How to Create PDF Documents with Django in 2019

If you've read my&nbsp;<strong>Web Development with Django Cookbook</strong>, you might remember a recipe for creating PDF documents using&nbsp;<strong>Pisa xhtml2pdf</strong>. Well, this library does its job, but it supports only a subset of HTML and CSS features. For example, for multi-column layouts, you have to use tables, like it's 1994.

If you've read my Web Development with Django Cookbook, you might remember a recipe for creating PDF documents using Pisa xhtml2pdf. Well, this library does its job, but it supports only a subset of HTML and CSS features. For example, for multi-column layouts, you have to use tables, like it's 1994.

I needed some fresh and flexible option to generate donation receipts for the donation platform www.make-impact.org and reports for the strategic planner 1st things 1st I have been building. After a quick research I found another much more suitable library. It's called WeasyPrint. In this article, I will tell you how to use it with Django and what's valuable in it.

Features

WeasyPrint uses HTML and CSS 2.1 to create pixel-perfect, or let's rather say point-perfect, PDF documents. WeasyPrint doesn't use WebKit or Gecko but has its own rendering engine. As a proof that it works correctly, it passes the famous among web developers Acid2 test which was created back in the days before HTML5 to check how compatible browsers are with CSS 2 standards.

All supported features (and unsupported exceptions) are listed in the documentation. But my absolute favorites are these:

  • Layouts with floated elements. You don't have to use tables anymore if you want to have the recipient address on the left side and the sender information on the right side in a letter, or if you want to have the main content and the side notes in an exercise book. Just use floated elements.
  • Working links. The generated document can have clickable links to external URLs and internal anchors. You can straightforwardly create a clickable table of contents or a banner that leads back to your website.
  • Support for web fonts. With the wide variety of embeddable web fonts, your documents don't need to look boring anymore. Why not write titles in elegant cursive or in bold western letters?
  • Background images. By default, when you print an HTML page, all foreground images get printed, but the backgrounds are skipped. When you generate a PDF document for printing, you can show background images anywhere, even in the margins of the printed page.
  • SVG kept as vector images. When you have diagrams and graphics in a PDF document, you usually want to preserve the quality of the lines. Even if they look good on the screen, raster images might be not what you want, because on a printed page the resolution will differ and the quality can be lost. WeasyPrint keeps SVG images as vector images, so you have the highest possible quality in the prints.
Important Notes

WeasyPrint needs Python 3.4 or newer. That's great for new Django projects, but might be an obstacle if you want to integrate it into an existing website running on Python 2.7. Can it be the main argumentation for you to upgrade your old Django projects to the new Python version?

WeasyPrint is dependent on several OS libraries: Pango, GdkPixbuf, Cairo, and Libffi. In the documentation, there are understandable one-line instructions how to install them on different operating systems. You can have a problem only if you don't have full control of the server where you are going to deploy your project.

If you need some basic headers and footers for all pages, you can use @pageCSS selector for that. If you need extended headers and footers for each page, it's best to combine the PDF document out of separate HTML documents for each page. Examples follow below.

The fun fact, Emojis are drawn using some weird raster single-color font. I don't recommend using them in your PDFs unless you replace them with SVG images.

Show Me the Code

A technical article is always more valuable when it has some quick code snippets to copy and paste. Here you go!

Simple PDF View

This snippet generates a donation receipt and shows it directly in the browser. Should the PDF be downloadable immediately, change content disposition from inline to attachment.

# -*- coding: UTF-8 -*-
from __future__ import unicode_literals

from django.http import HttpResponse
from django.template.loader import render_to_string
from django.utils.text import slugify
from django.contrib.auth.decorators import login_required

from weasyprint import HTML
from weasyprint.fonts import FontConfiguration

from .models import Donation

@login_required
def donation_receipt(request, donation_id):
donation = get_object_or_404(Donation, pk=donation_id, user=request.user)
response = HttpResponse(content_type="application/pdf")
response['Content-Disposition'] = "inline; filename={date}-{name}-donation-receipt.pdf".format(
date=donation.created.strftime('%Y-%m-%d'),
name=slugify(donation.donor_name),
)
html = render_to_string("donations/receipt_pdf.html", {
'donation': donation,
})

font_config = FontConfiguration()
HTML(string=html).write_pdf(response, font_config=font_config)
return response

Page Configuration Using CSS

Your PDF document can have a footer with an image and text on every page, using background-image and content properties:

