Anissa  Beier

Anissa Beier

1671887400

Top 9 DevSecOps Tools

In this article, we will learn about Top DevSecOps Tools and How to Orchestrate Them with Opsera. DevSecOps, a combination of "DevOps" and "Security," is an approach to software development that builds on the practices of DevOps and integrates a focus on security practices. This helps ensure that your products are secure and that vulnerabilities are tackled early in your software development process.

The goal is to create a secure pipeline that reflects actual business requirements while increasing speed and agility. Organizations can move faster and still be safe by taking an agile approach to DevOps and adding security controls. 

In this article, you'll learn more about DevSecOps, including why making your entire organization more secure is essential. You'll also learn about tools you can use for each step in a sample DevSecOps toolchain. See how Opsera makes it easy to orchestrate any security tools into a cohesive system for keeping your organization safe from cyberattacks to simple human error threats.

Why is DevSecOps Critical?

DevSecOps helps shift security left, ensuring that it's baked into the development process from the beginning, not viewed as something that slows development or left as a last-minute afterthought. By breaking down the traditional silos of development and security, DevSecOps allows developers and security professionals to work together towards a common goal, accelerating the development timeline while maintaining robust security practices. 

Done well, DevSecOps reduces friction between developers and security professionals. By building automated security checks into your development pipeline, your team can find potential vulnerabilities earlier in the build process, when they're still relatively isolated and easy to debug. This results in more secure software and a faster development cycle.

 

The Difference Between DevOps and DevSecOps

While DevOps and DevSecOps may appear similar in that they both aim to improve the efficiency of the software development process, there are also some significant differences.

*DevOps* is a software development technique and an organizational culture shift that automates and integrates the efforts of development and IT operations teams—two organizations that have traditionally worked separately or in silos—to create higher-quality software faster. 

*DevSecOps* emphasizes security through the entire development cycle, rather than focusing on application security only after deployment has occurred. It automates security integration at every stage of the software development lifecycle, from initial design to integration, testing, deployment, and software delivery.

Security Tools Needed to Implement DevSecOps

DevSecOps tools have taken over the world of secure software development, with developers and security operations teams adopting them to help prevent errors in their application code. The following list presents the top categories of these DevSecOps tools.

Software Composition Analysis (SCA) Tools

Software composition analysis tools examine programs for faults in open source code. These faults might include security vulnerabilities, open source software licenses, and quality issues. SCA solutions have reporting capabilities and the ability to create a software bill of materials (SBOM).

Static Application Security Testing (SAST) Tools

SAST tools examine source code to find vulnerabilities and security defects before they're deployed into production, enabling organizations to accelerate their release cycles while maintaining security standards and reducing risk.

Dynamic Application Security Testing (DAST) Tools

DAST is a black-box testing approach for detecting application vulnerabilities from an attacker's perspective without access to the source code. They replicate typical attack paths and simulate how attackers could see and exploit problems. Because it's automated and easy to combine with other DevOps technologies, DAST is a fantastic technique to check application security in testing or staging environments.

Dynamic application security testing solutions can automatically perform security testing on running applications, testing for some real threats. These tools test a web application's HTTP and HTML interfaces.

Container Scanners

Container scanning tools are software that scans containers for vulnerabilities to keep track of risks in an organization's environment. These tools ensure that containerized applications are secure before deployment and offer capabilities such as firewalling and recognizing anomalies based on behavioral analytics.

Container scanners may also be used to identify whether the software has been modified in a way that makes it dangerous or unusable.

Vaults

Vault is used to store secrets, allowing you to safeguard sensitive data such as API keys, passwords, certificates, and more. Vaults offer firm access control, thorough audit logs, and a single interface for all secrets throughout your infrastructure.

Using Security Tools Independently Vs. Orchestrating Them With Opsera

A common problem with DevSecOps tools is that you don't just have to pick the ones that will work best for a given use case, but the ones that will work for your use case and integrate with your existing workflows. Your tools all need to work together within a secure system, which can mean that your team is forced to use second-choice tools because they'll integrate well or waste time writing glue code just to get things to work. 

Opsera pipelines provide a native connection with not just the DevSecOps tools mentioned in this piece but nearly a hundred popular tools. Users can design pipelines simply by dragging and dropping as establish security governance levels within the pipeline. This empowers your team to use the tools they want and allows them to focus on creating great software, not making their pipelines work.

Opsera also integrates directly with your CI/CD tools to provide real-time visibility into the security posture of each release and get actionable intelligence. 

Top DevSecOps Tools

The DevSecOps toolchain comprises several tools to help with automation, application monitoring, and more. These tools are essential to the DevSecOps methodology because they allow teams to quickly and easily integrate changes or improve existing code.

