Tia  Gottlieb

Tia Gottlieb

1595707140

7 Steps To Use Mobile DevOps Tools Efficiently - DZone DevOps

In today’s organizational environment, ‘DevOps’ is the most used buzzword and has become a part of its agile software culture. Organization’s DevOps success is not a single goal approach; it requires deeper involvement in making a switch to DevOps.

Broadly, it requires the adoption of new DevOps automation tools, contemporary processes, and cultural shift, especially in the case of Mobile DevOps tools selection. A business has to be equipped with ever-evolving principles and DevOps automation tools to embrace these steps to successful DevOps test automation.

There are multiple Mobile DevOps Tools with different strengths contributing to a reliable Mobile DevOps process. Today, the businesses and the development teams are investing in intelligent systems that are capable of monitoring the production and development metrics in real-time. This acts as a great deal for the development firms unless it covers all important aspects of the process allowing perfect optimization of the resources based on the reports.

The journey from planning, development, deployment, and beyond, generally called ‘shift left’ process which is a part of continuous testing. In this approach, the testing is mostly focused on an earlier stage of the production life cycle aiming at delivering applications faster and with much lesser time and money. When it comes to mobile apps testing, the shift left approach works well because the application has to be tested well to perform well in the real environment. In the case of Mobile DevOps, using a production environment to test the mobile application on real physical devices would help highlight and fix issues in the earlier phases of SDLC, reducing costs and time.

Gone are the days when testing was only executed as a final step of the processes whereas nowadays, it has to be performed after every build, at every stage of the process. It is with the help of multi-step testing and maximum data capture after each test cycle, that the status of development and testing hasn’t been compromised enabling early bug-fixing and building more strong applications especially when this process is simplified with the help of DevOps automation tools.

DevOps and Automation go hand in hand. Despite many challenges, it carries a much strategic role to bring the whole business making faster and better applications. A developer has to have a combination of agile development methods along with Mobile DevOps to win in the mobile application; this can be achieved with the help of right DevOps automated testing tools.

Below Are The 7 Most Common Process Steps With Mobile DevOps Tools

Code

Anything related to real development is related to continuous integration whether it is code development or code reviews. The way developers work today by collaborating; integrating all the things is all a gift of the agile approach which is responsible for making continuous integration popular. With the adoption of continuous integration, early-stage issues are detected which ultimately reveals any integration glitches, faults in the code commits, etc.

It generates a lot of data required for making the right choices to be made by the developer as it showcases a lot of data about the mobile application that the developers can use to make the code better. This thus ultimately helps in estimating the scheduling and time consumption more accurately.

Build

The build is nothing but application components that are collected repeatedly and compiles for testing to produce a reliable final software product. This is not a one-time job, instead it is a developer’s everyday task of creating various builds of applications.

In the Mobile DevOps scenario, to notify the status of the build, the developers use various version controls and source code management techniques. Software Engineers normally follow branching techniques in case of Mobile DevOps like no branching, release branching, maintenance branching and branching for features.

#tutorial #devops #continuous testing

What is GEEK

Buddha Community

7 Steps To Use Mobile DevOps Tools Efficiently - DZone DevOps
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

John  Smith

John Smith

1657107416

Find the Best Restaurant Mobile App Development Company in Abu Dhbai

The era of mobile app development has completely changed the scenario for businesses in regions like Abu Dhabi. Restaurants and food delivery businesses are experiencing huge benefits via smart business applications. The invention and development of the food ordering app have helped all-scale businesses reach new customers and boost sales and profit. 

As a result, many business owners are searching for the best restaurant mobile app development company in Abu Dhabi. If you are also searching for the same, this article is helpful for you. It will let you know the step-by-step process to hire the right team of restaurant mobile app developers. 

Step-by-Step Process to Find the Best Restaurant App Development Company

Searching for the top mobile app development company in Abu Dhabi? Don't know the best way to search for professionals? Don't panic! Here is the step-by-step process to hire the best professionals. 

#Step 1 – Know the Company's Culture

Knowing the organization's culture is very crucial before finalizing a food ordering app development company in Abu Dhabi. An organization's personality is shaped by its common beliefs, goals, practices, or company culture. So, digging into the company culture reveals the core beliefs of the organization, its objectives, and its development team. 