{% load staticfiles i18n %}
<link href="https://fonts.googleapis.com/css?family=Playfair+Display:400,400i,700,700i,900" rel="stylesheet" />
<style>
@page {
size: "A4";
margin: 2.5cm 1.5cm 3.5cm 1.5cm;
@bottom-center {
background: url({% static 'site/img/logo-pdf.svg' %}) no-repeat center top;
background-size: auto 1.5cm;
padding-top: 1.8cm;
content: "{% trans "Donation made via www.make-impact.org" %}";
font: 10pt "Playfair Display";
text-align: center;
vertical-align: top;
}
}
</style>

Pagination

You can show page numbers in the footer using CSS as follows.

@page {
margin: 3cm 2cm;
@top-center {
content: "Documentation";
}
@bottom-right {
content: "Page " counter(page) " of " counter(pages);
}
}

Horizontal Page Layout

You can rotate the page to horizontal layout with size: landscape.

@page {
size: landscape;
}

HTML-based Footer

Another option to show an image and text in the header or footer on every page is to use an HTML element with position: fixed. This way you have more flexibility about formatting, but the element on all your pages will have the same content.

<style>
footer {
position: fixed;
bottom: -2.5cm;
width: 100%;
text-align: center;
font-size: 10pt;
}
footer img {
height: 1.5cm;
}
</style>
<footer>
{% with website_url="https://www.make-impact.org" %}
<a href="{{ website_url }}">
<img alt="" src="{% static 'site/img/logo-contoured.svg' %}" />
</a><br />
{% blocktrans %}Donation made via <a href="{{ website_url }}">www.make-impact.org</a>{% endblocktrans %}
{% endwith %}
</footer>

Document Rendering from Page to Page

When you need to have a document with complex unique headers and footers, it is best to render each page as a separate HTML document and then to combine them into one. This is how to do that:

def letter_pdf(request, letter_id):
letter = get_object_or_404(Letter, pk=letter_id)
response = HttpResponse(content_type='application/pdf')
response['Content-Disposition'] = (
'inline; '
f'filename={letter.created:%Y-%m-%d}-letter.pdf'
)
COMPONENTS = [
'letters/pdf/cover.html',
'letters/pdf/page01.html',
'letters/pdf/page02.html',
'letters/pdf/page03.html',
]
documents = []
font_config = FontConfiguration()
for template_name in COMPONENTS:
html = render_to_string(template_name, {
'letter': letter,
})
document = HTML(string=html).render(font_config=font_config)
documents.append(document)

all_pages = [page for document in documents for page in document.pages]
documents[0].copy(all_pages).write_pdf(response)

return response

Final Thoughts

I believe that WeasyPrint could be used not only for invoices, tickets, or booking confirmations but also for online magazines and small booklets. If you want to see PDF rendering with WeasyPrint in action, make a donation to your chosen organization at www.make-impact.org (when it's ready) and download the donation receipt. Or check the demo account at my.1st-things-1st.com and find the button to download the results of a prioritization project as PDF document.


Cover photo by Daniel Korpai.

Python Django Tutorial | Django Course

Python Django Tutorial | Django Course

🔥Intellipaat Django course: https://intellipaat.com/python-django-training/ 👉This Python Django tutorial will help you learn what is django web development &...

This Python Django tutorial will help you learn what is django web development & application, what is django and introduction to django framework, how to install django and start programming, how to create a django project and how to build django app. There is a short django project as well to master this python django framework.

Why should you watch this Django tutorial?

You can learn Django much faster than any other programming language and this Django tutorial helps you do just that. Our Django tutorial has been created with extensive inputs from the industry so that you can learn Django and apply it for real world scenarios.

Developing Restful APIs with Python, Django and Django Rest Framework

Developing Restful APIs with Python, Django and Django Rest Framework

This article is a definitive guide for starters who want to develop projects with RESTful APIs using Python, Django and Django Rest Framework.

This article is a definitive guide for starters who want to develop projects with RESTful APIs using Python, Django and Django Rest Framework.

Introduction
  • Django is a web framework written in Python
  • Python is an interpreted high-level programming language for general-purpose programming
  • API or Application Programming Interface is a set of rules and mechanisms by which one application or component interacts with the others
  • REST or Representational State Transfer is a software architecture

REST APIs

As described in a dissertion by Roy Fielding,

REST is an "architectural style' that basically exploits the existing technology and protocols of the web.
In simple definition, it is the data representation for a client in the format that is suitable for it.