Prisma Cloud

Prisma Cloud, formerly Twistlock, is among the first cloud-native security platforms. It provides complete coverage over your hosts, containers, and serverless — all in one place. Prisma Cloud helps you eliminate blind spots in your cloud security, achieve perfect compliance, and address risks proactively.

Prisma Cloud is famous for its smooth integration with CI/CD pipelines and infrastructure as code setups. It provides excellent visibility in multi-cloud environments and supports most cloud providers. It offers an excellent user interface and a world-class API integration experience.

Aqua

Aqua is a cloud security solution that automates threat detection across hybrid cloud environments. Aqua has full CI/CD integration and offers built-in integration capabilities with popular DevOps tools such as Jenkins and Docker. It also provides integrated support for Kubernetes clusters and native support for Amazon Web Services (AWS) EC2 containers, and automated patching via Puppet. The system is built for automated security, with full CI/CD integration and thorough scanning in real-time settings. It also supports a vulnerability management procedure that covers detection, remediation, testing, and deployment.

Checkmarx

Checkmarx is an automated security testing SAST platform that performs dynamic analysis of applications during runtime to pinpoint vulnerabilities. These vulnerabilities can lead to SQL injections or cross-site scripting (XSS). The platform integrates with existing CI/CD pipelines so that developers can fix issues before deployment into production.

This tool provides enterprises with highly accurate, user-configurable automatic scans of uncompiled source code. You allow them to uncover hundreds of potential security vulnerabilities in the most common coding languages and frameworks.

Sysdig

Sysdig is used for monitoring and troubleshooting your infrastructure and can also alert you to anomalies. It can help you detect compromised machines, malicious activity on your network, unauthorized changes to configuration files, and other potential threats.

Teams can use Sysdig to secure their build, detect and respond to threats, track performance, and continuously validate configurations and compliance.

SonarQube

SonarQube is a code quality management platform that allows you to monitor code quality and security, track metrics for both, and automate measuring your work. 

SonarQube is another SAST tool that offers an easy-to-use interface, making it simple to analyze and visualize your codebase. You can run automated checks on everything from object-oriented design flaws like dead code or duplicate functionality to security issues like injection vulnerabilities.

Fortify

Fortify is an application security platform that enables organizations to automate their application security strategies. It has applications in areas such as DevSecOps, cloud transformation, software supply chains, and more. 

Fortify is a powerful SAST and DAST tool for analyzing source code for vulnerabilities. It classifies code quality issues in terms of their security impact on the system as a whole, and has a powerful prioritization feature that reduces the noise and helps ensure that you work on the most critical issues first. By combining the powers of dynamic and static analysis, Fortify helps you gain valuable risk metrics and see an accurate picture of your security status.

Blackduck

Blackduck is an open-source SCA (software composition analysis) tool that is now owned by Synopsys. It reduces open source security risks by helping you analyze all available open-source components to detect any vulnerabilities, compliance risks, or code-quality issues within them.

Blackduck also alerts you whenever a new vulnerability is identified in any of your open-source components. Blackduck helps you and your organization understand and better manage the risks associated with using open-source software. 

Coverity

Coverity is a proprietary SAST tool by Synopsys. Coverity is highly effective in finding software bugs by identifying software weaknesses (CWEs) that include buffer overflow, handler errors, and more. Coverity helps you address security and quality issues earlier in your SDLC, allowing you to reduce risk across the application.

Coverity has a high detection rate, and integrates seamlessly with most CI/CD pipelines. Though false positives are uncommon, auditing the findings and marking false positives is easy with the tool. It is a quick and complete solution for most programming languages.

Jenkins

Jenkins is a continuous integration and server-based tool that allows you to automate repetitive tasks. It helps you increase security and reduce time spent on manual tests. It can also work with custom open source software, which makes it easy for users to set up their private build servers.

DevSecOps teams use Jenkins because it allows them to automate security-related tasks. Security teams use Jenkins plugins to run static analysis against code changes and automatically generate an application’s usage policy. Security must collaborate with DevOps stakeholders to integrate their requirements into existing pipelines.

Conclusion

The rise of modern applications means regulators will scrutinize software development more closely. DevSecOps tools could make all the difference in developing a dependable, secure, and compliant software solution for clients or stakeholders.

However, managing a DevSecOps toolchain can be challenging. Integrating these tools into your workflow takes work, connecting them to other parts of your software development process, and, even more, working on using those integrations.

Some common challenges include:

* Finding ways to provide security at all points in the software lifecycle, from design through deployment. Friction between security and development needs can result in both teams feeling that their work is being deprioritized. 

* Not having the time or resources to implement a fully-fledged DevSecOps toolchain. This can lead to developers spending too much time writing glue code or performing manual testing instead of automating testing and deployment.

