Nat  Grady

Nat Grady

1660712880

Roxygen2: Generate R Package Documentation From inline R Comments

roxygen2  

The premise of roxygen2 is simple: describe your functions in comments next to their definitions and roxygen2 will process your source code and comments to automatically generate .Rd files in man/, NAMESPACE, and, if needed, the Collate field in DESCRIPTION.

Installation

# Install devtools from CRAN
install.packages("roxygen2")

# Or the development version from GitHub:
# install.packages("devtools")
devtools::install_github("r-lib/roxygen2")

Usage

The premise of roxygen2 is simple: describe your functions in comments next to their definitions and roxygen2 will process your source code and comments to produce Rd files in the man/ directory. Here's a simple example from the stringr package:

#' The length of a string
#'
#' Technically this returns the number of "code points", in a string. One
#' code point usually corresponds to one character, but not always. For example,
#' an u with a umlaut might be represented as a single character or as the
#' combination a u and an umlaut.
#'
#' @inheritParams str_detect
#' @return A numeric vector giving number of characters (code points) in each
#'    element of the character vector. Missing string have missing length.
#' @seealso [stringi::stri_length()] which this function wraps.
#' @export
#' @examples
#' str_length(letters)
#' str_length(NA)
#' str_length(factor("abc"))
#' str_length(c("i", "like", "programming", NA))
str_length <- function(string) {
}

When you roxygenise() (or devtools::document()) your package these comments will be automatically transformed to the .Rd that R uses to generate the documentation you see when you type ?str_length.

Learn more

To get started, first read vignette("roxygen2"). Then read more about the specific package component that you want to generate:

Start with vignette("rd") to learn how document your functions with roxygen2.

vignette("rd-other") discusses how to document other things like datasets, the package itself, and the various pieces used by R's OOP systems.

vignette("rd-formatting") gives the details of roxygen2's rmarkdown support.

vignette("reuse") demonstrates the tools available to reuse documentation in multiple places.

vignette("namespace") describes how to generate a NAMESPACE file, how namespacing works in R, and how you can use roxygen2 to be specific about what your package needs and supplies.

For the Collate field in the DESCRIPTION, see ?update_collate().

Download Details:

Author: r-lib
Source Code: https://github.com/r-lib/roxygen2 
License: Unknown, MIT licenses found

#r #documentation #dev #tools 

What is GEEK

Buddha Community

Roxygen2: Generate R Package Documentation From inline R Comments

CSharp REPL: A Command Line C# REPL with Syntax Highlighting

C# REPL

A cross-platform command line REPL for the rapid experimentation and exploration of C#. It supports intellisense, installing NuGet packages, and referencing local .NET projects and assemblies.

C# REPL screenshot 

(click to view animation)

C# REPL provides the following features:

  • Syntax highlighting via ANSI escape sequences
  • Intellisense with fly-out documentation
  • Nuget package installation
  • Reference local assemblies, solutions, and projects
  • Navigate to source via Source Link
  • IL disassembly (both Debug and Release mode)
  • Fast and flicker-free rendering. A "diff" algorithm is used to only render what's changed.

Installation

C# REPL is a .NET 6 global tool, and runs on Windows 10, Mac OS, and Linux. It can be installed via:

dotnet tool install -g csharprepl

If you're running on Mac OS Catalina (10.15) or later, make sure you follow any additional directions printed to the screen. You may need to update your PATH variable in order to use .NET global tools.

After installation is complete, run csharprepl to begin. C# REPL can be updated via dotnet tool update -g csharprepl.

Usage:

Run csharprepl from the command line to begin an interactive session. The default colorscheme uses the color palette defined by your terminal, but these colors can be changed using a theme.json file provided as a command line argument.

Evaluating Code

Type some C# into the prompt and press Enter to run it. The result, if any, will be printed:

> Console.WriteLine("Hello World")
Hello World

> DateTime.Now.AddDays(8)
[6/7/2021 5:13:00 PM]

To evaluate multiple lines of code, use Shift+Enter to insert a newline:

> var x = 5;
  var y = 8;
  x * y
40

Additionally, if the statement is not a "complete statement" a newline will automatically be inserted when Enter is pressed. For example, in the below code, the first line is not a syntactically complete statement, so when we press enter we'll go down to a new line:

> if (x == 5)
  | // caret position, after we press Enter on Line 1

Finally, pressing Ctrl+Enter will show a "detailed view" of the result. For example, for the DateTime.Now expression below, on the first line we pressed Enter, and on the second line we pressed Ctrl+Enter to view more detailed output:

> DateTime.Now // Pressing Enter shows a reasonable representation
[5/30/2021 5:13:00 PM]

> DateTime.Now // Pressing Ctrl+Enter shows a detailed representation
[5/30/2021 5:13:00 PM] {
  Date: [5/30/2021 12:00:00 AM],
  Day: 30,
  DayOfWeek: Sunday,
  DayOfYear: 150,
  Hour: 17,
  InternalKind: 9223372036854775808,
  InternalTicks: 637579915804530992,
  Kind: Local,
  Millisecond: 453,
  Minute: 13,
  Month: 5,
  Second: 0,
  Ticks: 637579915804530992,
  TimeOfDay: [17:13:00.4530992],
  Year: 2021,
  _dateData: 9860951952659306800
}

A note on semicolons: C# expressions do not require semicolons, but statements do. If a statement is missing a required semicolon, a newline will be added instead of trying to run the syntatically incomplete statement; simply type the semicolon to complete the statement.

