...I can then execute that module directly via python -m, and the results are the same as python -m omission. Now is being ignored altogether, and the name of omission/ is "".

Meanwhile, if I just run python -m omission, that special code in is ignored, since its name is now again.

See how that works?

Wrapping Up

Let's review.

  • Every project should use a VCS, such as Git. There are plenty of options to choose from.
  • Every Python code file (.py) is a module.
  • Organize your modules into packages. Each package must contain a special file.
  • Your project should generally consist of one top-level package, usually containing sub-packages. That top-level package usually shares the name of your project, and exists as a directory in the root of your project's repository.
  • NEVER EVER EVER use * in an import statement. Before you entertain a possible exception, the Zen of Python points out "Special cases aren't special enough to break the rules."
  • Use absolute or relative imports to refer to other modules in your project.
  • Executable projects should have a in the top-level package. Then, you can directly execute that package with python -m myproject.

Of course, there are a lot more advanced concepts and tricks we can employ in structuring a Python project, but we won't be discussing that here. I highly recommend reading the docs:

By : Jason C. McDonald

What's Python IDLE? How to use Python IDLE to interact with Python?

What's Python IDLE? How to use Python IDLE to interact with Python?

In this tutorial, you’ll learn all the basics of using **IDLE** to write Python programs. You'll know what Python IDLE is and how you can use it to interact with Python directly. You’ve also learned how to work with Python files and customize Python IDLE to your liking.

In this tutorial, you'll learn how to use the development environment included with your Python installation. Python IDLE is a small program that packs a big punch! You'll learn how to use Python IDLE to interact with Python directly, work with Python files, and improve your development workflow.

If you’ve recently downloaded Python onto your computer, then you may have noticed a new program on your machine called IDLE. You might be wondering, “What is this program doing on my computer? I didn’t download that!” While you may not have downloaded this program on your own, IDLE comes bundled with every Python installation. It’s there to help you get started with the language right out of the box. In this tutorial, you’ll learn how to work in Python IDLE and a few cool tricks you can use on your Python journey!

In this tutorial, you’ll learn:

  • What Python IDLE is
  • How to interact with Python directly using IDLE
  • How to edit, execute, and debug Python files with IDLE
  • How to customize Python IDLE to your liking

Table of Contents

What Is Python IDLE?

Every Python installation comes with an Integrated Development and Learning Environment, which you’ll see shortened to IDLE or even IDE. These are a class of applications that help you write code more efficiently. While there are many IDEs for you to choose from, Python IDLE is very bare-bones, which makes it the perfect tool for a beginning programmer.

Python IDLE comes included in Python installations on Windows and Mac. If you’re a Linux user, then you should be able to find and download Python IDLE using your package manager. Once you’ve installed it, you can then use Python IDLE as an interactive interpreter or as a file editor.

An Interactive Interpreter

The best place to experiment with Python code is in the interactive interpreter, otherwise known as a shell. The shell is a basic Read-Eval-Print Loop (REPL). It reads a Python statement, evaluates the result of that statement, and then prints the result on the screen. Then, it loops back to read the next statement.

The Python shell is an excellent place to experiment with small code snippets. You can access it through the terminal or command line app on your machine. You can simplify your workflow with Python IDLE, which will immediately start a Python shell when you open it.

A File Editor

Every programmer needs to be able to edit and save text files. Python programs are files with the .py extension that contain lines of Python code. Python IDLE gives you the ability to create and edit these files with ease.

Python IDLE also provides several useful features that you’ll see in professional IDEs, like basic syntax highlighting, code completion, and auto-indentation. Professional IDEs are more robust pieces of software and they have a steep learning curve. If you’re just beginning your Python programming journey, then Python IDLE is a great alternative!