* Keeping up with the rapidly changing landscape of DevSecOps tools. Integrating new tools into your existing toolchain can be challenging, and developers struggle when toolsets differ among teams due to a lack of standards and training.

That's where Opsera comes in. Opsera integrates with all of the DevSecOps tools you already use, letting you monitor the status of your security operations program through a single interface. It helps you automate your DevSecOps pipeline and manage all the tools and processes required to run it smoothly. 

With Opsera, you can see how each tool in your DevSecOps toolchain is performing and troubleshooting issues quickly using integrated log data and real-time monitoring tools. Opsera also offers a web-based portal where you can view your resources in a single location—including logs, metrics, health checks, Docker registry information, alerts, and schedules—so you can quickly see how everything works together. 

The visibility makes finding and fixing security issues much more manageable, using a DevSecOps orchestration tool like Opsera.  Having visibility across the supply chain and repairing security issues in production can be dramatically reduced and cost-saving.

Original article sourced at: https://www.opsera.io

#devsecops 

What is GEEK

Buddha Community

Top 9 DevSecOps Tools
Gerhard  Brink

Gerhard Brink

1624692167

Top 10 Big Data Tools for 2021!

In today’s tech world, data is everything. As the focus on data grows, it keeps multiplying by leaps and bounds each day. If earlier mounds of data were talked about in kilobytes and megabytes, today terabytes have become the base unit for organizational data. This coming in of big data has transformed paradigms of data storage, processing, and analytics.

Instead of only gathering and storing information that can offer crucial insights to meet short-term goals, an increasing number of enterprises are storing much larger amounts of data gathered from multiple resources across business processes. However, all this data is meaningless on its own. It can add value only when it is processed and analyzed the right way to draw point insights that can improve decision-making.

Processing and analyzing big data is not an easy task. If not handled correctly, big data can turn into an obstacle rather than an effective solution for businesses. Effective handling of big data management  requires to use of tools that can steer you toward tangible, substantial results. For that, you need a set of great big data tools that will not only solve this problem but also help you in producing substantial results.

Data storage tools, warehouses, and data lakes all play a crucial role in helping companies store and sort vast amounts of information. However, the true power of big data lies in its analytics. There are a host of big data tools in the market today to aid a business’ journey from gathering data to storing, processing, analyzing, and reporting it. Let’s take a closer look at some of the top big data tools that can help you inch closer to your goal of establishing data-driven decision-making and workflow processes.

Apache Hadoop

Apache Spark

Flink

Apache Storm

Apache Cassandra

#big data #big data tools #big data management #big data tool #top 10 big data tools for 2021! #top-big-data-tool

Ian  Robinson

Ian Robinson

1624399200

Top 10 Big Data Tools for Data Management and Analytics

Introduction to Big Data

What exactly is Big Data? Big Data is nothing but large and complex data sets, which can be both structured and unstructured. Its concept encompasses the infrastructures, technologies, and Big Data Tools created to manage this large amount of information.

To fulfill the need to achieve high-performance, Big Data Analytics tools play a vital role. Further, various Big Data tools and frameworks are responsible for retrieving meaningful information from a huge set of data.

List of Big Data Tools & Frameworks

The most important as well as popular Big Data Analytics Open Source Tools which are used in 2020 are as follows:

  1. Big Data Framework
  2. Data Storage Tools
  3. Data Visualization Tools
  4. Big Data Processing Tools
  5. Data Preprocessing Tools
  6. Data Wrangling Tools
  7. Big Data Testing Tools
  8. Data Governance Tools
  9. Security Management Tools
  10. Real-Time Data Streaming Tools

#big data engineering #top 10 big data tools for data management and analytics #big data tools for data management and analytics #tools for data management #analytics #top big data tools for data management and analytics

Substrate Parachain Template: A New Cumulus-based Substrate Node

Substrate Cumulus Parachain Template

A new Cumulus-based Substrate node, ready for hacking :cloud:

This project is a fork of the Substrate Node Template modified to include dependencies required for registering this node as a parathread or parachain to an established relay chain.

👉 Learn more about parachains here, and parathreads here.

Build & Run

Follow these steps to prepare a local Substrate development environment :hammer_and_wrench:

Setup of Machine

If necessary, refer to the setup instructions at the Substrate Developer Hub.

Build

Once the development environment is set up, build the Cumulus Parachain Template. This command will build the Wasm Runtime and native code:

cargo build --release

Relay Chain

NOTE: In the following two sections, we document how to manually start a few relay chain nodes, start a parachain node (collator), and register the parachain with the relay chain.

We also have the polkadot-launch CLI tool that automate the following steps and help you easily launch relay chains and parachains. However it is still good to go through the following procedures once to understand the mechanism for running and registering a parachain.

