Machine Learning In Node.js With TensorFlow.js

Machine Learning In Node.js With TensorFlow.js - TensorFlow.js is a new version of the popular open-source library which brings deep learning to JavaScript. Developers can now define, train, and run machine learning models using the high-level library API.

Pre-trained models mean developers can now easily perform complex tasks like visual recognitiongenerating music or detecting human poses with just a few lines of JavaScript.

Having started as a front-end library for web browsers, recent updates added experimental support for Node.js. This allows TensorFlow.js to be used in backend JavaScript applications without having to use Python.

Reading about the library, I wanted to test it out with a simple task…

Use TensorFlow.js to perform visual recognition on images using JavaScript from Node.js
Unfortunately, most of the documentation and example code provided uses the library in a browser. Project utilities provided to simplify loading and using pre-trained models have not yet been extended with Node.js support. Getting this working did end up with me spending a lot of time reading the Typescript source files for the library.

However, after a few days’ hacking, I managed to get this completed! Hurrah! 

Before we dive into the code, let’s start with an overview of the different TensorFlow libraries.


TensorFlow is an open-source software library for machine learning applications. TensorFlow can be used to implement neural networks and other deep learning algorithms.

Released by Google in November 2015, TensorFlow was originally a Python library. It used either CPU or GPU-based computation for training and evaluating machine learning models. The library was initially designed to run on high-performance servers with expensive GPUs.

Recent updates have extended the software to run in resource-constrained environments like mobile devices and web browsers.

TensorFlow Lite

Tensorflow Lite, a lightweight version of the library for mobile and embedded devices, was released in May 2017. This was accompanied by a new series of pre-trained deep learning models for vision recognition tasks, called MobileNet. MobileNet models were designed to work efficiently in resource-constrained environments like mobile devices.


Following Tensorflow Lite, TensorFlow.js was announced in March 2018. This version of the library was designed to run in the browser, building on an earlier project called deeplearn.js. WebGL provides GPU access to the library. Developers use a JavaScript API to train, load and run models.

TensorFlow.js was recently extended to run on Node.js, using an extension library called tfjs-node.

The Node.js extension is an alpha release and still under active development.

Importing Existing Models Into TensorFlow.js

Existing TensorFlow and Keras models can be executed using the TensorFlow.js library. Models need converting to a new format using this tool before execution. Pre-trained and converted models for image classification, pose detection and k-nearest neighbours are available on Github.

Using TensorFlow.js in Node.js

Installing TensorFlow Libraries

TensorFlow.js can be installed from the NPM registry.

npm install @tensorflow/tfjs @tensorflow/tfjs-node
// or...
npm install @tensorflow/tfjs @tensorflow/tfjs-node-gpu

Both Node.js extensions use native dependencies which will be compiled on demand.

Loading TensorFlow Libraries

TensorFlow’s JavaScript API is exposed from the core library. Extension modules to enable Node.js support do not expose additional APIs.

const tf = require('@tensorflow/tfjs')
// Load the binding (CPU computation)
// Or load the binding (GPU computation)

Loading TensorFlow Models

TensorFlow.js provides an NPM library (tfjs-models) to ease loading pre-trained & converted models for image classificationpose detection and k-nearest neighbours.

The MobileNet model used for image classification is a deep neural network trained to identify 1000 different classes.

In the project’s README, the following example code is used to load the model.

import * as mobilenet from '@tensorflow-models/mobilenet';

// Load the model.
const model = await mobilenet.load();

One of the first challenges I encountered was that this does not work on Node.js.

Error: browserHTTPRequest is not supported outside the web browser.

Looking at the source code, the mobilenet library is a wrapper around the underlying tf.Model class. When the load() method is called, it automatically downloads the correct model files from an external HTTP address and instantiates the TensorFlow model.

The Node.js extension does not yet support HTTP requests to dynamically retrieve models. Instead, models must be manually loaded from the filesystem.

After reading the source code for the library, I managed to create a work-around…

Loading Models From a Filesystem

Rather than calling the module’s load method, if the MobileNet class is created manually, the auto-generated path variable which contains the HTTP address of the model can be overwritten with a local filesystem path. Having done this, calling the load method on the class instance will trigger the filesystem loader class, rather than trying to use the browser-based HTTP loader.

const path = "mobilenet/model.json"
const mn = new mobilenet.MobileNet(1, 1);
mn.path = `file://${path}`
await mn.load()

Awesome, it works!