> var now = DateTime.Now; // assignment statement, semicolon required

> DateTime.Now.AddDays(8) // expression, we don't need a semicolon
[6/7/2021 5:03:05 PM]

Keyboard Shortcuts

  • Basic Usage
    • Ctrl+C - Cancel current line
    • Ctrl+L - Clear screen
    • Enter - Evaluate the current line if it's a syntactically complete statement; otherwise add a newline
    • Control+Enter - Evaluate the current line, and return a more detailed representation of the result
    • Shift+Enter - Insert a new line (this does not currently work on Linux or Mac OS; Hopefully this will work in .NET 7)
    • Ctrl+Shift+C - Copy current line to clipboard
    • Ctrl+V, Shift+Insert, and Ctrl+Shift+V - Paste text to prompt. Automatically trims leading indent
  • Code Actions
    • F1 - Opens the MSDN documentation for the class/method under the caret (example)
    • F9 - Shows the IL (intermediate language) for the current statement in Debug mode.
    • Ctrl+F9 - Shows the IL for the current statement with Release mode optimizations.
    • F12 - Opens the source code in the browser for the class/method under the caret, if the assembly supports Source Link.
  • Autocompletion
    • Ctrl+Space - Open autocomplete menu. If there's a single option, pressing Ctrl+Space again will select the option
    • Enter, Right Arrow, Tab - Select active autocompletion option
    • Escape - closes autocomplete menu
  • Text Navigation
    • Home and End - Navigate to beginning of a single line and end of a single line, respectively
    • Ctrl+Home and Ctrl+End - Navigate to beginning of line and end across multiple lines in a multiline prompt, respectively
    • Arrows - Navigate characters within text
    • Ctrl+Arrows - Navigate words within text
    • Ctrl+Backspace - Delete previous word
    • Ctrl+Delete - Delete next word

Adding References

Use the #r command to add assembly or nuget references.

  • For assembly references, run #r "AssemblyName" or #r "path/to/assembly.dll"
  • For project references, run #r "path/to/project.csproj". Solution files (.sln) can also be referenced.
  • For nuget references, run #r "nuget: PackageName" to install the latest version of a package, or #r "nuget: PackageName, 13.0.5" to install a specific version (13.0.5 in this case).

Installing nuget packages

To run ASP.NET applications inside the REPL, start the csharprepl application with the --framework parameter, specifying the Microsoft.AspNetCore.App shared framework. Then, use the above #r command to reference the application DLL. See the Command Line Configuration section below for more details.

csharprepl --framework  Microsoft.AspNetCore.App

Command Line Configuration

The C# REPL supports multiple configuration flags to control startup, behavior, and appearance:

csharprepl [OPTIONS] [response-file.rsp] [script-file.csx] [-- <additional-arguments>]

Supported options are:

  • OPTIONS:
    • -r <dll> or --reference <dll>: Reference an assembly, project file, or nuget package. Can be specified multiple times. Uses the same syntax as #r statements inside the REPL. For example, csharprepl -r "nuget:Newtonsoft.Json" "path/to/myproj.csproj"
      • When an assembly or project is referenced, assemblies in the containing directory will be added to the assembly search path. This means that you don't need to manually add references to all of your assembly's dependencies (e.g. other references and nuget packages). Referencing the main entry assembly is enough.
    • -u <namespace> or --using <namespace>: Add a using statement. Can be specified multiple times.
    • -f <framework> or --framework <framework>: Reference a shared framework. The available shared frameworks depends on the local .NET installation, and can be useful when running an ASP.NET application from the REPL. Example frameworks are:
      • Microsoft.NETCore.App (default)
      • Microsoft.AspNetCore.All
      • Microsoft.AspNetCore.App
      • Microsoft.WindowsDesktop.App
    • -t <theme.json> or --theme <theme.json>: Read a theme file for syntax highlighting. This theme file associates C# syntax classifications with colors. The color values can be full RGB, or ANSI color names (defined in your terminal's theme). The NO_COLOR standard is supported.
    • --trace: Produce a trace file in the current directory that logs CSharpRepl internals. Useful for CSharpRepl bug reports.
    • -v or --version: Show version number and exit.
    • -h or --help: Show help and exit.
  • response-file.rsp: A filepath of an .rsp file, containing any of the above command line options.
  • script-file.csx: A filepath of a .csx file, containing lines of C# to evaluate before starting the REPL. Arguments to this script can be passed as <additional-arguments>, after a double hyphen (--), and will be available in a global args variable.

If you have dotnet-suggest enabled, all options can be tab-completed, including values provided to --framework and .NET namespaces provided to --using.

Integrating with other software

C# REPL is a standalone software application, but it can be useful to integrate it with other developer tools:

Windows Terminal

To add C# REPL as a menu entry in Windows Terminal, add the following profile to Windows Terminal's settings.json configuration file (under the JSON property profiles.list):

{
    "name": "C# REPL",
    "commandline": "csharprepl"
},

To get the exact colors shown in the screenshots in this README, install the Windows Terminal Dracula theme.

Visual Studio Code

To use the C# REPL with Visual Studio Code, simply run the csharprepl command in the Visual Studio Code terminal. To send commands to the REPL, use the built-in Terminal: Run Selected Text In Active Terminal command from the Command Palette (workbench.action.terminal.runSelectedText).

Visual Studio Code screenshot

Windows OS

To add the C# REPL to the Windows Start Menu for quick access, you can run the following PowerShell command, which will start C# REPL in Windows Terminal:

$shell = New-Object -ComObject WScript.Shell
$shortcut = $shell.CreateShortcut("$env:appdata\Microsoft\Windows\Start Menu\Programs\csharprepl.lnk")
$shortcut.TargetPath = "wt.exe"
$shortcut.Arguments = "-w 0 nt csharprepl.exe"
$shortcut.Save()

You may also wish to add a shorter alias for C# REPL, which can be done by creating a .cmd file somewhere on your path. For example, put the following contents in C:\Users\username\.dotnet\tools\csr.cmd:

wt -w 0 nt csharprepl

This will allow you to launch C# REPL by running csr from anywhere that accepts Windows commands, like the Window Run dialog.

Comparison with other REPLs

This project is far from being the first REPL for C#. Here are some other projects; if this project doesn't suit you, another one might!