Hence, RESTful + API is a commonly used terminology for the implementation of such architecture and constraints (eg. in web services).

Here is an example GET request from GitHub's API

$ curl https://api.github.com/users/joshuadeguzman

You will see an output similar to this

{
  "login": "joshuadeguzman",
  "id": 20706361,
  "node_id": "MDQ6VXNlcjIwNzA2MzYx",
  "avatar_url": "https://avatars1.githubusercontent.com/u/20706361?v=4",
  "gravatar_id": "",
  "url": "https://api.github.com/users/joshuadeguzman",
  "html_url": "https://github.com/joshuadeguzman",
  "followers_url": "https://api.github.com/users/joshuadeguzman/followers",
  "following_url": "https://api.github.com/users/joshuadeguzman/following{/other_user}",
  "gists_url": "https://api.github.com/users/joshuadeguzman/gists{/gist_id}",
  "starred_url": "https://api.github.com/users/joshuadeguzman/starred{/owner}{/repo}",
  "subscriptions_url": "https://api.github.com/users/joshuadeguzman/subscriptions",
  "organizations_url": "https://api.github.com/users/joshuadeguzman/orgs",
  "repos_url": "https://api.github.com/users/joshuadeguzman/repos",
  "events_url": "https://api.github.com/users/joshuadeguzman/events{/privacy}",
  "received_events_url": "https://api.github.com/users/joshuadeguzman/received_events",
  "type": "User",
  "site_admin": false,
  "name": "Joshua de Guzman",
  "company": "@freelancer",
  "blog": "https://joshuadeguzman.me",
  "location": "Manila, PH",
  "email": null,
  "hireable": true,
  "bio": "Android Engineer at @freelancer. Building tools for humans.",
  "public_repos": 75,
  "public_gists": 2,
  "followers": 38,
  "following": 10,
  "created_at": "2016-07-28T15:19:54Z",
  "updated_at": "2019-06-16T10:26:39Z"
}

Shown above is a data set in JSON format.

JSON or JavaScript Object Notation is an open-standard file format that uses human-readable text to transmit data objects consisting of attribute–value pairs and array data types.
Other formats include XML, INI, CSV, etc. But today, JSON is widely use for its structure is intuitive, making it comfortable to read and map domain objects no matter what programming language is being used.

Python and Django

Python, according to its creator, Guido van Rossum, is a

high-level programming language, and its core design philosophy is all about code readability and a syntax which allows programmers to express concepts in a few lines of code.
Python uses english like words representation (eg. for methods, reserve keywords and control flow) that makes it easier for any beginner to jump right into it. It also features dynamic type system meaning it verifies the type safety of program at runtime. It also does automatic memory management.

print(5 + 5) # This will result to 10

Django is a high-level Python Web Framework that enables developers to deliver projects on time with clean and pragmatic design.

Its flagship features include a design for fast development, a secure and scalable product.

Quick Django Overview

Django's way of propagating changes to your database schema is by means of its migration modules.

Sample User model

from django.db import models

class User(models.Model):
    first_name = models.CharField(max_length=50)
    middle_name = models.CharField(max_length=50)
    last_name = models.CharField(max_length=50)

    def __str__(self):
        return self.name

If any changes are made on your models, run makemigrations

$ python manage.py makemigrations

Finally, you can synchronize the database with the set of models and migrations

$ python manage.py migrate

REST APIs with Django Rest Framework

DRF or Django REST Framework is a powerful and flexible toolkit for building Web APIs. It helps the developers to not reinvent the wheel by rolling out complex and solid REST API from scratch by themselves. Because when your projects become more and more complex, you will soon realise the need of using DRF or other helpful rest framework.

1. Installation & Project Setup

Create project directory

$ mkdir djangoapi

Install virtualenv via pip

A virtual environment enables a project to have additional libraries or changes in packages within its environment without disturbing global or libraries of other environments.

pip is a package management system used to install and manage software packages written in Python.

$ pip install virtualenv

To create an environment folder in your project's directory

$ cd djangoapi
$ virtualenv venv

To activate the environment

$ source venv/bin/activate

To undo these changes to your path, simply run deactivate. More on virtualenv.

Install django, djangorestframework

$ pip install django
$ pip install djangorestframework

Creating a django project

$ django-admin startproject blog

Running your project

$ python manage.py runserver

System check identified no issues (0 silenced).