Now, you might be wondering, how will you identify the company's culture? Well, you can take reference from the following sources – 

  • Social media posts 
  • App development process
  • About us Page
  • Client testimonials

#Step 2 - Refer to Clients' Reviews

Another best way to choose the On-demand app development firm for your restaurant business is to refer to the clients' reviews. Reviews are frequently available on the organization's website with a tag of "Reviews" or "Testimonials." It's important to read the reviews as they will help you determine how happy customers are with the company's app development process. 

You can also assess a company's abilities through reviews and customer testimonials. They can let you know if the mobile app developers create a valuable app or not. 

#Step 3 – Analyze the App Development Process

Regardless of the company's size or scope, adhering to the restaurant delivery app development process will ensure the success of your business application. Knowing the processes an app developer follows in designing and producing a top-notch app will help you know the working process. Organizations follow different app development approaches, so getting well-versed in the process is essential before finalizing any mobile app development company. 

#Step 4 – Consider Previous Experience

Besides considering other factors, considering the previous experience of the developers is a must. You can obtain a broad sense of the developer's capacity to assist you in creating a unique mobile application for a restaurant business.

You can also find out if the developers' have contributed to the creation of other successful applications or not. It will help you know the working capacity of a particular developer or organization. Prior experience is essential to evaluating their work. For instance, whether they haven't previously produced an app similar to yours or not. 

#Step 5 – Check for Their Technical Support

As you expect a working and successful restaurant mobile app for your business, checking on this factor is a must. A well-established organization is nothing without a good technical support team. So, ensure whatever restaurant mobile app development company you choose they must be well-equipped with a team of dedicated developers, designers, and testers. 

Strong tech support from your mobile app developers will help you identify new bugs and fix them bugs on time. All this will ensure the application's success. 

#Step 6 – Analyze Design Standards

Besides focusing on an organization's development, testing, and technical support, you should check the design standards. An appealing design is crucial in attracting new users and keeping the existing ones stick to your services. So, spend some time analyzing the design standards of an organization. Now, you might be wondering, how will you do it? Simple! By looking at the organization's portfolio. 

Whether hiring an iPhone app development company or any other, these steps apply to all. So, don't miss these steps. 

#Step 7 – Know Their Location

Finally, the last yet very crucial factor that will not only help you finalize the right person for your restaurant mobile app development but will also decide the mobile app development cost. So, you have to choose the location of the developers wisely, as it is a crucial factor in defining the cost. 

Summing Up!!!

Restaurant mobile applications have taken the food industry to heights none have ever considered. As a result, the demand for restaurant mobile app development companies has risen greatly, which is why businesses find it difficult to finalize the right person. But, we hope that after referring to this article, it will now be easier to hire dedicated developers under the desired budget. So, begin the hiring process now and get a well-craft food ordering app in hand. 

50+ Useful DevOps Tools

The article comprises both very well established tools for those who are new to the DevOps methodology.

What Is DevOps?

The DevOps methodology, a software and team management approach defined by the portmanteau of Development and Operations, was first coined in 2009 and has since become a buzzword concept in the IT field.

DevOps has come to mean many things to each individual who uses the term as DevOps is not a singularly defined standard, software, or process but more of a culture. Gartner defines DevOps as:

“DevOps represents a change in IT culture, focusing on rapid IT service delivery through the adoption of agile, lean practices in the context of a system-oriented approach. DevOps emphasizes people (and culture), and seeks to improve collaboration between operations and development teams. DevOps implementations utilize technology — especially automation tools that can leverage an increasingly programmable and dynamic infrastructure from a life cycle perspective.”

As you can see from the above definition, DevOps is a multi-faceted approach to the Software Development Life Cycle (SDLC), but its main underlying strength is how it leverages technology and software to streamline this process. So with the right approach to DevOps, notably adopting its philosophies of co-operation and implementing the right tools, your business can increase deployment frequency by a factor of 30 and lead times by a factor of 8000 over traditional methods, according to a CapGemini survey.

The Right Tools for the Job

This list is designed to be as comprehensive as possible. The article comprises both very well established tools for those who are new to the DevOps methodology and those tools that are more recent releases to the market — either way, there is bound to be a tool on here that can be an asset for you and your business. For those who already live and breathe DevOps, we hope you find something that will assist you in your growing enterprise.

With such a litany of tools to choose from, there is no “right” answer to what tools you should adopt. No single tool will cover all your needs and will be deployed across a variety of development and Operational teams, so let’s break down what you need to consider before choosing what tool might work for you.