Visual Studio's C# Interactive pane is full-featured (it has syntax highlighting and intellisense) and is part of Visual Studio. This deep integration with Visual Studio is both a benefit from a workflow perspective, and a drawback as it's not cross-platform. As far as I know, the C# Interactive pane does not support NuGet packages or navigating to documentation/source code. Subjectively, it does not follow typical command line keybindings, so can feel a bit foreign.

csi.exe ships with C# and is a command line REPL. It's great because it's a cross platform REPL that comes out of the box, but it doesn't support syntax highlighting or autocompletion.

dotnet script allows you to run C# scripts from the command line. It has a REPL built-in, but the predominant focus seems to be as a script runner. It's a great tool, though, and has a strong community following.

dotnet interactive is a tool from Microsoft that creates a Jupyter notebook for C#, runnable through Visual Studio Code. It also provides a general framework useful for running REPLs.

Download Details:
Author: waf
Source Code: https://github.com/waf/CSharpRepl
License: MPL-2.0 License

#dotnet  #aspdotnet  #csharp 

Nat  Grady

Nat Grady

1660712880

Roxygen2: Generate R Package Documentation From inline R Comments

roxygen2  

The premise of roxygen2 is simple: describe your functions in comments next to their definitions and roxygen2 will process your source code and comments to automatically generate .Rd files in man/, NAMESPACE, and, if needed, the Collate field in DESCRIPTION.

Installation

# Install devtools from CRAN
install.packages("roxygen2")

# Or the development version from GitHub:
# install.packages("devtools")
devtools::install_github("r-lib/roxygen2")

Usage

The premise of roxygen2 is simple: describe your functions in comments next to their definitions and roxygen2 will process your source code and comments to produce Rd files in the man/ directory. Here's a simple example from the stringr package:

#' The length of a string
#'
#' Technically this returns the number of "code points", in a string. One
#' code point usually corresponds to one character, but not always. For example,
#' an u with a umlaut might be represented as a single character or as the
#' combination a u and an umlaut.
#'
#' @inheritParams str_detect
#' @return A numeric vector giving number of characters (code points) in each
#'    element of the character vector. Missing string have missing length.
#' @seealso [stringi::stri_length()] which this function wraps.
#' @export
#' @examples
#' str_length(letters)
#' str_length(NA)
#' str_length(factor("abc"))
#' str_length(c("i", "like", "programming", NA))
str_length <- function(string) {
}

When you roxygenise() (or devtools::document()) your package these comments will be automatically transformed to the .Rd that R uses to generate the documentation you see when you type ?str_length.

Learn more

To get started, first read vignette("roxygen2"). Then read more about the specific package component that you want to generate:

Start with vignette("rd") to learn how document your functions with roxygen2.

vignette("rd-other") discusses how to document other things like datasets, the package itself, and the various pieces used by R's OOP systems.

vignette("rd-formatting") gives the details of roxygen2's rmarkdown support.

vignette("reuse") demonstrates the tools available to reuse documentation in multiple places.

vignette("namespace") describes how to generate a NAMESPACE file, how namespacing works in R, and how you can use roxygen2 to be specific about what your package needs and supplies.

For the Collate field in the DESCRIPTION, see ?update_collate().

Download Details:

Author: r-lib
Source Code: https://github.com/r-lib/roxygen2 
License: Unknown, MIT licenses found

#r #documentation #dev #tools 

Dotnet Script: Run C# Scripts From The .NET CLI

dotnet script

Run C# scripts from the .NET CLI, define NuGet packages inline and edit/debug them in VS Code - all of that with full language services support from OmniSharp.

NuGet Packages

NameVersionFramework(s)
dotnet-script (global tool)Nugetnet6.0, net5.0, netcoreapp3.1
Dotnet.Script (CLI as Nuget)Nugetnet6.0, net5.0, netcoreapp3.1
Dotnet.Script.CoreNugetnetcoreapp3.1 , netstandard2.0
Dotnet.Script.DependencyModelNugetnetstandard2.0
Dotnet.Script.DependencyModel.NugetNugetnetstandard2.0

Installing

Prerequisites

The only thing we need to install is .NET Core 3.1 or .NET 5.0 SDK.

.NET Core Global Tool

.NET Core 2.1 introduced the concept of global tools meaning that you can install dotnet-script using nothing but the .NET CLI.

dotnet tool install -g dotnet-script

You can invoke the tool using the following command: dotnet-script
Tool 'dotnet-script' (version '0.22.0') was successfully installed.

The advantage of this approach is that you can use the same command for installation across all platforms. .NET Core SDK also supports viewing a list of installed tools and their uninstallation.

dotnet tool list -g

Package Id         Version      Commands
---------------------------------------------
dotnet-script      0.22.0       dotnet-script
dotnet tool uninstall dotnet-script -g

Tool 'dotnet-script' (version '0.22.0') was successfully uninstalled.

Windows

choco install dotnet.script

We also provide a PowerShell script for installation.

(new-object Net.WebClient).DownloadString("https://raw.githubusercontent.com/filipw/dotnet-script/master/install/install.ps1") | iex

Linux and Mac

curl -s https://raw.githubusercontent.com/filipw/dotnet-script/master/install/install.sh | bash

If permission is denied we can try with sudo

curl -s https://raw.githubusercontent.com/filipw/dotnet-script/master/install/install.sh | sudo bash

Docker

A Dockerfile for running dotnet-script in a Linux container is available. Build:

cd build
docker build -t dotnet-script -f Dockerfile ..

And run:

docker run -it dotnet-script --version

Github

You can manually download all the releases in zip format from the GitHub releases page.

Usage

Our typical helloworld.csx might look like this:

Console.WriteLine("Hello world!");

That is all it takes and we can execute the script. Args are accessible via the global Args array.

dotnet script helloworld.csx

Scaffolding

Simply create a folder somewhere on your system and issue the following command.

dotnet script init

This will create main.csx along with the launch configuration needed to debug the script in VS Code.

