1627047720
With the rise of micro services more and more project are now split between multiples repositories. As this change ease the comfort of writing code and tests the solutions it also greatly increase the number of projects and so the time needed to handle everything from configuration to maintenance. With the serverless architecture this trend is having an even greater impact on productivity. One micro service can now be split on more than 30 projects and each time you would have to update a dependence you now have to do it 30 times. But each company can easily overcome this hurdles by spending a bit of time improving their process thanks to automation. In this talk I will show you and share some feedback on how a small team can handle more than 100 serverless functions thanks to automation.
#automation
1602560783
In this article, we’ll discuss how to use jQuery Ajax for ASP.NET Core MVC CRUD Operations using Bootstrap Modal. With jQuery Ajax, we can make HTTP request to controller action methods without reloading the entire page, like a single page application.
To demonstrate CRUD operations – insert, update, delete and retrieve, the project will be dealing with details of a normal bank transaction. GitHub repository for this demo project : https://bit.ly/33KTJAu.
Sub-topics discussed :
In Visual Studio 2019, Go to File > New > Project (Ctrl + Shift + N).
From new project window, Select Asp.Net Core Web Application_._
Once you provide the project name and location. Select Web Application(Model-View-Controller) and uncheck HTTPS Configuration. Above steps will create a brand new ASP.NET Core MVC project.
Let’s create a database for this application using Entity Framework Core. For that we’ve to install corresponding NuGet Packages. Right click on project from solution explorer, select Manage NuGet Packages_,_ From browse tab, install following 3 packages.
Now let’s define DB model class file – /Models/TransactionModel.cs.
public class TransactionModel
{
[Key]
public int TransactionId { get; set; }
[Column(TypeName ="nvarchar(12)")]
[DisplayName("Account Number")]
[Required(ErrorMessage ="This Field is required.")]
[MaxLength(12,ErrorMessage ="Maximum 12 characters only")]
public string AccountNumber { get; set; }
[Column(TypeName ="nvarchar(100)")]
[DisplayName("Beneficiary Name")]
[Required(ErrorMessage = "This Field is required.")]
public string BeneficiaryName { get; set; }
[Column(TypeName ="nvarchar(100)")]
[DisplayName("Bank Name")]
[Required(ErrorMessage = "This Field is required.")]
public string BankName { get; set; }
[Column(TypeName ="nvarchar(11)")]
[DisplayName("SWIFT Code")]
[Required(ErrorMessage = "This Field is required.")]
[MaxLength(11)]
public string SWIFTCode { get; set; }
[DisplayName("Amount")]
[Required(ErrorMessage = "This Field is required.")]
public int Amount { get; set; }
[DisplayFormat(DataFormatString = "{0:MM/dd/yyyy}")]
public DateTime Date { get; set; }
}
C#Copy
Here we’ve defined model properties for the transaction with proper validation. Now let’s define DbContextclass for EF Core.
#asp.net core article #asp.net core #add loading spinner in asp.net core #asp.net core crud without reloading #asp.net core jquery ajax form #asp.net core modal dialog #asp.net core mvc crud using jquery ajax #asp.net core mvc with jquery and ajax #asp.net core popup window #bootstrap modal popup in asp.net core mvc. bootstrap modal popup in asp.net core #delete and viewall in asp.net core #jquery ajax - insert #jquery ajax form post #modal popup dialog in asp.net core #no direct access action method #update #validation in modal popup
1620805745
Want to try automated inventory management system for small businesses? Originscale automation software automate your data flow across orders, inventory, and purchasing. TRY FOR FREE
#automation #automation software #automated inventory management #automated inventory management system #automation management system #inventory automation
1596848400
Thorough testing is crucial to the success of a software product. If your software doesn’t work properly, chances are strong that most people won’t buy or use it…at least not for long. But testing to find defects or bugs is time-consuming, expensive, often repetitive, and subject to human error. Automated testing, in which Quality Assurance teams use software tools to run detailed, repetitive, and data-intensive tests automatically, helps teams improve software quality and make the most of their always-limited testing resources.
Use these top tips to ensure that your software testing is successful and you get the maximum return on investment (ROI):
It is impossible to automate all testing, so it is important to determine what test cases should be automated first.
The benefit of automated testing is linked to how many times a given test can be repeated. Tests that are only performed a few times are better left for manual testing. Good test cases for automation are ones that are run frequently and require large amounts of data to perform the same action.
You can get the most benefit out of your automated testing efforts by automating:
Success in test automation requires careful planning and design work. Start out by creating an automation plan. This allows you to identify the initial set of tests to automate and serve as a guide for future tests. First, you should define your goal for automated testing and determine which types of tests to automate. There are a few different types of testing, and each has its place in the testing process. For instance, unit testing is used to test a small part of the intended application. To test a certain piece of the application’s UI, you would use functional or GUI testing.
After determining your goal and which types of tests to automate, you should decide what actions your automated tests will perform. Don’t just create test steps that test various aspects of the application’s behavior at one time. Large, complex automated tests are difficult to edit and debug. It is best to divide your tests into several logical, smaller tests. It makes your test environment more coherent and manageable and allows you to share test code, test data, and processes. You will get more opportunities to update your automated tests just by adding small tests that address new functionality. Test the functionality of your application as you add it, rather than waiting until the whole feature is implemented.
When creating tests, try to keep them small and focused on one objective. For example, separate tests for read-only versus reading/write tests. This allows you to use these individual tests repeatedly without including them in every automated test.