To operate a parathread or parachain, you must connect to a relay chain. Typically you would test on a local Rococo development network, then move to the testnet, and finally launch on the mainnet. Keep in mind you need to configure the specific relay chain you will connect to in your collator chain_spec.rs. In the following examples, we will use rococo-local as the relay network.

Build Relay Chain

Clone and build Polkadot (beware of the version tag we used):

# Get a fresh clone, or `cd` to where you have polkadot already:
git clone -b v0.9.7 --depth 1 https://github.com/paritytech/polkadot.git
cd polkadot
cargo build --release

Generate the Relay Chain Chainspec

First, we create the chain specification file (chainspec). Note the chainspec file must be generated on a single node and then shared among all nodes!

👉 Learn more about chain specification here.

./target/release/polkadot build-spec \
--chain rococo-local \
--raw \
--disable-default-bootnode \
> rococo_local.json

Start Relay Chain

We need n + 1 full validator nodes running on a relay chain to accept n parachain / parathread connections. Here we will start two relay chain nodes so we can have one parachain node connecting in later.

From the Polkadot working directory:

# Start Relay `Alice` node
./target/release/polkadot \
--chain ./rococo_local.json \
-d /tmp/relay/alice \
--validator \
--alice \
--port 50555

Open a new terminal, same directory:

# Start Relay `Bob` node
./target/release/polkadot \
--chain ./rococo_local.json \
-d /tmp/relay/bob \
--validator \
--bob \
--port 50556

Add more nodes as needed, with non-conflicting ports, DB directories, and validator keys (--charlie, --dave, etc.).

Reserve a ParaID

To connect to a relay chain, you must first _reserve a ParaId for your parathread that will become a parachain. To do this, you will need sufficient amount of currency on the network account to reserve the ID.

In this example, we will use Charlie development account where we have funds available. Once you submit this extrinsic successfully, you can start your collators.

The easiest way to reserve your ParaId is via Polkadot Apps UI under the Parachains -> Parathreads tab and use the + ParaID button.

Parachain

Select the Correct Relay Chain

To operate your parachain, you need to specify the correct relay chain you will connect to in your collator chain_spec.rs. Specifically you pass the command for the network you need in the Extensions of your ChainSpec::from_genesis() in the code.

Extensions {
    relay_chain: "rococo-local".into(), // You MUST set this to the correct network!
    para_id: id.into(),
},

You can choose from any pre-set runtime chainspec in the Polkadot repo, by referring to the cli/src/command.rs and node/service/src/chain_spec.rs files or generate your own and use that. See the Cumulus Workshop for how.

In the following examples, we will use the rococo-local relay network we setup in the last section.

Export the Parachain Genesis and Runtime

We first generate the genesis state and genesis wasm needed for the parachain registration.

# Build the parachain node (from it's top level dir)
cd substrate-parachain-template
cargo build --release

# Folder to store resource files needed for parachain registration
mkdir -p resources

# Build the chainspec
./target/release/parachain-collator build-spec \
--disable-default-bootnode > ./resources/template-local-plain.json

# Build the raw chainspec file
./target/release/parachain-collator build-spec \
--chain=./resources/template-local-plain.json \
--raw --disable-default-bootnode > ./resources/template-local-raw.json

# Export genesis state to `./resources`, using 2000 as the ParaId
./target/release/parachain-collator export-genesis-state --parachain-id 2000 > ./resources/para-2000-genesis

# Export the genesis wasm
./target/release/parachain-collator export-genesis-wasm > ./resources/para-2000-wasm

NOTE: we have set the para_ID to be 2000 here. This must be unique for all parathreads/chains on the relay chain you register with. You must reserve this first on the relay chain for the testnet or mainnet.

Start a Parachain Node (Collator)

From the parachain template working directory:

# NOTE: this command assumes the chain spec is in a directory named `polkadot`
# that is at the same level of the template working directory. Change as needed.
#
# It also assumes a ParaId of 2000. Change as needed.
./target/release/parachain-collator \
-d /tmp/parachain/alice \
--collator \
--alice \
--force-authoring \
--ws-port 9945 \
--parachain-id 2000 \
-- \
--execution wasm \
--chain ../polkadot/rococo_local.json

Output:

2021-05-30 16:57:39 Parachain Collator Template
2021-05-30 16:57:39 ✌️  version 3.0.0-acce183-x86_64-linux-gnu
2021-05-30 16:57:39 ❤️  by Anonymous, 2017-2021
2021-05-30 16:57:39 📋 Chain specification: Local Testnet
2021-05-30 16:57:39 🏷 Node name: Alice
2021-05-30 16:57:39 👤 Role: AUTHORITY
2021-05-30 16:57:39 💾 Database: RocksDb at /tmp/parachain/alice/chains/local_testnet/db
2021-05-30 16:57:39 ⛓  Native runtime: template-parachain-1 (template-parachain-0.tx1.au1)
2021-05-30 16:57:41 Parachain id: Id(2000)
2021-05-30 16:57:41 Parachain Account: 5Ec4AhPUwPeyTFyuhGuBbD224mY85LKLMSqSSo33JYWCazU4
2021-05-30 16:57:41 Parachain genesis state: 0x0000000000000000000000000000000000000000000000000000000000000000000a96f42b5cb798190e5f679bb16970905087a9a9fc612fb5ca6b982b85783c0d03170a2e7597b7b7e3d84c05391d139a62b157e78786d8c082f29dcf4c11131400
2021-05-30 16:57:41 Is collating: yes
2021-05-30 16:57:41 [Parachain] 🔨 Initializing Genesis block/state (state: 0x0a96…3c0d, header-hash: 0xd42b…f271)
2021-05-30 16:57:41 [Parachain] ⏱  Loaded block-time = 12s from block 0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 16:57:43 [Relaychain] 🔨 Initializing Genesis block/state (state: 0xace1…1b62, header-hash: 0xfa68…cf58)
2021-05-30 16:57:43 [Relaychain] 👴 Loading GRANDPA authority set from genesis on what appears to be first startup.
2021-05-30 16:57:44 [Relaychain] ⏱  Loaded block-time = 6s from block 0xfa68f5abd2a80394b87c9bd07e0f4eee781b8c696d0a22c8e5ba38ae10e1cf58
2021-05-30 16:57:44 [Relaychain] 👶 Creating empty BABE epoch changes on what appears to be first startup.
2021-05-30 16:57:44 [Relaychain] 🏷 Local node identity is: 12D3KooWBjYK2W4dsBfsrFA9tZCStb5ogPb6STQqi2AK9awXfXyG
2021-05-30 16:57:44 [Relaychain] 📦 Highest known block at #0
2021-05-30 16:57:44 [Relaychain] 〽️ Prometheus server started at 127.0.0.1:9616
2021-05-30 16:57:44 [Relaychain] Listening for new connections on 127.0.0.1:9945.
2021-05-30 16:57:44 [Parachain] Using default protocol ID "sup" because none is configured in the chain specs
2021-05-30 16:57:44 [Parachain] 🏷 Local node identity is: 12D3KooWADBSC58of6ng2M29YTDkmWCGehHoUZhsy9LGkHgYscBw
2021-05-30 16:57:44 [Parachain] 📦 Highest known block at #0
2021-05-30 16:57:44 [Parachain] Unable to listen on 127.0.0.1:9945
2021-05-30 16:57:44 [Parachain] Unable to bind RPC server to 127.0.0.1:9945. Trying random port.
2021-05-30 16:57:44 [Parachain] Listening for new connections on 127.0.0.1:45141.
2021-05-30 16:57:45 [Relaychain] 🔍 Discovered new external address for our node: /ip4/192.168.42.204/tcp/30334/ws/p2p/12D3KooWBjYK2W4dsBfsrFA9tZCStb5ogPb6STQqi2AK9awXfXyG
2021-05-30 16:57:45 [Parachain] 🔍 Discovered new external address for our node: /ip4/192.168.42.204/tcp/30333/p2p/12D3KooWADBSC58of6ng2M29YTDkmWCGehHoUZhsy9LGkHgYscBw
2021-05-30 16:57:48 [Relaychain] ✨ Imported #8 (0xe60b…9b0a)
2021-05-30 16:57:49 [Relaychain] 💤 Idle (2 peers), best: #8 (0xe60b…9b0a), finalized #5 (0x1e6f…567c), ⬇ 4.5kiB/s ⬆ 2.2kiB/s
2021-05-30 16:57:49 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 2.0kiB/s ⬆ 1.7kiB/s
2021-05-30 16:57:54 [Relaychain] ✨ Imported #9 (0x1af9…c9be)
2021-05-30 16:57:54 [Relaychain] ✨ Imported #9 (0x6ed8…fdf6)
2021-05-30 16:57:54 [Relaychain] 💤 Idle (2 peers), best: #9 (0x1af9…c9be), finalized #6 (0x3319…69a2), ⬇ 1.8kiB/s ⬆ 0.5kiB/s
2021-05-30 16:57:54 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0.2kiB/s ⬆ 0.2kiB/s
2021-05-30 16:57:59 [Relaychain] 💤 Idle (2 peers), best: #9 (0x1af9…c9be), finalized #7 (0x5b50…1e5b), ⬇ 0.6kiB/s ⬆ 0.4kiB/s
2021-05-30 16:57:59 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 16:58:00 [Relaychain] ✨ Imported #10 (0xc9c9…1ca3)

You see messages are from both a relaychain node and a parachain node. This is because a relay chain light client is also run next to the parachain collator.