.
├── .vscode
│   └── launch.json
├── main.csx
└── omnisharp.json

We can also initialize a folder using a custom filename.

dotnet script init custom.csx

Instead of main.csx which is the default, we now have a file named custom.csx.

.
├── .vscode
│   └── launch.json
├── custom.csx
└── omnisharp.json

Note: Executing dotnet script init inside a folder that already contains one or more script files will not create the main.csx file.

Running scripts

Scripts can be executed directly from the shell as if they were executables.

foo.csx arg1 arg2 arg3

OSX/Linux

Just like all scripts, on OSX/Linux you need to have a #! and mark the file as executable via chmod +x foo.csx. If you use dotnet script init to create your csx it will automatically have the #! directive and be marked as executable.

The OSX/Linux shebang directive should be #!/usr/bin/env dotnet-script

#!/usr/bin/env dotnet-script
Console.WriteLine("Hello world");

You can execute your script using dotnet script or dotnet-script, which allows you to pass arguments to control your script execution more.

foo.csx arg1 arg2 arg3
dotnet script foo.csx -- arg1 arg2 arg3
dotnet-script foo.csx -- arg1 arg2 arg3

Passing arguments to scripts

All arguments after -- are passed to the script in the following way:

dotnet script foo.csx -- arg1 arg2 arg3

Then you can access the arguments in the script context using the global Args collection:

foreach (var arg in Args)
{
    Console.WriteLine(arg);
}

All arguments before -- are processed by dotnet script. For example, the following command-line

dotnet script -d foo.csx -- -d

will pass the -d before -- to dotnet script and enable the debug mode whereas the -d after -- is passed to script for its own interpretation of the argument.

NuGet Packages

dotnet script has built-in support for referencing NuGet packages directly from within the script.

#r "nuget: AutoMapper, 6.1.0"

package

Note: Omnisharp needs to be restarted after adding a new package reference

Package Sources

We can define package sources using a NuGet.Config file in the script root folder. In addition to being used during execution of the script, it will also be used by OmniSharp that provides language services for packages resolved from these package sources.

As an alternative to maintaining a local NuGet.Config file we can define these package sources globally either at the user level or at the computer level as described in Configuring NuGet Behaviour

It is also possible to specify packages sources when executing the script.

dotnet script foo.csx -s https://SomePackageSource

Multiple packages sources can be specified like this:

dotnet script foo.csx -s https://SomePackageSource -s https://AnotherPackageSource

Creating DLLs or Exes from a CSX file

Dotnet-Script can create a standalone executable or DLL for your script.

SwitchLong switchdescription
-o--outputDirectory where the published executable should be placed. Defaults to a 'publish' folder in the current directory.
-n--nameThe name for the generated DLL (executable not supported at this time). Defaults to the name of the script.
 --dllPublish to a .dll instead of an executable.
-c--configurationConfiguration to use for publishing the script [Release/Debug]. Default is "Debug"
-d--debugEnables debug output.
-r--runtimeThe runtime used when publishing the self contained executable. Defaults to your current runtime.

The executable you can run directly independent of dotnet install, while the DLL can be run using the dotnet CLI like this:

dotnet script exec {path_to_dll} -- arg1 arg2

Caching

We provide two types of caching, the dependency cache and the execution cache which is explained in detail below. In order for any of these caches to be enabled, it is required that all NuGet package references are specified using an exact version number. The reason for this constraint is that we need to make sure that we don't execute a script with a stale dependency graph.

Dependency Cache

In order to resolve the dependencies for a script, a dotnet restore is executed under the hood to produce a project.assets.json file from which we can figure out all the dependencies we need to add to the compilation. This is an out-of-process operation and represents a significant overhead to the script execution. So this cache works by looking at all the dependencies specified in the script(s) either in the form of NuGet package references or assembly file references. If these dependencies matches the dependencies from the last script execution, we skip the restore and read the dependencies from the already generated project.assets.json file. If any of the dependencies has changed, we must restore again to obtain the new dependency graph.

Execution cache

In order to execute a script it needs to be compiled first and since that is a CPU and time consuming operation, we make sure that we only compile when the source code has changed. This works by creating a SHA256 hash from all the script files involved in the execution. This hash is written to a temporary location along with the DLL that represents the result of the script compilation. When a script is executed the hash is computed and compared with the hash from the previous compilation. If they match there is no need to recompile and we run from the already compiled DLL. If the hashes don't match, the cache is invalidated and we recompile.

You can override this automatic caching by passing --no-cache flag, which will bypass both caches and cause dependency resolution and script compilation to happen every time we execute the script.

Cache Location

The temporary location used for caches is a sub-directory named dotnet-script under (in order of priority):

  1. The path specified for the value of the environment variable named DOTNET_SCRIPT_CACHE_LOCATION, if defined and value is not empty.
  2. Linux distributions only: $XDG_CACHE_HOME if defined otherwise $HOME/.cache
  3. macOS only: ~/Library/Caches
  4. The value returned by Path.GetTempPath for the platform.

 

Debugging

The days of debugging scripts using Console.WriteLine are over. One major feature of dotnet script is the ability to debug scripts directly in VS Code. Just set a breakpoint anywhere in your script file(s) and hit F5(start debugging)

debug

Script Packages

Script packages are a way of organizing reusable scripts into NuGet packages that can be consumed by other scripts. This means that we now can leverage scripting infrastructure without the need for any kind of bootstrapping.

Creating a script package

A script package is just a regular NuGet package that contains script files inside the content or contentFiles folder.

The following example shows how the scripts are laid out inside the NuGet package according to the standard convention .

└── contentFiles
    └── csx
        └── netstandard2.0
            └── main.csx

This example contains just the main.csx file in the root folder, but packages may have multiple script files either in the root folder or in subfolders below the root folder.