You have 15 unapplied migration(s). Your project may not work properly until you apply the migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.

August 16, 2018 - 09:58:36
Django version 2.1, using settings 'blog.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

The unapplied migrations refer to the default migration files included when you start a django project.

To synchronize these migration files, simply run migrate

$ python manage.py migrate

Running migrations:
  Applying contenttypes.0001_initial... OK
  Applying auth.0001_initial... OK
  Applying admin.0001_initial... OK
  Applying admin.0002_logentry_remove_auto_add... OK
  Applying admin.0003_logentry_add_action_flag_choices... OK
  Applying contenttypes.0002_remove_content_type_name... OK
  Applying auth.0002_alter_permission_name_max_length... OK
  Applying auth.0003_alter_user_email_max_length... OK
  Applying auth.0004_alter_user_username_opts... OK
  Applying auth.0005_alter_user_last_login_null... OK
  Applying auth.0006_require_contenttypes_0002... OK
  Applying auth.0007_alter_validators_add_error_messages... OK
  Applying auth.0008_alter_user_username_max_length... OK
  Applying auth.0009_alter_user_last_name_max_length... OK
  Applying sessions.0001_initial... OK

The default database in our project is currently set to SQLite named db.sqlite3.

Creating a django project's app

$ cd blog
$ python manage.py startapp posts

The project structure should look like

$ find .
./posts
./posts/migrations
./posts/migrations/__init__.py
./posts/models.py
./posts/__init__.py
./posts/apps.py
./posts/admin.py
./posts/tests.py
./posts/views.py
./db.sqlite3
./blog
./blog/__init__.py
./blog/__pycache__
./blog/__pycache__/settings.cpython-36.pyc
./blog/__pycache__/wsgi.cpython-36.pyc
./blog/__pycache__/__init__.cpython-36.pyc
./blog/__pycache__/urls.cpython-36.pyc
./blog/settings.py
./blog/urls.py
./blog/wsgi.py
./manage.py

2. Model

Each model instance is a definitive source of the information about your data. In general, each model pertains to a single table in your database.

# djangoapi/blog/posts/models.py
from django.db import models

# Create your models here.

class Post(models.Model):
    title = models.CharField(max_length=255)
    content = models.TextField()
    is_featured = models.BooleanField(default=False)

    def __str__(self):
        return self.name

__str__ is called by the str() built-in function and by the print statement to compute the "informal" string representation of an object.
If you try running makemigrations, django won't see those changes yet.

$ No changes detected

To solve this, add your posts app to your project's installed apps.

# djangoapi/blog/blog/settings.py

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'posts' # Add it here
]

To continue with the migration of models

$ python manage.py makemigrations

Migrations for 'posts':
  posts/migrations/0001_initial.py
    - Create model Post

$ python manage.py migrate

Operations to perform:
  Apply all migrations: admin, auth, contenttypes, posts, sessions
Running migrations:
  Applying posts.0001_initial... OK


3. Serialization

Serializers allow data structure or object state to be translated into a format that can be stored or transmitted and be reconstructed later on.

Create API's serializers.py and views.py files and isolate them like this

# posts/api
posts/api/serializers.py
posts/api/views.py

# posts/migrations
posts/migrations/

# posts
posts/admin.py
posts/apps.py
posts/models.py
posts/tests.py
posts/views.py
# posts/api/serializers.py

from ..models import Post
from rest_framework import serializers

class PostSerializer(serializers.ModelSerializer):
    class Meta:
        model = Post
        fields = ('title', 'content', 'is_featured') # if not declared, all fields of the model will be shown

In this tutorial we have used ModelSerializer, more on this.

4. Views

A view function, or view for short, is a Python function that takes a Web request and returns a Web response.

# posts/api/views.py

from ..models import Post
from . import serializers
from rest_framework import generics, status
from rest_framework.response import Response

class PostListView(generics.ListAPIView):
    queryset = Post.objects.all()
    serializer_class = serializers.PostSerializer

As seen above, ListAPIView is used for read-only endpoints to represent a collection of model instances.

In this code snippet, we use generics view methods from the rest_framework, more on this.

5. URLs

This is where we setup our routes or URL paths to our designated views in which we expect specific responses for each.

# posts/urls.py

from django.urls import path
from . import views
from .api import views

urlpatterns = [
    path('', views.PostListView.as_view(), name=None)
]

6. Finalizing Setup

Ensure that the rest_framework is added to our project's apps.