How to Use the Python IDLE Shell

The shell is the default mode of operation for Python IDLE. When you click on the icon to open the program, the shell is the first thing that you see:

This is a blank Python interpreter window. You can use it to start interacting with Python immediately. You can test it out with a short line of code:

Here, you used print() to output the string "Hello, from IDLE!" to your screen. This is the most basic way to interact with Python IDLE. You type in commands one at a time and Python responds with the result of each command.

Next, take a look at the menu bar. You’ll see a few options for using the shell:

You can restart the shell from this menu. If you select that option, then you’ll clear the state of the shell. It will act as though you’ve started a fresh instance of Python IDLE. The shell will forget about everything from its previous state:

In the image above, you first declare a variable, x = 5. When you call print(x), the shell shows the correct output, which is the number 5. However, when you restart the shell and try to call print(x) again, you can see that the shell prints a traceback. This is an error message that says the variable x is not defined. The shell has forgotten about everything that came before it was restarted.

You can also interrupt the execution of the shell from this menu. This will stop any program or statement that’s running in the shell at the time of interruption. Take a look at what happens when you send a keyboard interrupt to the shell:

A KeyboardInterrupt error message is displayed in red text at the bottom of your window. The program received the interrupt and has stopped executing.

How to Work With Python Files

Python IDLE offers a full-fledged file editor, which gives you the ability to write and execute Python programs from within this program. The built-in file editor also includes several features, like code completion and automatic indentation, that will speed up your coding workflow. First, let’s take a look at how to write and execute programs in Python IDLE.

Opening a File

To start a new Python file, select File → New File from the menu bar. This will open a blank file in the editor, like this:

From this window, you can write a brand new Python file. You can also open an existing Python file by selecting File → Open… in the menu bar. This will bring up your operating system’s file browser. Then, you can find the Python file you want to open.

If you’re interested in reading the source code for a Python module, then you can select File → Path Browser. This will let you view the modules that Python IDLE can see. When you double click on one, the file editor will open up and you’ll be able to read it.

The content of this window will be the same as the paths that are returned when you call sys.path. If you know the name of a specific module you want to view, then you can select File → Module Browser and type in the name of the module in the box that appears.

Editing a File

Once you’ve opened a file in Python IDLE, you can then make changes to it. When you’re ready to edit a file, you’ll see something like this:

The contents of your file are displayed in the open window. The bar along the top of the window contains three pieces of important information:

  1. The name of the file that you’re editing
  2. The full path to the folder where you can find this file on your computer
  3. The version of Python that IDLE is using

In the image above, you’re editing the file, which is located in the Documents folder. The Python version is 3.7.1, which you can see in parentheses.

There are also two numbers in the bottom right corner of the window:

  1. Ln: shows the line number that your cursor is on.
  2. Col: shows the column number that your cursor is on.

It’s useful to see these numbers so that you can find errors more quickly. They also help you make sure that you’re staying within a certain line width.

There are a few visual cues in this window that will help you remember to save your work. If you look closely, then you’ll see that Python IDLE uses asterisks to let you know that your file has unsaved changes:

The file name shown in the top of the IDLE window is surrounded by asterisks. This means that there are unsaved changes in your editor. You can save these changes with your system’s standard keyboard shortcut, or you can select File → Save from the menu bar. Make sure that you save your file with the .py extension so that syntax highlighting will be enabled.

Executing a File

When you want to execute a file that you’ve created in IDLE, you should first make sure that it’s saved. Remember, you can see if your file is properly saved by looking for asterisks around the filename at the top of the file editor window. Don’t worry if you forget, though! Python IDLE will remind you to save whenever you attempt to execute an unsaved file.

To execute a file in IDLE, simply press the F5 key on your keyboard. You can also select Run → Run Module from the menu bar. Either option will restart the Python interpreter and then run the code that you’ve written with a fresh interpreter. The process is the same as when you run python3 -i [filename] in your terminal.