When loading a script package we will look for an entry point script to be loaded. This entry point script is identified by one of the following.

  • A script called main.csx in the root folder
  • A single script file in the root folder

If the entry point script cannot be determined, we will simply load all the scripts files in the package.

The advantage with using an entry point script is that we can control loading other scripts from the package.

Consuming a script package

To consume a script package all we need to do specify the NuGet package in the #loaddirective.

The following example loads the simple-targets package that contains script files to be included in our script.

#load "nuget:simple-targets-csx, 6.0.0"

using static SimpleTargets;
var targets = new TargetDictionary();

targets.Add("default", () => Console.WriteLine("Hello, world!"));

Run(Args, targets);

Note: Debugging also works for script packages so that we can easily step into the scripts that are brought in using the #load directive.

Remote Scripts

Scripts don't actually have to exist locally on the machine. We can also execute scripts that are made available on an http(s) endpoint.

This means that we can create a Gist on Github and execute it just by providing the URL to the Gist.

This Gist contains a script that prints out "Hello World"

We can execute the script like this

dotnet script https://gist.githubusercontent.com/seesharper/5d6859509ea8364a1fdf66bbf5b7923d/raw/0a32bac2c3ea807f9379a38e251d93e39c8131cb/HelloWorld.csx

That is a pretty long URL, so why don't make it a TinyURL like this:

dotnet script https://tinyurl.com/y8cda9zt

Script Location

A pretty common scenario is that we have logic that is relative to the script path. We don't want to require the user to be in a certain directory for these paths to resolve correctly so here is how to provide the script path and the script folder regardless of the current working directory.

public static string GetScriptPath([CallerFilePath] string path = null) => path;
public static string GetScriptFolder([CallerFilePath] string path = null) => Path.GetDirectoryName(path);

Tip: Put these methods as top level methods in a separate script file and #load that file wherever access to the script path and/or folder is needed.

REPL

This release contains a C# REPL (Read-Evaluate-Print-Loop). The REPL mode ("interactive mode") is started by executing dotnet-script without any arguments.

The interactive mode allows you to supply individual C# code blocks and have them executed as soon as you press Enter. The REPL is configured with the same default set of assembly references and using statements as regular CSX script execution.

Basic usage

Once dotnet-script starts you will see a prompt for input. You can start typing C# code there.

~$ dotnet script
> var x = 1;
> x+x
2

If you submit an unterminated expression into the REPL (no ; at the end), it will be evaluated and the result will be serialized using a formatter and printed in the output. This is a bit more interesting than just calling ToString() on the object, because it attempts to capture the actual structure of the object. For example:

~$ dotnet script
> var x = new List<string>();
> x.Add("foo");
> x
List<string>(1) { "foo" }
> x.Add("bar");
> x
List<string>(2) { "foo", "bar" }
>

Inline Nuget packages

REPL also supports inline Nuget packages - meaning the Nuget packages can be installed into the REPL from within the REPL. This is done via our #r and #load from Nuget support and uses identical syntax.

~$ dotnet script
> #r "nuget: Automapper, 6.1.1"
> using AutoMapper;
> typeof(MapperConfiguration)
[AutoMapper.MapperConfiguration]
> #load "nuget: simple-targets-csx, 6.0.0";
> using static SimpleTargets;
> typeof(TargetDictionary)
[Submission#0+SimpleTargets+TargetDictionary]

Multiline mode

Using Roslyn syntax parsing, we also support multiline REPL mode. This means that if you have an uncompleted code block and press Enter, we will automatically enter the multiline mode. The mode is indicated by the * character. This is particularly useful for declaring classes and other more complex constructs.

~$ dotnet script
> class Foo {
* public string Bar {get; set;}
* }
> var foo = new Foo();

REPL commands

Aside from the regular C# script code, you can invoke the following commands (directives) from within the REPL:

CommandDescription
#loadLoad a script into the REPL (same as #load usage in CSX)
#rLoad an assembly into the REPL (same as #r usage in CSX)
#resetReset the REPL back to initial state (without restarting it)
#clsClear the console screen without resetting the REPL state
#exitExits the REPL

Seeding REPL with a script

You can execute a CSX script and, at the end of it, drop yourself into the context of the REPL. This way, the REPL becomes "seeded" with your code - all the classes, methods or variables are available in the REPL context. This is achieved by running a script with an -i flag.

For example, given the following CSX script:

var msg = "Hello World";
Console.WriteLine(msg);

When you run this with the -i flag, Hello World is printed, REPL starts and msg variable is available in the REPL context.

~$ dotnet script foo.csx -i
Hello World
>

You can also seed the REPL from inside the REPL - at any point - by invoking a #load directive pointed at a specific file. For example:

~$ dotnet script
> #load "foo.csx"
Hello World
>

Piping

The following example shows how we can pipe data in and out of a script.

The UpperCase.csx script simply converts the standard input to upper case and writes it back out to standard output.

using (var streamReader = new StreamReader(Console.OpenStandardInput()))
{
    Write(streamReader.ReadToEnd().ToUpper());
}

We can now simply pipe the output from one command into our script like this.

echo "This is some text" | dotnet script UpperCase.csx
THIS IS SOME TEXT

Debugging

The first thing we need to do add the following to the launch.config file that allows VS Code to debug a running process.

{
    "name": ".NET Core Attach",
    "type": "coreclr",
    "request": "attach",
    "processId": "${command:pickProcess}"
}

To debug this script we need a way to attach the debugger in VS Code and the simplest thing we can do here is to wait for the debugger to attach by adding this method somewhere.

public static void WaitForDebugger()
{
    Console.WriteLine("Attach Debugger (VS Code)");
    while(!Debugger.IsAttached)
    {
    }
}

To debug the script when executing it from the command line we can do something like

WaitForDebugger();
using (var streamReader = new StreamReader(Console.OpenStandardInput()))
{
    Write(streamReader.ReadToEnd().ToUpper()); // <- SET BREAKPOINT HERE
}

Now when we run the script from the command line we will get

$ echo "This is some text" | dotnet script UpperCase.csx
Attach Debugger (VS Code)

This now gives us a chance to attach the debugger before stepping into the script and from VS Code, select the .NET Core Attach debugger and pick the process that represents the executing script.