Parachain Registration

Now that you have two relay chain nodes, and a parachain node accompanied with a relay chain light client running, the next step is to register the parachain in the relay chain with the following steps (for detail, refer to the Substrate Cumulus Worship):

  • Goto Polkadot Apps UI, connecting to your relay chain.
  • Execute a sudo extrinsic on the relay chain by going to Developer -> sudo page.
  • Pick paraSudoWrapper -> sudoScheduleParaInitialize(id, genesis) as the extrinsic type, shown below.

Polkadot Apps UI

  • Set the id: ParaId to 2,000 (or whatever ParaId you used above), and set the parachain: Bool option to Yes.
  • For the genesisHead, drag the genesis state file exported above, para-2000-genesis, in.
  • For the validationCode, drag the genesis wasm file exported above, para-2000-wasm, in.

Note: When registering to the public Rococo testnet, ensure you set a unique paraId larger than 1,000. Values below 1,000 are reserved exclusively for system parachains.

Restart the Parachain (Collator)

The collator node may need to be restarted to get it functioning as expected. After a new epoch starts on the relay chain, your parachain will come online. Once this happens, you should see the collator start reporting parachain blocks:

# Notice the relay epoch change! Only then do we start parachain collating!
#
2021-05-30 17:00:04 [Relaychain] 💤 Idle (2 peers), best: #30 (0xfc02…2a2a), finalized #28 (0x10ff…6539), ⬇ 1.0kiB/s ⬆ 0.3kiB/s
2021-05-30 17:00:04 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:06 [Relaychain] 👶 New epoch 3 launching at block 0x68bc…0605 (block slot 270402601 >= start slot 270402601).
2021-05-30 17:00:06 [Relaychain] 👶 Next epoch starts at slot 270402611
2021-05-30 17:00:06 [Relaychain] ✨ Imported #31 (0x68bc…0605)
2021-05-30 17:00:06 [Parachain] Starting collation. relay_parent=0x68bcc93d24a31a2c89800a56c7a2b275fe9ca7bd63f829b64588ae0d99280605 at=0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 17:00:06 [Parachain] 🙌 Starting consensus session on top of parent 0xd42bb78354bc21770e3f0930ed45c7377558d2d8e81ca4d457e573128aabf271
2021-05-30 17:00:06 [Parachain] 🎁 Prepared block for proposing at 1 [hash: 0xf6507812bf60bf53af1311f775aac03869be870df6b0406b2969784d0935cb92; parent_hash: 0xd42b…f271; extrinsics (2): [0x1bf5…1d76, 0x7c9b…4e23]]
2021-05-30 17:00:06 [Parachain] 🔖 Pre-sealed block for proposal at 1. Hash now 0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae, previously 0xf6507812bf60bf53af1311f775aac03869be870df6b0406b2969784d0935cb92.
2021-05-30 17:00:06 [Parachain] ✨ Imported #1 (0x80fc…ccae)
2021-05-30 17:00:06 [Parachain] Produced proof-of-validity candidate. block_hash=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:09 [Relaychain] 💤 Idle (2 peers), best: #31 (0x68bc…0605), finalized #29 (0xa6fa…9e16), ⬇ 1.2kiB/s ⬆ 129.9kiB/s
2021-05-30 17:00:09 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:12 [Relaychain] ✨ Imported #32 (0x5e92…ba30)
2021-05-30 17:00:12 [Relaychain] Moving approval window from session 0..=2 to 0..=3
2021-05-30 17:00:12 [Relaychain] ✨ Imported #32 (0x8144…74eb)
2021-05-30 17:00:14 [Relaychain] 💤 Idle (2 peers), best: #32 (0x5e92…ba30), finalized #29 (0xa6fa…9e16), ⬇ 1.4kiB/s ⬆ 0.2kiB/s
2021-05-30 17:00:14 [Parachain] 💤 Idle (0 peers), best: #0 (0xd42b…f271), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:18 [Relaychain] ✨ Imported #33 (0x8c30…9ccd)
2021-05-30 17:00:18 [Parachain] Starting collation. relay_parent=0x8c30ce9e6e9867824eb2aff40148ac1ed64cf464f51c5f2574013b44b20f9ccd at=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:19 [Relaychain] 💤 Idle (2 peers), best: #33 (0x8c30…9ccd), finalized #30 (0xfc02…2a2a), ⬇ 0.7kiB/s ⬆ 0.4kiB/s