Once you create several simple automated tests, you can group your tests into one, larger automated test. You can organize automated tests by the application’s functional area, major/minor division in the application, common functions, or a base set of test data. If an automated test refers to other tests, you may need to create a test tree, where you can run tests in a specific order.
To get the most out of your automated testing, testing should be started as early as possible and ran as often as needed. The earlier testers get involved in the life cycle of the project the better, and the more you test, the more bugs you find. Automated unit testing can be implemented on day one and then you can gradually build your automated test suite. Bugs detected early are a lot cheaper to fix than those discovered later in production or deployment.
With the shift left movement, developers and advanced testers are now empowered to build and run tests. Tools allow users to run functional UI tests for web and desktop applications from within their favorite IDEs. With support for Visual Studio and Java IDEs such as IntelliJ and Eclipse, developers never have to leave the comfort of their ecosystem to validate application quality meaning teams can quickly and easily shift left to deliver software faster.
Selecting an automated testing tool is essential for test automation. There are a lot of automated testing tools on the market, and it is important to choose the automated testing tool that best suits your overall requirements.
Consider these key points when selecting an automated testing tool:
For detailed information about selecting automated testing tools for automated testing, see Selecting Automated Testing Tools.
Usually, the creation of different tests is based on QA engineers’ skill levels. It is important to identify the level of experience and skills for each of your team members and divide your automated testing efforts accordingly. For instance, writing automated test scripts requires expert knowledge of scripting languages. Thus, in order to perform these tasks, you should have QA engineers that know the script language provided by the automated testing tool.
Some team members may not be versed in writing automated test scripts. These QA engineers may be better at writing test cases. It is better when an automated testing tool has a way to create automated tests that do not require an in-depth knowledge of scripting languages.
You should also collaborate on your automated testing project with other QA engineers in your department. Testing performed by a team is more effective for finding defects and the right automated testing tool allows you to share your projects with several testers.
Good test data is extremely useful for data-driven testing. The data that should be entered into input fields during an automated test is usually stored in an external file. This data might be read from a database or any other data source like text or XML files, Excel sheets, and database tables. A good automated testing tool actually understands the contents of the data files and iterates over the contents in the automated test. Using external data makes your automated tests reusable and easier to maintain. To add different testing scenarios, the data files can be easily extended with new data without needing to edit the actual automated test.
Typically, you create test data manually and then save it to the desired data storage. However, you will find tools that provide you with the Data Generator that assists you in creating Table variables and Excel files that store test data. This approach lets you generate data of the desired type (integer numbers, strings, boolean values, and so on) and automatically save this data to the specified variable or file. Using this feature, you decrease the time spent on preparing test data for data-driven tests.
Creating test data for your automated tests is boring, but you should invest time and effort into creating data that is well structured. With good test data available, writing automated tests becomes a lot easier. The earlier you create good-quality data, the easier it is to extend existing automated tests along with the application’s development.
Automated tests created with scripts or keyword tests are dependent on the application under test. The user interface of the application may change between builds, especially in the early stages. These changes may affect the test results, or your automated tests may no longer work with future versions of the application. The problem is automated testing tools use a series of properties to identify and locate an object. Sometimes a testing tool relies on location coordinates to find the object. For instance, if the control caption or its location has changed, the automated test will no longer be able to find the object when it runs and will fail. To run the automated test successfully, you may need to replace old names with new ones in the entire project, before running the test against the new version of the application. However, if you provide unique names for your controls, it makes your automated tests resistant to these UI changes and ensures that your automated tests work without having to make changes to the text itself. This also eliminates the automated testing tool from relying on location coordinates to find the control, which is less stable and breaks easily.
#automation-testing-tool #automation-testing #automation-tips #automation-software #automation
1602564619
User registration and authentication are mandatory in any application when you have little concern about privacy. Hence all most all application development starts with an authentication module. In this article, we will discuss the quickest way to use **ASP.NET Core Identity for User Login and Registration **in a new or existing MVC application.
Sub-topics discussed :
ASP.NET Core Identity is an API, which provides both user interface(UI) and functions for user authentication, registration, authorization, etc. Modules/ APIs like this will really be helpful and fasten the development process. It comes with ASP.NET Core Framework and used in many applications before. Which makes the API more dependable and trustworthy.
ASP.NET Core MVC with user authentication can easily be accomplished using Identity.UI. While creating the MVC project, you just need to select Authentication as Individual User Accounts.
The rest will be handled by ASP.NET Core Identity UI. It already contains razor view pages and backend codes for an authentication system. But that’s not what we want in most of the cases. we want to customize ASP.NET Core Identity as per our requirement. That’s what we do here.
First of all, I will create a brand new ASP.NET Core MVC application without any authentication selected. We could add ASP.NET Core Identity later into the project.
In Visual Studio 2019, Go to File > New > Project (Ctrl + Shift + N). From new project window, select ASP.NET Core Web Application.
Once you provide the project name and location. A new window will be opened as follows, Select _Web Application(Model-View-Controller), _uncheck _HTTPS Configuration _and DO NOT select any authentication method. Above steps will create a brand new ASP.NET Core MVC project.
#asp.net core article #asp.net core #add asp.net core identity to existing project #asp.net core identity in mvc #asp.net core mvc login and registration #login and logout in asp.net core
1583377668
#Asp.net core #Asp.net core mvc #Core #Asp.net core tutorials #Asp.net core with entity framework