Once that is done we should see our breakpoint being hit.

Configuration(Debug/Release)

By default, scripts will be compiled using the debug configuration. This is to ensure that we can debug a script in VS Code as well as attaching a debugger for long running scripts.

There are however situations where we might need to execute a script that is compiled with the release configuration. For instance, running benchmarks using BenchmarkDotNet is not possible unless the script is compiled with the release configuration.

We can specify this when executing the script.

dotnet script foo.csx -c release

 

Nullable reference types

Starting from version 0.50.0, dotnet-script supports .Net Core 3.0 and all the C# 8 features. The way we deal with nullable references types in dotnet-script is that we turn every warning related to nullable reference types into compiler errors. This means every warning between CS8600 and CS8655 are treated as an error when compiling the script.

Nullable references types are turned off by default and the way we enable it is using the #nullable enable compiler directive. This means that existing scripts will continue to work, but we can now opt-in on this new feature.

#!/usr/bin/env dotnet-script

#nullable enable

string name = null;

Trying to execute the script will result in the following error

main.csx(5,15): error CS8625: Cannot convert null literal to non-nullable reference type.

We will also see this when working with scripts in VS Code under the problems panel.

image

Download Details:
Author: filipw
Source Code: https://github.com/filipw/dotnet-script
License: MIT License

#dotnet  #aspdotnet  #csharp 

amelia jones

1591340335

How To Take Help Of Referencing Generator

APA Referencing Generator

Many students use APA style as the key citation style in their assignment in university or college. Although, many people find it quite difficult to write the reference of the source. You ought to miss the names and dates of authors. Hence, APA referencing generator is important for reducing the burden of students. They can now feel quite easy to do the assignments on time.

The functioning of APA referencing generator

If you are struggling hard to write the APA referencing then you can take the help of APA referencing generator. It will create an excellent list. You are required to enter the information about the source. Just ensure that the text is credible and original. If you will copy references then it is a copyright violation.

You can use a referencing generator in just a click. It will generate the right references for all the sources. You are required to organize in alphabetical order. The generator will make sure that you will get good grades.

How to use APA referencing generator?

Select what is required to be cited such as journal, book, film, and others. You can choose the type of required citations list and enter all the required fields. The fields are dates, author name, title, editor name, and editions, name of publishers, chapter number, page numbers, and title of journals. You can click for reference to be generated and you will get the desired result.

Chicago Referencing Generator

Do you require the citation style? You can rely on Chicago Referencing Generator and will ensure that you will get the right citation in just a click. The generator is created to provide solutions to students to cite their research paper in Chicago style. It has proved to be the quickest and best citation generator on the market. The generator helps to sort the homework issues in few seconds. It also saves a lot of time and energy.

This tool helps researchers, professional writers, and students to manage and generate text citation essays. It will help to write Chicago style in a fast and easy way. It also provides details and directions for formatting and cites resources.

So, you must stop wasting the time and can go for Chicago Referencing Generator or APA referencing generator. These citation generators will help to solve the problem of citation issues. You can easily create citations by using endnotes and footnotes.

So, you can generate bibliographies, references, in-text citations, and title pages. These are fully automatic referencing style. You are just required to enter certain details about the citation and you will get the citation in the proper and required format.

So, if you are feeling any problem in doing assignment then you can take the help of assignment help.
If you require help for Assignment then livewebtutors is the right place for you. If you see our prices, you will observe that they are actually very affordable. Also, you can always expect a discount. Our team is capable and versatile enough to offer you exactly what you need, the best services for the prices you can afford.

read more:- Are you struggling to write a bibliography? Use Harvard referencing generator

#apa referencing generator #harvard referencing generator #chicago referencing generator #mla referencing generator #deakin referencing generator #oxford referencing generator

Royce  Reinger

Royce Reinger

1658977500

A Ruby Library for Generating Text with Recursive Template Grammars

Calyx

Calyx provides a simple API for generating text with declarative recursive grammars.

Install

Command Line

gem install calyx

Gemfile

gem 'calyx'

Examples

The best way to get started quickly is to install the gem and run the examples locally.

Any Gradient

Requires Roda and Rack to be available.

gem install roda

Demonstrates how to use Calyx to construct SVG graphics. Any Gradient generates a rectangle with a linear gradient of random colours.

Run as a web server and preview the output in a browser (http://localhost:9292):

ruby examples/any_gradient.rb

Or generate SVG files via a command line pipe:

ruby examples/any_gradient > gradient1.xml

Tiny Woodland Bot

Requires the Twitter client gem and API access configured for a specific Twitter handle.

gem install twitter

Demonstrates how to use Calyx to make a minimal Twitter bot that periodically posts unique tweets. See @tiny_woodland on Twitter and the writeup here.

TWITTER_CONSUMER_KEY=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
TWITTER_ACCESS_TOKEN=XXX-XXX
TWITTER_CONSUMER_SECRET=XXX-XXX
ruby examples/tiny_woodland_bot.rb

Faker

Faker is a popular library for generating fake names and associated sample data like internet addresses, company names and locations.

This example demonstrates how to use Calyx to reproduce the same functionality using custom lists defined in a YAML configuration file.

ruby examples/faker.rb

Usage

Require the library and inherit from Calyx::Grammar to construct a set of rules to generate a text.

require 'calyx'

class HelloWorld < Calyx::Grammar
  start 'Hello world.'
end

To generate the text itself, initialize the object and call the generate method.

hello = HelloWorld.new
hello.generate
# > "Hello world."