2021-05-30 17:00:19 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:22 [Relaychain] 👴 Applying authority set change scheduled at block #31
2021-05-30 17:00:22 [Relaychain] 👴 Applying GRANDPA set change to new set [(Public(88dc3417d5058ec4b4503e0c12ea1a0a89be200fe98922423d4334014fa6b0ee (5FA9nQDV...)), 1), (Public(d17c2d7823ebf260fd138f2d7e27d114c0145d968b5ff5006125f2414fadae69 (5GoNkf6W...)), 1)]
2021-05-30 17:00:22 [Relaychain] 👴 Imported justification for block #31 that triggers command Changing authorities, signaling voter.
2021-05-30 17:00:24 [Relaychain] ✨ Imported #34 (0x211b…febf)
2021-05-30 17:00:24 [Parachain] Starting collation. relay_parent=0x211b3c53bebeff8af05e8f283d59fe171b7f91a5bf9c4669d88943f5a42bfebf at=0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:24 [Parachain] 🙌 Starting consensus session on top of parent 0x80fc151d7ccf228b802525022b6de257e42388ec7dc3c1dd7de491313650ccae
2021-05-30 17:00:24 [Parachain] 🎁 Prepared block for proposing at 2 [hash: 0x10fcb3180e966729c842d1b0c4d8d2c4028cfa8bef02b909af5ef787e6a6a694; parent_hash: 0x80fc…ccae; extrinsics (2): [0x4a6c…1fc6, 0x6b84…7cea]]
2021-05-30 17:00:24 [Parachain] 🔖 Pre-sealed block for proposal at 2. Hash now 0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0, previously 0x10fcb3180e966729c842d1b0c4d8d2c4028cfa8bef02b909af5ef787e6a6a694.
2021-05-30 17:00:24 [Parachain] ✨ Imported #2 (0x5087…b5a0)
2021-05-30 17:00:24 [Parachain] Produced proof-of-validity candidate. block_hash=0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0
2021-05-30 17:00:24 [Relaychain] 💤 Idle (2 peers), best: #34 (0x211b…febf), finalized #31 (0x68bc…0605), ⬇ 1.0kiB/s ⬆ 130.1kiB/s
2021-05-30 17:00:24 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:29 [Relaychain] 💤 Idle (2 peers), best: #34 (0x211b…febf), finalized #32 (0x5e92…ba30), ⬇ 0.2kiB/s ⬆ 0.1kiB/s
2021-05-30 17:00:29 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #0 (0xd42b…f271), ⬇ 0 ⬆ 0
2021-05-30 17:00:30 [Relaychain] ✨ Imported #35 (0xee07…38a0)
2021-05-30 17:00:34 [Relaychain] 💤 Idle (2 peers), best: #35 (0xee07…38a0), finalized #33 (0x8c30…9ccd), ⬇ 0.9kiB/s ⬆ 0.3kiB/s
2021-05-30 17:00:34 [Parachain] 💤 Idle (0 peers), best: #1 (0x80fc…ccae), finalized #1 (0x80fc…ccae), ⬇ 0 ⬆ 0
2021-05-30 17:00:36 [Relaychain] ✨ Imported #36 (0xe8ce…4af6)
2021-05-30 17:00:36 [Parachain] Starting collation. relay_parent=0xe8cec8015c0c7bf508bf3f2f82b1696e9cca078e814b0f6671f0b0d5dfe84af6 at=0x5087fd06b1b73d90cfc3ad175df8495b378fffbb02fea212cc9e49a00fd8b5a0
2021-05-30 17:00:39 [Relaychain] 💤 Idle (2 peers), best: #36 (0xe8ce…4af6), finalized #33 (0x8c30…9ccd), ⬇ 0.6kiB/s ⬆ 0.1kiB/s
2021-05-30 17:00:39 [Parachain] 💤 Idle (0 peers), best: #2 (0x5087…b5a0), finalized #1 (0x80fc…ccae), ⬇ 0 ⬆ 0

Note the delay here! It may take some time for your relay chain to enter a new epoch.

Rococo & Westend Relay Chain Testnets

Is this Cumulus Parachain Template Rococo & Westend testnets compatible? Yes!

  • Rococo is the testnet of Kusama (join the Rococo Faucet to get testing funds).
  • Westend is the testnet of Polkadot (join the Westend Faucet to get testing funds).

See the Cumulus Workshop for the latest instructions to register a parathread/parachain on a relay chain.

NOTE: When running the relay chain and parachain, you must use the same tagged version of Polkadot and Cumulus so the collator would register successfully to the relay chain. You should test locally registering your parachain successfully before attempting to connect to any running relay chain network!