When your code is done executing, the interpreter will know everything about your code, including any global variables, functions, and classes. This makes Python IDLE a great place to inspect your data if something goes wrong. If you ever need to interrupt the execution of your program, then you can press Ctrl+C in the interpreter that’s running your code.

How to Improve Your Workflow

Now that you’ve seen how to write, edit, and execute files in Python IDLE, it’s time to speed up your workflow! The Python IDLE editor offers a few features that you’ll see in most professional IDEs to help you code faster. These features include automatic indentation, code completion and call tips, and code context.

Automatic Indentation

IDLE will automatically indent your code when it needs to start a new block. This usually happens after you type a colon (:). When you hit the enter key after the colon, your cursor will automatically move over a certain number of spaces and begin a new code block.

You can configure how many spaces the cursor will move in the settings, but the default is the standard four spaces. The developers of Python agreed on a standard style for well-written Python code, and this includes rules on indentation, whitespace, and more. This standard style was formalized and is now known as PEP 8. To learn more about it, check out How to Write Beautiful Python Code With PEP 8.

Code Completion and Call Tips

When you’re writing code for a large project or a complicated problem, you can spend a lot of time just typing out all of the code you need. Code completion helps you save typing time by trying to finish your code for you. Python IDLE has basic code completion functionality. It can only autocomplete the names of functions and classes. To use autocompletion in the editor, just press the tab key after a sequence of text.

Python IDLE will also provide call tips. A call tip is like a hint for a certain part of your code to help you remember what that element needs. After you type the left parenthesis to begin a function call, a call tip will appear if you don’t type anything for a few seconds. For example, if you can’t quite remember how to append to a list, then you can pause after the opening parenthesis to bring up the call tip:

The call tip will display as a popup note, reminding you how to append to a list. Call tips like these provide useful information as you’re writing code.

Code Context

The code context functionality is a neat feature of the Python IDLE file editor. It will show you the scope of a function, class, loop, or other construct. This is particularly useful when you’re scrolling through a lengthy file and need to keep track of where you are while reviewing code in the editor.

To turn it on, select Options → Code Context in the menu bar. You’ll see a gray bar appear at the top of the editor window:

As you scroll down through your code, the context that contains each line of code will stay inside of this gray bar. This means that the print() functions you see in the image above are a part of a main function. When you reach a line that’s outside the scope of this function, the bar will disappear.

How to Debug in IDLE

A bug is an unexpected problem in your program. They can appear in many forms, and some are more difficult to fix than others. Some bugs are tricky enough that you won’t be able to catch them by just reading through your program. Luckily, Python IDLE provides some basic tools that will help you debug your programs with ease!

Interpreter DEBUG Mode

If you want to run your code with the built-in debugger, then you’ll need to turn this feature on. To do so, select Debug → Debugger from the Python IDLE menu bar. In the interpreter, you should see [DEBUG ON] appear just before the prompt (>>>), which means the interpreter is ready and waiting.

When you execute your Python file, the debugger window will appear:

In this window, you can inspect the values of your local and global variables as your code executes. This gives you insight into how your data is being manipulated as your code runs.

You can also click the following buttons to move through your code:

  • Go: Press this to advance execution to the next breakpoint. You’ll learn about these in the next section.
  • Step: Press this to execute the current line and go to the next one.
  • Over: If the current line of code contains a function call, then press this to step over that function. In other words, execute that function and go to the next line, but don’t pause while executing the function (unless there is a breakpoint).
  • Out: If the current line of code is in a function, then press this to step out of this function. In other words, continue the execution of this function until you return from it.

Be careful, because there is no reverse button! You can only step forward in time through your program’s execution.

You’ll also see four checkboxes in the debug window:

  1. Globals: your program’s global information
  2. Locals: your program’s local information during execution
  3. Stack: the functions that run during execution
  4. Source: your file in the IDLE editor

When you select one of these, you’ll see the relevant information in your debug window.


A breakpoint is a line of code that you’ve identified as a place where the interpreter should pause while running your code. They will only work when DEBUG mode is turned on, so make sure that you’ve done that first.