But how where do the models files come from?

MobileNet Models

Models for TensorFlow.js consist of two file types, a model configuration file stored in JSON and model weights in a binary format. Model weights are often sharded into multiple files for better caching by browsers.

Looking at the automatic loading code for MobileNet models, models configuration and weight shards are retrieved from a public storage bucket at this address.${version}_${alpha}_${size}/

The template parameters in the URL refer to the model versions listed here. Classification accuracy results for each version are also shown on that page.

According to the source code, only MobileNet v1 models can be loaded using the tensorflow-models/mobilenet library.

The HTTP retrieval code loads the model.json file from this location and then recursively fetches all referenced model weights shards. These files are in the format groupX-shard1of1.

Downloading Models Manually

Saving all model files to a filesystem can be achieved by retrieving the model configuration file, parsing out the referenced weight files and downloading each weight file manually.

I want to use the MobileNet V1 Module with 1.0 alpha value and image size of 224 pixels. This gives me the following URL for the model configuration file.

Once this file has been downloaded locally, I can use the jq tool to parse all the weight file names.

$ cat model.json | jq -r ".weightsManifest[].paths[0]"

Using the sed tool, I can prefix these names with the HTTP URL to generate URLs for each weight file.

$ cat model.json | jq -r ".weightsManifest[].paths[0]" | sed 's/^/https:\/\/\/tfjs-models\/tfjs\/mobilenet_v1_1.0_224\//'

Using the parallel and curl commands, I can then download all of these files to my local directory.

cat model.json | jq -r ".weightsManifest[].paths[0]" | sed 's/^/https:\/\/\/tfjs-models\/tfjs\/mobilenet_v1_1.0_224\//' |  parallel curl -O

Classifying Images

This example code is provided by TensorFlow.js to demonstrate returning classifications for an image.

const img = document.getElementById('img');

// Classify the image.
const predictions = await model.classify(img);

This does not work on Node.js due to the lack of a DOM.

The classify method accepts numerous DOM elements (canvas, video, image) and will automatically retrieve and convert image bytes from these elements into a tf.Tensor3D class which is used as the input to the model. Alternatively, the tf.Tensor3D input can be passed directly.

Rather than trying to use an external package to simulate a DOM element in Node.js, I found it easier to construct the tf.Tensor3D manually.

Generating Tensor3D from an Image

Reading the source code for the method used to turn DOM elements into Tensor3D classes, the following input parameters are used to generate the Tensor3D class.

const values = new Int32Array(image.height * image.width * numChannels);
// fill pixels with pixel channel bytes from image
const outShape = [image.height, image.width, numChannels];
const input = tf.tensor3d(values, outShape, 'int32');

pixels is a 2D array of type (Int32Array) which contains a sequential list of channel values for each pixel. numChannels is the number of channel values per pixel.

Creating Input Values For JPEGs

The jpeg-js library is a pure javascript JPEG encoder and decoder for Node.js. Using this library the RGB values for each pixel can be extracted.

const pixels = jpeg.decode(buffer, true);

This will return a Uint8Array with four channel values (RGBA) for each pixel (width * height). The MobileNet model only uses the three colour channels (RGB) for classification, ignoring the alpha channel. This code converts the four channel array into the correct three channel version.

const numChannels = 3;
const numPixels = image.width * image.height;
const values = new Int32Array(numPixels * numChannels);

for (let i = 0; i < numPixels; i++) {
  for (let channel = 0; channel < numChannels; ++channel) {
    values[i * numChannels + channel] = pixels[i * 4 + channel];

MobileNet Models Input Requirements

The MobileNet model being used classifies images of width and height 224 pixels. Input tensors must contain float values, between -1 and 1, for each of the three channels pixel values.

Input values for images of different dimensions needs to be re-sized before classification. Additionally, pixels values from the JPEG decoder are in the range 0 - 255, rather than -1 to 1. These values also need converting prior to classification.

TensorFlow.js has library methods to make this process easier but, fortunately for us, the tfjs-models/mobilenet library automatically handles this issue! 

Developers can pass in Tensor3D inputs of type int32 and different dimensions to the classify method and it converts the input to the correct format prior to classification. Which means there’s nothing to do… Super .