Find chainspec files to connect to live networks here. You want to be sure to use the correct git release tag in these files, as they change from time to time and must match the live network!

These networks are under constant development - so please follow the progress and update of your parachains in lock step with the testnet changes if you wish to connect to the network. Do join the Parachain Technical matrix chat room to ask questions and connect with the parachain building teams.

Learn More

  • More detailed instructions to use Cumulus parachains are found in the Cumulus Workshop.
  • Refer to the upstream Substrate Node Template to learn more about the structure of this project, the capabilities it encapsulates and the way in which those capabilities are implemented.
  • Learn more about how a parachain block is added to a finalized chain here.

Download Details:
Author: aresprotocols
Source Code: https://github.com/aresprotocols/substrate-parachain-template
License: Unlicense License

#rust  #blockchain #substrate #parachain #polkadot 

Madelyn  Frami

Madelyn Frami

1599814380

Automating Security in DevOps: Top 15 Tools

Cybersecurity is a big concern for many companies. With data breaches happening more and more as attacks increase in sophistication, teams are looking at all of the options they have to prevent them.

Since DevOps has taken root as the standard way to deploy applications to production, it’s worth figuring out how to include security in your CI/CD pipelines.

Background on DevSecOps

There’s already a field dedicated to adding security to your existing DevOps flow called DevSecOps. Instead of waiting until the end of the process to run security checks, like in the Waterfall method, you include them throughout the different run stages. In DevSecOps, this is referred to as “shifting to the left”.

It’s called this because you move things that are traditionally at the end of the deployment cycle to happen earlier in the process. You’re able to use multiple automated tools to run checks for cross-site scripting, SQL injection, and to check for any other of the OWASP Top 10 security risks.

You still need security experts to interpret the results and ensure there are not many false positives, but adding security in your CI/CD pipeline helps automate a lot of processes that were manual before.

This saves time on getting deployments out to customers because you don’t have to wait until the end to learn about security risks. That means the code won’t need to be updated at the last minute, which always causes delays.

A number of tools are available to help you do security checks at every phase of your CI/CD run. A basic CI/CD pipeline will include a build phase, testing phase, delivery phase, and finally a deploy phase.

The goal with DevSecOps is to shift security to the left or to move the checks to earlier parts of the process.

We’ll go over 15 of the top DevSecOps tools and which phases they help find vulnerabilities at.

#devops #devops-tools #devops-security #devsecops #improve-devsecops #cicd #pipeline #devops-top-story

Lokesh Kumar

1603438098

Top 10 Trending Technologies Must Learn in 2021 | igmGuru

Technology has taken a place of more productiveness and give the best to the world. In the current situation, everything is done through the technical process, you don’t have to bother about doing task, everything will be done automatically.This is an article which has some important technologies which are new in the market are explained according to the career preferences. So let’s have a look into the top trending technologies followed in 2021 and its impression in the coming future in the world.

  1. Data Science
    First in the list of newest technologies is surprisingly Data Science. Data Science is the automation that helps to be reasonable for complicated data. The data is produces in a very large amount every day by several companies which comprise sales data, customer profile information, server data, business data, and financial structures. Almost all of the data which is in the form of big data is very indeterminate. The character of a data scientist is to convert the indeterminate datasets into determinate datasets. Then these structured data will examine to recognize trends and patterns. These trends and patterns are beneficial to understand the company’s business performance, customer retention, and how they can be enhanced.

  2. DevOps
    Next one is DevOps, This technology is a mixture of two different things and they are development (Dev) and operations (Ops). This process and technology provide value to their customers in a continuous manner. This technology plays an important role in different aspects and they can be- IT operations, development, security, quality, and engineering to synchronize and cooperate to develop the best and more definitive products. By embracing a culture of DevOps with creative tools and techniques, because through that company will gain the capacity to preferable comeback to consumer requirement, expand the confidence in the request they construct, and accomplish business goals faster. This makes DevOps come into the top 10 trending technologies.

  3. Machine learning
    Next one is Machine learning which is constantly established in all the categories of companies or industries, generating a high command for skilled professionals. The machine learning retailing business is looking forward to enlarging to $8.81 billion by 2022. Machine learning practices is basically use for data mining, data analytics, and pattern recognition. In today’s scenario, Machine learning has its own reputed place in the industry. This makes machine learning come into the top 10 trending technologies. Get the best machine learning course and make yourself future-ready.

To want to know more click on Top 10 Trending Technologies in 2021

You may also read more blogs mentioned below

How to Become a Salesforce Developer

Python VS R Programming

The Scope of Hadoop and Big Data in 2021

#top trending technologies #top 10 trending technologies #top 10 trending technologies in 2021 #top trending technologies in 2021 #top 5 trending technologies in 2021 #top 5 trending technologies