# djangoapi/blog/blog/settings.py

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'rest_framework', # Add it here
    'posts'
]

7. Django Admin

Since we haven't setup our POST requests yet, we will be populating the database through django's admin panel.

To do that, create a superuser account admin with password 1234password.

$ python manage.py createsuperuser --email [email protected] --username admin

Password:
Password (again):
This password is too common.
Bypass password validation and create user anyway? [y/N]: y
Superuser created successfully.

Register the model in the admin panel.

# posts/admin.py

from django.contrib import admin
from .models import Post

# Register your models here.
admin.site.register(Post)

That's it. Visit the admin panel and update posts model's records. More on this.

8. Testing our API

$ python manage.py runserver
GET /api/v1/posts/
HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

[
    {
        "title": "Example Post #1",
        "content": "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.",
        "is_featured": false
    },
    {
        "title": "Example Post #2",
        "content": "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.",
        "is_featured": true
    }
]

Great. Now it's time for us to update our views and finish the standard CRUD operations.

9. Adding more views

POST is a method used for creating (sometimes updating) a resource in the database.

# posts/api/views.py

from ..models import Post
from . import serializers
from rest_framework import generics, status
from rest_framework.response import Response

class PostCreateView(generics.CreateAPIView):
    queryset = Post.objects.all()
    serializer_class = serializers.PostSerializer

    def create(self, request, *args, **kwargs):
        super(PostCreateView, self).create(request, args, kwargs)
        response = {"status_code": status.HTTP_200_OK,
                    "message": "Successfully created",
                    "result": request.data}
        return Response(response)

Most often, we separate List and Create view classes when we want to expose a list of data set while easily preventing a certain request to POST or create a resource in the database for that specific List view.

Usecase always varies for apps, you are opt to use ListCreateAPIView or even ViewSets for combining the logic for a set of related views.

Optional: Since we want to display the data in a more systematic way, we override create method and map our inline custom response handler.

Adding more views with methods GET, PATCH, DELETE to handle a specific blog post detail.

class PostDetailView(generics.RetrieveUpdateDestroyAPIView):
    queryset = Post.objects.all()
    serializer_class = serializers.PostSerializer

    def retrieve(self, request, *args, **kwargs):
        super(PostDetailView, self).retrieve(request, args, kwargs)
        instance = self.get_object()
        serializer = self.get_serializer(instance)
        data = serializer.data
        response = {"status_code": status.HTTP_200_OK,
                    "message": "Successfully retrieved",
                    "result": data}
        return Response(response)

    def patch(self, request, *args, **kwargs):
        super(PostDetailView, self).patch(request, args, kwargs)
        instance = self.get_object()
        serializer = self.get_serializer(instance)
        data = serializer.data
        response = {"status_code": status.HTTP_200_OK,
                    "message": "Successfully updated",
                    "result": data}
        return Response(response)

    def delete(self, request, *args, **kwargs):
        super(PostDetailView, self).delete(request, args, kwargs)
        response = {"status_code": status.HTTP_200_OK,
                    "message": "Successfully deleted"}
        return Response(response)

10. Updating URLs

# posts/urls.py

from django.urls import path
from . import views
from .api import views

urlpatterns = [
    path('', views.PostListView.as_view(), name=None),
    path('create/', views.PostCreateView.as_view(), name=None),
    path('<int:pk>/', views.PostDetailView.as_view(), name=None)
]

Now you can send requests to your API via Postman, your app or do a GETrequests from your browser, examples:

POST /api/v1/posts/create/
HTTP 200 OK
Allow: POST, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "status_code": 200,
    "message": "Successfully created",
    "result": {
        "csrfmiddlewaretoken": "rnSUN3XOIghnXA0yKghnQgxg0do39xhorYene5ALw3gWGThK5MjG6YjL8VUb7v2h",
        "title": "Creating a resource",
        "content": "Howdy mate!"
    }
}
GET /api/v1/posts/1/
HTTP 200 OK
Allow: GET, PUT, PATCH, DELETE, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

{
    "status_code": 200,
    "message": "Successfully retrieved",
    "result": {
        "title": "Sample Post",
        "content": "Sample Post Content",
        "is_featured": false
    }
}

That's it. You have successfully managed to develop RESTful APIs with DRF! Cheers!

Source code

Available on GitHub.