Obtaining Predictions

MobileNet models in Tensorflow are trained to recognise entities from the top 1000 classes in the ImageNet dataset. The models output the probabilities that each of those entities is in the image being classified.

The full list of trained classes for the model being used can be found in this file.

The tfjs-models/mobilenet library exposes a classify method on the MobileNet class to return the top X classes with highest probabilities from an image input.

const predictions = await mn_model.classify(input, 10);

predictions is an array of X classes and probabilities in the following format.

  className: 'panda',
  probability: 0.9993536472320557


Having worked how to use the TensorFlow.js library and MobileNet models on Node.js, this script will classify an image given as a command-line argument.

source code

testing it out

npm install
wget -O panda.jpg
node script.js mobilenet/model.json panda.jpg

If everything worked, the following output should be printed to the console.

classification results: [ {
    className: 'giant panda, panda, panda bear, coon bear',
    probability: 0.9993536472320557 
} ]

The image is correctly classified as containing a Panda with 99.93% probability! 🐼🐼🐼


TensorFlow.js brings the power of deep learning to JavaScript developers. Using pre-trained models with the TensorFlow.js library makes it simple to extend JavaScript applications with complex machine learning tasks with minimal effort and code.

Having been released as a browser-based library, TensorFlow.js has now been extended to work on Node.js, although not all of the tools and utilities support the new runtime. With a few days’ hacking, I was able to use the library with the MobileNet models for visual recognition on images from a local file.

Getting this working in the Node.js runtime means I now move on to my next idea… making this run inside a serverless function! Come back soon to read about my next adventure with TensorFlow.js.

Originally published by James Thomas

#node-js #tensorflow

What is GEEK

Buddha Community

Machine Learning In Node.js With TensorFlow.js

Tubo Man


Good job

vikas 123



Can i use tensorflow package in my node project to predict customer visiting?

Elina Fransis


Great article, Thanks for sharing the details. I am currently working in a reputed company as data scientist with Machine learning and AI background. Have studied Data science courses in Learnbay and scored good mark.

NBB: Ad-hoc CLJS Scripting on Node.js


Not babashka. Node.js babashka!?

Ad-hoc CLJS scripting on Node.js.


Experimental. Please report issues here.

Goals and features

Nbb's main goal is to make it easy to get started with ad hoc CLJS scripting on Node.js.

Additional goals and features are:

  • Fast startup without relying on a custom version of Node.js.
  • Small artifact (current size is around 1.2MB).
  • First class macros.
  • Support building small TUI apps using Reagent.
  • Complement babashka with libraries from the Node.js ecosystem.


Nbb requires Node.js v12 or newer.

How does this tool work?

CLJS code is evaluated through SCI, the same interpreter that powers babashka. Because SCI works with advanced compilation, the bundle size, especially when combined with other dependencies, is smaller than what you get with self-hosted CLJS. That makes startup faster. The trade-off is that execution is less performant and that only a subset of CLJS is available (e.g. no deftype, yet).


Install nbb from NPM:

$ npm install nbb -g

Omit -g for a local install.

Try out an expression:

$ nbb -e '(+ 1 2 3)'

And then install some other NPM libraries to use in the script. E.g.:

$ npm install csv-parse shelljs zx

Create a script which uses the NPM libraries:

(ns script
  (:require ["csv-parse/lib/sync$default" :as csv-parse]
            ["fs" :as fs]
            ["path" :as path]
            ["shelljs$default" :as sh]
            ["term-size$default" :as term-size]
            ["zx$default" :as zx]
            ["zx$fs" :as zxfs]
            [nbb.core :refer [*file*]]))

(prn (path/resolve "."))

(prn (term-size))

(println (count (str (fs/readFileSync *file*))))

(prn (sh/ls "."))