  • Plan and collaborate: Before you even begin the SDLC, your business needs to have a cohesive idea of what tools they’ll need to implement across your teams. There are even DevOps tools that can assist you with this first crucial step.
  • Build: Here you want tools that create identically provisioned environments. The last you need is to hear “But it works for me on my computer”
  • Automation: This has quickly become a given in DevOps, but automation will always drastically increase production over manual methods.
  • Continuous Integration: Tools need to provide constant and immediate feedback, several times a day but not all integrations are implemented equally, will the tool you select be right for the job?
  • Deployment: Deployments need to be kept predictable, smooth, and reliable with minimal risks, automation will also play a big part in this process.

With all that in mind, I hope this selection of tools will aid you as your business continues to expand into the DevOps lifestyle.

Tools Categories List:

Infrastructure As Code

Continuous Integration and Delivery

Development Automation

Usability Testing

Database and Big Data

Monitoring

Testing

Security

Helpful CLI Tools

Development

Visualization

Infrastructure As Code

#AWSCloudFormation

1. AWS CloudFormation

AWS CloudFormation is an absolute must if you are currently working, or planning to work, in the AWS Cloud. CloudFormation allows you to model your AWS infrastructure and provision all your AWS resources swiftly and easily. All of this is done within a JSON or YAML template file and the service comes with a variety of automation features ensuring your deployments will be predictable, reliable, and manageable.

Link: https://aws.amazon.com/cloudformation/

2. Azure Resource Manager

Azure Resource Manager (ARM) is Microsoft’s answer to an all-encompassing IAC tool. With its ARM templates, described within JSON files, Azure Resource Manager will provision your infrastructure, handle dependencies, and declare multiple resources via a single template.

Link: https://azure.microsoft.com/en-us/features/resource-manager/

#Google Cloud Deployment Manager

3. Google Cloud Deployment Manager

Much like the tools mentioned above, Google Cloud Deployment Manager is Google’s IAC tool for the Google Cloud Platform. This tool utilizes YAML for its config files and JINJA2 or PYTHON for its templates. Some of its notable features are synchronistic deployment and ‘preview’, allowing you an overhead view of changes before they are committed.

Link: https://cloud.google.com/deployment-manager/

4. Terraform

Terraform is brought to you by HashiCorp, the makers of Vault and Nomad. Terraform is vastly different from the above-mentioned tools in that it is not restricted to a specific cloud environment, this comes with increased benefits for tackling complex distributed applications without being tied to a single platform. And much like Google Cloud Deployment Manager, Terraform also has a preview feature.

Link: https://www.terraform.io/

#Chef

5. Chef

Chef is an ideal choice for those who favor CI/CD. At its heart, Chef utilizes self-described recipes, templates, and cookbooks; a collection of ready-made templates. Cookbooks allow for consistent configuration even as your infrastructure rapidly scales. All of this is wrapped up in a beautiful Ruby-based DSL pie.

Link: https://www.chef.io/products/chef-infra/

#Ansible

#tools #devops #devops 2020 #tech tools #tool selection #tool comparison

Vern  Greenholt

Vern Greenholt

1595474520

10 Best Tools for DevOps You’ve Never Heard About - DZone DevOps

If you’re an experienced DevOps engineer you want to find the most efficient tools for your work. However, the variety of services available is so big that you physically can’t try them all. That’s the reason why the majority of DevOps engineers limit themselves to a shortlist of tools such as Docker, Jenkins, Kubernetes, Puppet, or Ansible without ever attempting to change anything. But many great tools fit your current tech stack and can take your efficiency to a new level. To help you, I have created this list of great DevOps tools that you probably haven’t heard about before.

It’s time to try something new! All the tools below offer trials or free plans. So you can try them and see if something fits your needs. Many of them will not replace your existing stack but supplement it.

Please, share in the comments which tools you already knew about and which you’ll try after reading this article.

StatusGator

Free plan: Yes, the application has a very generous free plan with ample functionality for many small DevOps teams and individuals and developers.

Paid plans start from $29.99 per month

Have you ever had a problem you’ve worked on for 3 hours in a row and only afterward discovered that the issue was in one of your third-party tools or cloud services, or that an API you use was down? This will never, ever happen again with StatusGator.

This application will help keep you informed about the state of all your dependencies and send notifications via Slack, Teams, Discord, Flowdock, email, SMS, or even webhook. StatusGator reads the status pages of around 800 cloud services, parsing them into a centralized feed for you. If you want to know if Intercom is down or not, be aware of Mailgun outages, monitor the Google Cloud status or understand the current state of any other services, StatusGator will help you to understand all this.