Obviously, this hardcoded sentence isn’t very interesting by itself. Possible variations can be added to the text by adding additional rules which provide a named set of text strings. The rule delimiter syntax ({}) can be used to substitute the generated content of other rules.

class HelloWorld < Calyx::Grammar
  start '{greeting} world.'
  greeting 'Hello', 'Hi', 'Hey', 'Yo'
end

Each time #generate runs, it evaluates the tree and randomly selects variations of rules to construct a resulting string.

hello = HelloWorld.new

hello.generate
# > "Hi world."

hello.generate
# > "Hello world."

hello.generate
# > "Yo world."

By convention, the start rule specifies the default starting point for generating the final text. You can start from any other named rule by passing it explicitly to the generate method.

class HelloWorld < Calyx::Grammar
  hello 'Hello world.'
end

hello = HelloWorld.new
hello.generate(:hello)

Block Constructors

As an alternative to subclassing, you can also construct rules unique to an instance by passing a block when initializing the class:

hello = Calyx::Grammar.new do
  start '{greeting} world.'
  greeting 'Hello', 'Hi', 'Hey', 'Yo'
end

hello.generate

Template Expressions

Basic rule substitution uses single curly brackets as delimiters for template expressions:

fruit = Calyx::Grammar.new do
  start '{colour} {fruit}'
  colour 'red', 'green', 'yellow'
  fruit 'apple', 'pear', 'tomato'
end

6.times { fruit.generate }
# => "yellow pear"
# => "red apple"
# => "green tomato"
# => "red pear"
# => "yellow tomato"
# => "green apple"

Nesting and Substitution

Rules are recursive. They can be arbitrarily nested and connected to generate larger and more complex texts.

class HelloWorld < Calyx::Grammar
  start '{greeting} {world_phrase}.'
  greeting 'Hello', 'Hi', 'Hey', 'Yo'
  world_phrase '{happy_adj} world', '{sad_adj} world', 'world'
  happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
  sad_adj 'cruel', 'miserable'
end

Nesting and hierarchy can be manipulated to balance consistency with novelty. The exact same word atoms can be combined in a variety of ways to produce strikingly different resulting texts.

module HelloWorld
  class Sentiment < Calyx::Grammar
    start '{happy_phrase}', '{sad_phrase}'
    happy_phrase '{happy_greeting} {happy_adj} world.'
    happy_greeting 'Hello', 'Hi', 'Hey', 'Yo'
    happy_adj 'wonderful', 'amazing', 'bright', 'beautiful'
    sad_phrase '{sad_greeting} {sad_adj} world.'
    sad_greeting 'Goodbye', 'So long', 'Farewell'
    sad_adj 'cruel', 'miserable'
  end

  class Mixed < Calyx::Grammar
    start '{greeting} {adj} world.'
    greeting 'Hello', 'Hi', 'Hey', 'Yo', 'Goodbye', 'So long', 'Farewell'
    adj 'wonderful', 'amazing', 'bright', 'beautiful', 'cruel', 'miserable'
  end
end

Random Sampling

By default, the outcomes of generated rules are selected with Ruby’s built-in pseudorandom number generator (as seen in methods like Kernel.rand and Array.sample). To seed the random number generator, pass in an integer seed value as the first argument to the constructor:

grammar = Calyx::Grammar.new(seed: 12345) do
  # rules...
end

Alternatively, you can pass a preconfigured instance of Ruby’s stdlib Random class:

random = Random.new(12345)

grammar = Calyx::Grammar.new(rng: random) do
  # rules...
end

When a random seed isn’t supplied, Time.new.to_i is used as the default seed, which makes each run of the generator relatively unique.

Weighted Choices

Choices can be weighted so that some rules have a greater probability of expanding than others.

Weights are defined by passing a hash instead of a list of rules where the keys are strings or symbols representing the grammar rules and the values are weights.

Weights can be represented as floats, integers or ranges.

  • Floats must be in the interval 0..1 and the given weights for a production must sum to 1.
  • Ranges must be contiguous and cover the entire interval from 1 to the maximum value of the largest range.
  • Integers (Fixnums) will produce a distribution based on the sum of all given numbers, with each number being a fraction of that sum.

The following definitions produce an equivalent weighting of choices:

Calyx::Grammar.new do
  start 'heads' => 1, 'tails' => 1
end

Calyx::Grammar.new do
  start 'heads' => 0.5, 'tails' => 0.5
end

Calyx::Grammar.new do
  start 'heads' => 1..5, 'tails' => 6..10
end

Calyx::Grammar.new do
  start 'heads' => 50, 'tails' => 50
end

There’s a lot of interesting things you can do with this. For example, you can model the triangular distribution produced by rolling 2d6:

Calyx::Grammar.new do
  start(
    '2' => 1,
    '3' => 2,
    '4' => 3,
    '5' => 4,
    '6' => 5,
    '7' => 6,
    '8' => 5,
    '9' => 4,
    '10' => 3,
    '11' => 2,
    '12' => 1
  )
end

Or reproduce Gary Gygax’s famous generation table from the original Dungeon Master’s Guide (page 171):

Calyx::Grammar.new do
  start(
    :empty => 0.6,
    :monster => 0.1,
    :monster_treasure => 0.15,
    :special => 0.05,
    :trick_trap => 0.05,
    :treasure => 0.05
  )
  empty 'Empty'
  monster 'Monster Only'
  monster_treasure 'Monster and Treasure'
  special 'Special'
  trick_trap 'Trick/Trap.'
  treasure 'Treasure'
end

String Modifiers

Dot-notation is supported in template expressions, allowing you to call any available method on the String object returned from a rule. Formatting methods can be chained arbitrarily and will execute in the same way as they would in native Ruby code.

greeting = Calyx::Grammar.new do
  start '{hello.capitalize} there.', 'Why, {hello} there.'
  hello 'hello', 'hi'
end

4.times { greeting.generate }
# => "Hello there."
# => "Hi there."
# => "Why, hello there."
# => "Why, hi there."