(prn (csv-parse "foo,bar"))

(prn (zxfs/existsSync *file*))

(zx/$ #js ["ls"])

Call the script:

$ nbb script.cljs
#js {:columns 216, :rows 47}
#js ["node_modules" "package-lock.json" "package.json" "script.cljs"]
#js [#js ["foo" "bar"]]
$ ls


Nbb has first class support for macros: you can define them right inside your .cljs file, like you are used to from JVM Clojure. Consider the plet macro to make working with promises more palatable:

(defmacro plet
  [bindings & body]
  (let [binding-pairs (reverse (partition 2 bindings))
        body (cons 'do body)]
    (reduce (fn [body [sym expr]]
              (let [expr (list '.resolve 'js/Promise expr)]
                (list '.then expr (list 'clojure.core/fn (vector sym)

Using this macro we can look async code more like sync code. Consider this puppeteer example:

(-> (.launch puppeteer)
      (.then (fn [browser]
               (-> (.newPage browser)
                   (.then (fn [page]
                            (-> (.goto page "")
                                (.then #(.screenshot page #js{:path "screenshot.png"}))
                                (.catch #(js/console.log %))
                                (.then #(.close browser)))))))))

Using plet this becomes:

(plet [browser (.launch puppeteer)
       page (.newPage browser)
       _ (.goto page "")
       _ (-> (.screenshot page #js{:path "screenshot.png"})
             (.catch #(js/console.log %)))]
      (.close browser))

See the puppeteer example for the full code.

Since v0.0.36, nbb includes promesa which is a library to deal with promises. The above plet macro is similar to promesa.core/let.

Startup time

$ time nbb -e '(+ 1 2 3)'
nbb -e '(+ 1 2 3)'   0.17s  user 0.02s system 109% cpu 0.168 total

The baseline startup time for a script is about 170ms seconds on my laptop. When invoked via npx this adds another 300ms or so, so for faster startup, either use a globally installed nbb or use $(npm bin)/nbb script.cljs to bypass npx.


NPM dependencies

Nbb does not depend on any NPM dependencies. All NPM libraries loaded by a script are resolved relative to that script. When using the Reagent module, React is resolved in the same way as any other NPM library.


To load .cljs files from local paths or dependencies, you can use the --classpath argument. The current dir is added to the classpath automatically. So if there is a file foo/bar.cljs relative to your current dir, then you can load it via (:require [ :as fb]). Note that nbb uses the same naming conventions for namespaces and directories as other Clojure tools: foo-bar in the namespace name becomes foo_bar in the directory name.

To load dependencies from the Clojure ecosystem, you can use the Clojure CLI or babashka to download them and produce a classpath:

$ classpath="$(clojure -A:nbb -Spath -Sdeps '{:aliases {:nbb {:replace-deps {com.github.seancorfield/honeysql {:git/tag "v2.0.0-rc5" :git/sha "01c3a55"}}}}}')"

and then feed it to the --classpath argument:

$ nbb --classpath "$classpath" -e "(require '[honey.sql :as sql]) (sql/format {:select :foo :from :bar :where [:= :baz 2]})"
["SELECT foo FROM bar WHERE baz = ?" 2]

Currently nbb only reads from directories, not jar files, so you are encouraged to use git libs. Support for .jar files will be added later.

Current file

The name of the file that is currently being executed is available via nbb.core/*file* or on the metadata of vars:

(ns foo
  (:require [nbb.core :refer [*file*]]))

(prn *file*) ;; "/private/tmp/foo.cljs"

(defn f [])
(prn (:file (meta #'f))) ;; "/private/tmp/foo.cljs"


Nbb includes reagent.core which will be lazily loaded when required. You can use this together with ink to create a TUI application:

$ npm install ink


(ns ink-demo
  (:require ["ink" :refer [render Text]]
            [reagent.core :as r]))

(defonce state (r/atom 0))

(doseq [n (range 1 11)]
  (js/setTimeout #(swap! state inc) (* n 500)))

(defn hello []
  [:> Text {:color "green"} "Hello, world! " @state])

(render (r/as-element [hello]))


Working with callbacks and promises can become tedious. Since nbb v0.0.36 the promesa.core namespace is included with the let and do! macros. An example:

(ns prom
  (:require [promesa.core :as p]))

(defn sleep [ms]
   (fn [resolve _]
     (js/setTimeout resolve ms))))

(defn do-stuff
   (println "Doing stuff which takes a while")
   (sleep 1000)

(p/let [a (do-stuff)
        b (inc a)
        c (do-stuff)
        d (+ b c)]
  (prn d))
$ nbb prom.cljs
Doing stuff which takes a while
Doing stuff which takes a while

Also see API docs.