If you care about reducing your downtime, you should sign up for StatusGator right now. Otherwise, you’re just wasting time and not staying informed. This app has a free plan, so you don’t even need any budget to start. I saved what could have been a full day’s work when an API failed and I knew what the core reason was right away, thanks to StatusGator. So I’m ready to buy a round of drinks for the StatusGator team right now! :)

Talking about budget, the paid plan has a reasonable price and starts at only $29.99 per month. Just remember the cost of downtime to understand how worthwhile this investment is. It doesn’t take much time at all to recoup that investment.

Sign up here for free!

Dead Man’s Snitch

Free plan: Yes

Paid plan starts from $5 for individuals and $19 for teams per month.

If you have daily backups or cron jobs, and you need monitoring then Dead Man’s Snitch can help you to achieve it. With this service, you can monitor Heroku Scheduler, cron jobs, or any task from any task scheduler. If something doesn’t execute, the application alerts you, so you can react in a good time.

Dead Man’s Snitch helps to create ‘snitches’ for every service you need to monitor. Also, the application creates a special URL for these services, thus you can make requests via a browser. It has a free plan and three different paid plans for individuals and teams.

FireHydrant

Free plan: yes, but with limited functions

Paid plan starts from $129 per month

Like a real fire hydrant helps to put out fires, this tool will help you put out “fires” at work by receiving timely alerts and other cool features. It helps document the system, integrate the tools you already use, and gather data and alerts for handling incidents.

FireHydrant will help you to connect team members, servers, features, and applications in one infrastructure graph. With this single tool, you can finally stop using spreadsheets and automate all your documentation. Also, FireHydrant provides public customer-facing status pages, thus you can inform users promptly if you need to.

This application has a free plan with limited functions but it’s enough to understand if it suits your team. The paid plan starts from $129 per month for 5 team members. A plan for 10 members costs $600.

Clustered

Free plan: Yes

**Paid plan **starts from $29 per month billed annually or $39 per month billed monthly

Clustered will help you with every step of the software development process. It automates many actions allowing you to concentrate on the code without infrastructure management. Clustered helps you to automate deployment and scaling, and resolve problems before your users even notice them. It can replace familiar tools like CircleCI, Jenkins, or GitLab. Thus, you can save a lot of time and reinvest it only on coding. Clustered works with Node.js, Vue.js, Python, PHP, and other popular languages. It provides CI/CD and managed container hosting in a development platform.

The main idea of Clustered is to simplify the software development process. It provides DevOps automation and container orchestration with a simple and understandable interface and lots of integrations, including AWS, Google Cloud, and Azure. Clustered has a 14-day free trial and a paid plan from $29 to $99 per month.

#devops #software #devops tools #tools for developers #devops tool

How to Extend your DevOps Strategy For Success in the Cloud?

DevOps and Cloud computing are joined at the hip, now that fact is well appreciated by the organizations that engaged in SaaS cloud and developed applications in the Cloud. During the COVID crisis period, most of the organizations have started using cloud computing services and implementing a cloud-first strategy to establish their remote operations. Similarly, the extended DevOps strategy will make the development process more agile with automated test cases.

According to the survey in EMEA, IT decision-makers have observed a 129%* improvement in the overall software development process when performing DevOps on the Cloud. This success result was just 81% when practicing only DevOps and 67%* when leveraging Cloud without DevOps. Not only that, but the practice has also made the software predictability better, improve the customer experience as well as speed up software delivery 2.6* times faster.

3 Core Principle to fit DevOps Strategy

If you consider implementing DevOps in concert with the Cloud, then the

below core principle will guide you to utilize the strategy.

  • It is indispensable to follow a continuous process, including all stages from Dev to deploy with the help of auto-provisioning resources of the target platform.
  • The team always keeps an eye on major and minor application changes that can typically appear within a few hours of development to operation. However, the support of unlimited resource provisioning is needed at the stage of deployment.
  • Cloud or hybrid configuration can associate this process, but you must confirm that configuration should support multiple cloud brands like Microsoft, AWS, Google, any public and private cloud models.

Guide to Remold Business with DevOps and Cloud

Companies are now re-inventing themselves to become better at sensing the next big thing their customers need and finding ways with the Cloud based DevOps to get ahead of the competition.

#devops #devops-principles #azure-devops #devops-transformation #good-company #devops-tools #devops-top-story #devops-infrastructure