You can also extend the grammar with custom modifiers that provide useful formatting functions.

Filters

Filters accept an input string and return the transformed output:

greeting = Calyx::Grammar.new do
  filter :shoutycaps do |input|
    input.upcase
  end

  start '{hello.shoutycaps} there.', 'Why, {hello.shoutycaps} there.'
  hello 'hello', 'hi'
end

4.times { greeting.generate }
# => "HELLO there."
# => "HI there."
# => "Why, HELLO there."
# => "Why, HI there."

Mappings

The mapping shortcut allows you to specify a map of regex patterns pointing to their resulting substitution strings:

green_bottle = Calyx::Grammar.new do
  mapping :pluralize, /(.+)/ => '\\1s'
  start 'One green {bottle}.', 'Two green {bottle.pluralize}.'
  bottle 'bottle'
end

2.times { green_bottle.generate }
# => "One green bottle."
# => "Two green bottles."

Modifier Mixins

In order to use more intricate rewriting and formatting methods in a modifier chain, you can add methods to a module and embed it in a grammar using the modifier classmethod.

Modifier methods accept a single argument representing the input string from the previous step in the expression chain and must return a string, representing the modified output.

module FullStop
  def full_stop(input)
    input << '.'
  end
end

hello = Calyx::Grammar.new do
  modifier FullStop
  start '{hello.capitalize.full_stop}'
  hello 'hello'
end

hello.generate
# => "Hello."

To share custom modifiers across multiple grammars, you can include the module in Calyx::Modifiers. This will make the methods available to all subsequent instances:

module FullStop
  def full_stop(input)
    input << '.'
  end
end

class Calyx::Modifiers
  include FullStop
end

Monkeypatching String

Alternatively, you can combine methods from existing Gems that monkeypatch String:

require 'indefinite_article'

module FullStop
  def full_stop
    self << '.'
  end
end

class String
  include FullStop
end

noun_articles = Calyx::Grammar.new do
  start '{fruit.with_indefinite_article.capitalize.full_stop}'
  fruit 'apple', 'orange', 'banana', 'pear'
end

4.times { noun_articles.generate }
# => "An apple."
# => "An orange."
# => "A banana."
# => "A pear."

Memoized Rules

Rule expansions can be ‘memoized’ so that multiple references to the same rule return the same value. This is useful for picking a noun from a list and reusing it in multiple places within a text.

The @ sigil is used to mark memoized rules. This evaluates the rule and stores it in memory the first time it’s referenced. All subsequent references to the memoized rule use the same stored value.

# Without memoization
grammar = Calyx::Grammar.new do
  start '{name} <{name.downcase}>'
  name 'Daenerys', 'Tyrion', 'Jon'
end

3.times { grammar.generate }
# => Daenerys <jon>
# => Tyrion <daenerys>
# => Jon <tyrion>

# With memoization
grammar = Calyx::Grammar.new do
  start '{@name} <{@name.downcase}>'
  name 'Daenerys', 'Tyrion', 'Jon'
end

3.times { grammar.generate }
# => Tyrion <tyrion>
# => Daenerys <daenerys>
# => Jon <jon>

Note that the memoization symbol can only be used on the right hand side of a production rule.

Unique Rules

Rule expansions can be marked as ‘unique’, meaning that multiple references to the same rule always return a different value. This is useful for situations where the same result appearing twice would appear awkward and messy.

Unique rules are marked by the $ sigil.

grammar = Calyx::Grammar.new do
  start "{$medal}, {$medal}, {$medal}"
  medal 'Gold', 'Silver', 'Bronze'
end

grammar.generate
# => Silver, Bronze, Gold

Dynamically Constructing Rules

Template expansions can be dynamically constructed at runtime by passing a context map of rules to the #generate method:

class AppGreeting < Calyx::Grammar
  start 'Hi {username}!', 'Welcome back {username}...', 'Hola {username}'
end

context = {
  username: UserModel.username
}

greeting = AppGreeting.new
greeting.generate(context)

External File Formats

In addition to defining grammars in pure Ruby, you can load them from external JSON and YAML files:

hello = Calyx::Grammar.load('hello.yml')
hello.generate

The format requires a flat map with keys representing the left-hand side named symbols and the values representing the right hand side substitution rules.

In JSON:

{
  "start": "{greeting} world.",
  "greeting": ["Hello", "Hi", "Hey", "Yo"]
}

In YAML:

---
start: "{greeting} world."
greeting:
  - Hello
  - Hi
  - Hey
  - Yo

Accessing the Raw Generated Tree

Calling #evaluate on the grammar instance will give you access to the raw generated tree structure before it gets flattened into a string.

The tree is encoded as an array of nested arrays, with the leading symbols labeling the choices and rules selected, and the trailing terminal leaves encoding string values.

This may not make a lot of sense unless you’re familiar with the concept of s-expressions. It’s a fairly speculative feature at this stage, but it leads to some interesting possibilities.

grammar = Calyx::Grammar.new do
  start 'Riddle me ree.'
end

grammar.evaluate
# => [:start, [:choice, [:concat, [[:atom, "Riddle me ree."]]]]]

Roadmap

Rough plan for stabilising the API and features for a 1.0 release.

VersionFeatures planned
0.6block constructor
0.7support for template context map passed to generate
0.8method missing metaclass API
0.9return grammar tree from #evaluate, with flattened string from #generate being separate
0.10inject custom string functions for parameterised rules, transforms and mappings
0.11support YAML format (and JSON?)
0.12API documentation
0.13Support for unique rules
0.14Support for Ruby 2.4
0.15Options config and ‘strict mode’ error handling
0.16Improve representation of weighted probability selection
0.17Return result object from #generate calls

Credits

Author & Maintainer

Contributors

Author: Maetl
Source Code: https://github.com/maetl/calyx 
License: MIT license

#ruby #text