Since nbb v0.0.75 applied-science/js-interop is available:

(ns example
  (:require [applied-science.js-interop :as j]))

(def o (j/lit {:a 1 :b 2 :c {:d 1}}))

(prn (j/select-keys o [:a :b])) ;; #js {:a 1, :b 2}
(prn (j/get-in o [:c :d])) ;; 1

Most of this library is supported in nbb, except the following:

  • destructuring using :syms
  • property access using .-x notation. In nbb, you must use keywords.

See the example of what is currently supported.


See the examples directory for small examples.

Also check out these projects built with nbb:


See API documentation.

Migrating to shadow-cljs

See this gist on how to convert an nbb script or project to shadow-cljs.



  • babashka >= 0.4.0
  • Clojure CLI >=
  • Node.js 16.5.0 (lower version may work, but this is the one I used to build)

To build:

  • Clone and cd into this repo
  • bb release

Run bb tasks for more project-related tasks.

Download Details:
Author: borkdude
Download Link: Download The Source Code
Official Website: 
License: EPL-1.0

#node #javascript

Hire Dedicated Node.js Developers - Hire Node.js Developers

If you look at the backend technology used by today’s most popular apps there is one thing you would find common among them and that is the use of NodeJS Framework. Yes, the NodeJS framework is that effective and successful.

If you wish to have a strong backend for efficient app performance then have NodeJS at the backend.

WebClues Infotech offers different levels of experienced and expert professionals for your app development needs. So hire a dedicated NodeJS developer from WebClues Infotech with your experience requirement and expertise.

So what are you waiting for? Get your app developed with strong performance parameters from WebClues Infotech

For inquiry click here:

Book Free Interview:

#hire dedicated node.js developers #hire node.js developers #hire top dedicated node.js developers #hire node.js developers in usa & india #hire node js development company #hire the best node.js developers & programmers

sophia tondon

sophia tondon


5 Latest Technology Trends of Machine Learning for 2021

Check out the 5 latest technologies of machine learning trends to boost business growth in 2021 by considering the best version of digital development tools. It is the right time to accelerate user experience by bringing advancement in their lifestyle.

#machinelearningapps #machinelearningdevelopers #machinelearningexpert #machinelearningexperts #expertmachinelearningservices #topmachinelearningcompanies #machinelearningdevelopmentcompany

Visit Blog-

#machine learning companies #top machine learning companies #machine learning development company #expert machine learning services #machine learning experts #machine learning expert

Aria Barnes

Aria Barnes


Why use Node.js for Web Development? Benefits and Examples of Apps

Front-end web development has been overwhelmed by JavaScript highlights for quite a long time. Google, Facebook, Wikipedia, and most of all online pages use JS for customer side activities. As of late, it additionally made a shift to cross-platform mobile development as a main technology in React Native, Nativescript, Apache Cordova, and other crossover devices. 

Throughout the most recent couple of years, Node.js moved to backend development as well. Designers need to utilize a similar tech stack for the whole web project without learning another language for server-side development. Node.js is a device that adjusts JS usefulness and syntax to the backend. 

What is Node.js? 

Node.js isn’t a language, or library, or system. It’s a runtime situation: commonly JavaScript needs a program to work, however Node.js makes appropriate settings for JS to run outside of the program. It’s based on a JavaScript V8 motor that can run in Chrome, different programs, or independently. 

The extent of V8 is to change JS program situated code into machine code — so JS turns into a broadly useful language and can be perceived by servers. This is one of the advantages of utilizing Node.js in web application development: it expands the usefulness of JavaScript, permitting designers to coordinate the language with APIs, different languages, and outside libraries.

What Are the Advantages of Node.js Web Application Development? 

Of late, organizations have been effectively changing from their backend tech stacks to Node.js. LinkedIn picked Node.js over Ruby on Rails since it took care of expanding responsibility better and decreased the quantity of servers by multiple times. PayPal and Netflix did something comparative, just they had a goal to change their design to microservices. We should investigate the motivations to pick Node.JS for web application development and when we are planning to hire node js developers. 

Amazing Tech Stack for Web Development 

The principal thing that makes Node.js a go-to environment for web development is its JavaScript legacy. It’s the most well known language right now with a great many free devices and a functioning local area. Node.js, because of its association with JS, immediately rose in ubiquity — presently it has in excess of 368 million downloads and a great many free tools in the bundle module. 