To set a breakpoint, right-click on the line of code that you wish to pause. This will highlight the line of code in yellow as a visual indication of a set breakpoint. You can set as many breakpoints in your code as you like. To undo a breakpoint, right-click the same line again and select Clear Breakpoint.

Once you’ve set your breakpoints and turned on DEBUG mode, you can run your code as you would normally. The debugger window will pop up, and you can start stepping through your code manually.

Errors and Exceptions

When you see an error reported to you in the interpreter, Python IDLE lets you jump right to the offending file or line from the menu bar. All you have to do is highlight the reported line number or file name with your cursor and select Debug → Go to file/line from the menu bar. This is will open up the offending file and take you to the line that contains the error. This feature works regardless of whether or not DEBUG mode is turned on.

Python IDLE also provides a tool called a stack viewer. You can access it under the Debug option in the menu bar. This tool will show you the traceback of an error as it appears on the stack of the last error or exception that Python IDLE encountered while running your code. When an unexpected or interesting error occurs, you might find it helpful to take a look at the stack. Otherwise, this feature can be difficult to parse and likely won’t be useful to you unless you’re writing very complicated code.

How to Customize Python IDLE

There are many ways that you can give Python IDLE a visual style that suits you. The default look and feel is based on the colors in the Python logo. If you don’t like how anything looks, then you can almost always change it.

To access the customization window, select Options → Configure IDLE from the menu bar. To preview the result of a change you want to make, press Apply. When you’re done customizing Python IDLE, press OK to save all of your changes. If you don’t want to save your changes, then simply press Cancel.

There are 5 areas of Python IDLE that you can customize:

  1. Fonts/Tabs
  2. Highlights
  3. Keys
  4. General
  5. Extensions

Let’s take a look at each of them now.


The first tab allows you to change things like font color, font size, and font style. You can change the font to almost any style you like, depending on what’s available for your operating system. The font settings window looks like this:

You can use the scrolling window to select which font you prefer. (I recommend you select a fixed-width font like Courier New.) Pick a font size that’s large enough for you to see well. You can also click the checkbox next to Bold to toggle whether or not all text appears in bold.

This window will also let you change how many spaces are used for each indentation level. By default, this will be set to the PEP 8 standard of four spaces. You can change this to make the width of your code more or less spread out to your liking.


The second customization tab will let you change highlights. Syntax highlighting is an important feature of any IDE that highlights the syntax of the language that you’re working in. This helps you visually distinguish between the different Python constructs and the data used in your code.

Python IDLE allows you to fully customize the appearance of your Python code. It comes pre-installed with three different highlight themes:

  1. IDLE Day
  2. IDLE Night
  3. IDLE New

You can select from these pre-installed themes or create your own custom theme right in this window:

Unfortunately, IDLE does not allow you to install custom themes from a file. You have to create customs theme from this window. To do so, you can simply start changing the colors for different items. Select an item, and then press Choose color for. You’ll be brought to a color picker, where you can select the exact color that you want to use.

You’ll then be prompted to save this theme as a new custom theme, and you can enter a name of your choosing. You can then continue changing the colors of different items if you’d like. Remember to press Apply to see your changes in action!


The third customization tab lets you map different key presses to actions, also known as keyboard shortcuts. These are a vital component of your productivity whenever you use an IDE. You can either come up with your own keyboard shortcuts, or you can use the ones that come with IDLE. The pre-installed shortcuts are a good place to start:

The keyboard shortcuts are listed in alphabetical order by action. They’re listed in the format Action - Shortcut, where Action is what will happen when you press the key combination in Shortcut. If you want to use a built-in key set, then select a mapping that matches your operating system. Pay close attention to the different keys and make sure your keyboard has them!