Alongside prevalence, Node.js additionally acquired the fundamental JS benefits: 

  • quick execution and information preparing; 
  • exceptionally reusable code; 
  • the code is not difficult to learn, compose, read, and keep up; 
  • tremendous asset library, a huge number of free aides, and a functioning local area. 

In addition, it’s a piece of a well known MEAN tech stack (the blend of MongoDB, Express.js, Angular, and Node.js — four tools that handle all vital parts of web application development). 

Designers Can Utilize JavaScript for the Whole Undertaking 

This is perhaps the most clear advantage of Node.js web application development. JavaScript is an unquestionable requirement for web development. Regardless of whether you construct a multi-page or single-page application, you need to know JS well. On the off chance that you are now OK with JavaScript, learning Node.js won’t be an issue. Grammar, fundamental usefulness, primary standards — every one of these things are comparable. 

In the event that you have JS designers in your group, it will be simpler for them to learn JS-based Node than a totally new dialect. What’s more, the front-end and back-end codebase will be basically the same, simple to peruse, and keep up — in light of the fact that they are both JS-based. 

A Quick Environment for Microservice Development 

There’s another motivation behind why Node.js got famous so rapidly. The environment suits well the idea of microservice development (spilling stone monument usefulness into handfuls or many more modest administrations). 

Microservices need to speak with one another rapidly — and Node.js is probably the quickest device in information handling. Among the fundamental Node.js benefits for programming development are its non-obstructing algorithms.

Node.js measures a few demands all at once without trusting that the first will be concluded. Many microservices can send messages to one another, and they will be gotten and addressed all the while. 

Versatile Web Application Development 

Node.js was worked in view of adaptability — its name really says it. The environment permits numerous hubs to run all the while and speak with one another. Here’s the reason Node.js adaptability is better than other web backend development arrangements. 

Node.js has a module that is liable for load adjusting for each running CPU center. This is one of numerous Node.js module benefits: you can run various hubs all at once, and the environment will naturally adjust the responsibility. 

Node.js permits even apportioning: you can part your application into various situations. You show various forms of the application to different clients, in light of their age, interests, area, language, and so on. This builds personalization and diminishes responsibility. Hub accomplishes this with kid measures — tasks that rapidly speak with one another and share a similar root. 

What’s more, Node’s non-hindering solicitation handling framework adds to fast, letting applications measure a great many solicitations. 

Control Stream Highlights

Numerous designers consider nonconcurrent to be one of the two impediments and benefits of Node.js web application development. In Node, at whatever point the capacity is executed, the code consequently sends a callback. As the quantity of capacities develops, so does the number of callbacks — and you end up in a circumstance known as the callback damnation. 

In any case, Node.js offers an exit plan. You can utilize systems that will plan capacities and sort through callbacks. Systems will associate comparable capacities consequently — so you can track down an essential component via search or in an envelope. At that point, there’s no compelling reason to look through callbacks.


Final Words

So, these are some of the top benefits of Nodejs in web application development. This is how Nodejs is contributing a lot to the field of web application development. 

I hope now you are totally aware of the whole process of how Nodejs is really important for your web project. If you are looking to hire a node js development company in India then I would suggest that you take a little consultancy too whenever you call. 

Good Luck!

Original Source

#node.js development company in india #node js development company #hire node js developers #hire node.js developers in india #node.js development services #node.js development

Nora Joy


Hire Machine Learning Developers in India

Hire machine learning developers in India ,DxMinds Technologies is the best product engineering company in India making innovative solutions using Machine learning and deep learning. We are among the best to hire machine learning experts in India work in different industry domains like Healthcare retail, banking and finance ,oil and gas, ecommerce, telecommunication ,FMCG, fashion etc.
Product Engineering & Development
Maintenance / Support / Sustenance
Integration / Data Management
QA & Automation
Reach us 917483546629

Hire machine learning developers in India ,DxMinds Technologies is the best product engineering company in India making innovative solutions using Machine learning and deep learning. We are among the best to hire machine learning experts in India work in different industry domains like Healthcare retail, banking and finance ,oil and gas, ecommerce, telecommunication ,FMCG, fashion etc.


Product Engineering & Development


Maintenance / Support / Sustenance

Integration / Data Management

QA & Automation

Reach us 917483546629

#hire machine learning developers in india #hire dedicated machine learning developers in india #hire machine learning programmers in india #hire machine learning programmers #hire dedicated machine learning developers #hire machine learning developers