Creating Your Own Shortcuts

The customization of the keyboard shortcuts is very similar to the customization of syntax highlighting colors. Unfortunately, IDLE does not allow you to install custom keyboard shortcuts from a file. You must create a custom set of shortcuts from the Keys tab.

Select one pair from the list and press Get New Keys for Selection. A new window will pop up:

Here, you can use the checkboxes and scrolling menu to select the combination of keys that you want to use for this shortcut. You can select Advanced Key Binding Entry >> to manually type in a command. Note that this cannot pick up the keys you press. You have to literally type in the command as you see it displayed to you in the list of shortcuts.


The fourth tab of the customization window is a place for small, general changes. The general settings tab looks like this:

Here, you can customize things like the window size and whether the shell or the file editor opens first when you start Python IDLE. Most of the things in this window are not that exciting to change, so you probably won’t need to fiddle with them much.


The fifth tab of the customization window lets you add extensions to Python IDLE. Extensions allow you to add new, awesome features to the editor and the interpreter window. You can download them from the internet and install them to right into Python IDLE.

To view what extensions are installed, select Options → Configure IDLE -> Extensions. There are many extensions available on the internet for you to read more about. Find the ones you like and add them to Python IDLE!


In this tutorial, you’ve learned all the basics of using IDLE to write Python programs. You know what Python IDLE is and how you can use it to interact with Python directly. You’ve also learned how to work with Python files and customize Python IDLE to your liking.

You’ve learned how to:

  • Work with the Python IDLE shell
  • Use Python IDLE as a file editor
  • Improve your workflow with features to help you code faster
  • Debug your code and view errors and exceptions
  • Customize Python IDLE to your liking

Now you’re armed with a new tool that will let you productively write Pythonic code and save you countless hours down the road. Happy programming!

Importance of Python Programming skills

Importance of Python Programming skills

Python is one among the most easiest and user friendly programming languages when it comes to the field of software engineering. The codes and syntaxes of python is so simple and easy to use that it can be deployed in any problem solving...

Python is one among the most easiest and user friendly programming languages when it comes to the field of software engineering. The codes and syntaxes of python is so simple and easy to use that it can be deployed in any problem solving challenges. The codes of Python can easily be deployed in Data Science and Machine Learning. Due to this ease of deployment and easier syntaxes, this platform has a lot of real world problem solving applications. According to the sources the companies are eagerly hunting for the professionals with python skills along with SQL. An average python developer in the united states makes around 1 lakh U.S Dollars per annum. In some of the top IT hubs in our country like Bangalore, the demand for professionals in the domains of Data Science and Python Programming has surpassed over the past few years. As a result of which a lot of various python certification courses are available right now.

Array in Python: An array is defined as a data structure that can hold a fixed number of elements that are of the same python data type. The following are some of the basic functions of array in python:

  1. To find the transverse
  2. For insertion of the elements
  3. For deletion of the elements
  4. For searching the elements

Along with this one can easily crack any python interview by means of python interview questions

Tkinter Python Tutorial | Python GUI Programming Using Tkinter Tutorial | Python Training

This video on Tkinter tutorial covers all the basic aspects of creating and making use of your own simple Graphical User Interface (GUI) using Python. It establishes all of the concepts needed to get started with building your own user interfaces while coding in Python.

This video on Tkinter tutorial covers all the basic aspects of creating and making use of your own simple Graphical User Interface (GUI) using Python. It establishes all of the concepts needed to get started with building your own user interfaces while coding in Python.

Learn More

☞ Complete Python Bootcamp: Go from zero to hero in Python 3

☞ Complete Python Masterclass

☞ Learn Python by Building a Blockchain & Cryptocurrency

☞ Python and Django Full Stack Web Developer Bootcamp

☞ The Python Bible™ | Everything You Need to Program in Python

☞ Learning Python for Data Analysis and Visualization

☞ Python for Financial Analysis and Algorithmic Trading

☞ The Modern Python 3 Bootcamp

Original video source: