How to Configure And Monitor Apache Spark on Kubernetes

Earlier this year at Spark + AI Summit, we had the pleasure of presenting our session on the best practices and pitfalls of running Apache Spark on Kubernetes (K8s).

In this post we’d like to expand on that presentation and talk to you about:

  1. What is Kubernetes?
  2. Why run Spark on Kubernetes?
  3. Getting started with Spark on Kubernetes
  4. Optimizing performance and cost
  5. Monitoring your Spark applications on Kubernetes
  6. The future of Spark on Kubernetes

If you’re already familiar with k8s and why Spark on Kubernetes might be a fit for you, feel free to skip the first couple of sections and get straight to the meat of the post!

#apache-spark #spark-on-kubernetes #docker #kubernetes #spark-on-k8s #k8s #good-company #devops

What is GEEK

Buddha Community

How to Configure And Monitor Apache Spark on Kubernetes
Christa  Stehr

Christa Stehr

1602964260

50+ Useful Kubernetes Tools for 2020 - Part 2

Introduction

Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.

According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.

(State of Kubernetes and Container Security, 2020)

And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.

(State of Kubernetes and Container Security, 2020)

#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml

How to Configure And Monitor Apache Spark on Kubernetes

Earlier this year at Spark + AI Summit, we had the pleasure of presenting our session on the best practices and pitfalls of running Apache Spark on Kubernetes (K8s).

In this post we’d like to expand on that presentation and talk to you about:

  1. What is Kubernetes?
  2. Why run Spark on Kubernetes?
  3. Getting started with Spark on Kubernetes
  4. Optimizing performance and cost
  5. Monitoring your Spark applications on Kubernetes
  6. The future of Spark on Kubernetes

If you’re already familiar with k8s and why Spark on Kubernetes might be a fit for you, feel free to skip the first couple of sections and get straight to the meat of the post!

#apache-spark #spark-on-kubernetes #docker #kubernetes #spark-on-k8s #k8s #good-company #devops

Background Fetch for React Native Apps

react-native-background-fetch

Background Fetch is a very simple plugin which attempts to awaken an app in the background about every 15 minutes, providing a short period of background running-time. This plugin will execute your provided callbackFn whenever a background-fetch event occurs.

There is no way to increase the rate which a fetch-event occurs and this plugin sets the rate to the most frequent possible — you will never receive an event faster than 15 minutes. The operating-system will automatically throttle the rate the background-fetch events occur based upon usage patterns. Eg: if user hasn't turned on their phone for a long period of time, fetch events will occur less frequently or if an iOS user disables background refresh they may not happen at all.

:new: Background Fetch now provides a scheduleTask method for scheduling arbitrary "one-shot" or periodic tasks.

iOS

  • There is no way to increase the rate which a fetch-event occurs and this plugin sets the rate to the most frequent possible — you will never receive an event faster than 15 minutes. The operating-system will automatically throttle the rate the background-fetch events occur based upon usage patterns. Eg: if user hasn't turned on their phone for a long period of time, fetch events will occur less frequently.
  • scheduleTask seems only to fire when the device is plugged into power.
  • ⚠️ When your app is terminated, iOS no longer fires events — There is no such thing as stopOnTerminate: false for iOS.
  • iOS can take days before Apple's machine-learning algorithm settles in and begins regularly firing events. Do not sit staring at your logs waiting for an event to fire. If your simulated events work, that's all you need to know that everything is correctly configured.
  • If the user doesn't open your iOS app for long periods of time, iOS will stop firing events.

Android

Installing the plugin

⚠️ If you have a previous version of react-native-background-fetch < 2.7.0 installed into react-native >= 0.60, you should first unlink your previous version as react-native link is no longer required.

$ react-native unlink react-native-background-fetch

With yarn

$ yarn add react-native-background-fetch

With npm

$ npm install --save react-native-background-fetch

Setup Guides

iOS Setup

react-native >= 0.60

Android Setup

react-native >= 0.60

Example

ℹ️ This repo contains its own Example App. See /example

import React from 'react';
import {
  SafeAreaView,
  StyleSheet,
  ScrollView,
  View,
  Text,
  FlatList,
  StatusBar,
} from 'react-native';

import {
  Header,
  Colors
} from 'react-native/Libraries/NewAppScreen';

import BackgroundFetch from "react-native-background-fetch";

class App extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      events: []
    };
  }

  componentDidMount() {
    // Initialize BackgroundFetch ONLY ONCE when component mounts.
    this.initBackgroundFetch();
  }

  async initBackgroundFetch() {
    // BackgroundFetch event handler.
    const onEvent = async (taskId) => {
      console.log('[BackgroundFetch] task: ', taskId);
      // Do your background work...
      await this.addEvent(taskId);
      // IMPORTANT:  You must signal to the OS that your task is complete.
      BackgroundFetch.finish(taskId);
    }

    // Timeout callback is executed when your Task has exceeded its allowed running-time.
    // You must stop what you're doing immediately BackgroundFetch.finish(taskId)
    const onTimeout = async (taskId) => {
      console.warn('[BackgroundFetch] TIMEOUT task: ', taskId);
      BackgroundFetch.finish(taskId);
    }

    // Initialize BackgroundFetch only once when component mounts.
    let status = await BackgroundFetch.configure({minimumFetchInterval: 15}, onEvent, onTimeout);

    console.log('[BackgroundFetch] configure status: ', status);
  }

  // Add a BackgroundFetch event to <FlatList>
  addEvent(taskId) {
    // Simulate a possibly long-running asynchronous task with a Promise.
    return new Promise((resolve, reject) => {
      this.setState(state => ({
        events: [...state.events, {
          taskId: taskId,
          timestamp: (new Date()).toString()
        }]
      }));
      resolve();
    });
  }

  render() {
    return (
      <>
        <StatusBar barStyle="dark-content" />
        <SafeAreaView>
          <ScrollView
            contentInsetAdjustmentBehavior="automatic"
            style={styles.scrollView}>
            <Header />

            <View style={styles.body}>
              <View style={styles.sectionContainer}>
                <Text style={styles.sectionTitle}>BackgroundFetch Demo</Text>
              </View>
            </View>
          </ScrollView>
          <View style={styles.sectionContainer}>
            <FlatList
              data={this.state.events}
              renderItem={({item}) => (<Text>[{item.taskId}]: {item.timestamp}</Text>)}
              keyExtractor={item => item.timestamp}
            />
          </View>
        </SafeAreaView>
      </>
    );
  }
}

const styles = StyleSheet.create({
  scrollView: {
    backgroundColor: Colors.lighter,
  },
  body: {
    backgroundColor: Colors.white,
  },
  sectionContainer: {
    marginTop: 32,
    paddingHorizontal: 24,
  },
  sectionTitle: {
    fontSize: 24,
    fontWeight: '600',
    color: Colors.black,
  },
  sectionDescription: {
    marginTop: 8,
    fontSize: 18,
    fontWeight: '400',
    color: Colors.dark,
  },
});

export default App;

Executing Custom Tasks

In addition to the default background-fetch task defined by BackgroundFetch.configure, you may also execute your own arbitrary "oneshot" or periodic tasks (iOS requires additional Setup Instructions). However, all events will be fired into the Callback provided to BackgroundFetch#configure:

⚠️ iOS:

  • scheduleTask on iOS seems only to run when the device is plugged into power.
  • scheduleTask on iOS are designed for low-priority tasks, such as purging cache files — they tend to be unreliable for mission-critical tasks. scheduleTask will never run as frequently as you want.
  • The default fetch event is much more reliable and fires far more often.
  • scheduleTask on iOS stop when the user terminates the app. There is no such thing as stopOnTerminate: false for iOS.
// Step 1:  Configure BackgroundFetch as usual.
let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15
}, async (taskId) => {  // <-- Event callback
  // This is the fetch-event callback.
  console.log("[BackgroundFetch] taskId: ", taskId);

  // Use a switch statement to route task-handling.
  switch (taskId) {
    case 'com.foo.customtask':
      print("Received custom task");
      break;
    default:
      print("Default fetch task");
  }
  // Finish, providing received taskId.
  BackgroundFetch.finish(taskId);
}, async (taskId) => {  // <-- Task timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  BackgroundFetch.finish(taskId);
});

// Step 2:  Schedule a custom "oneshot" task "com.foo.customtask" to execute 5000ms from now.
BackgroundFetch.scheduleTask({
  taskId: "com.foo.customtask",
  forceAlarmManager: true,
  delay: 5000  // <-- milliseconds
});

API Documentation

Config

Common Options

@param {Integer} minimumFetchInterval [15]

The minimum interval in minutes to execute background fetch events. Defaults to 15 minutes. Note: Background-fetch events will never occur at a frequency higher than every 15 minutes. Apple uses a secret algorithm to adjust the frequency of fetch events, presumably based upon usage patterns of the app. Fetch events can occur less often than your configured minimumFetchInterval.

@param {Integer} delay (milliseconds)

ℹ️ Valid only for BackgroundFetch.scheduleTask. The minimum number of milliseconds in future that task should execute.

@param {Boolean} periodic [false]

ℹ️ Valid only for BackgroundFetch.scheduleTask. Defaults to false. Set true to execute the task repeatedly. When false, the task will execute just once.

Android Options

@config {Boolean} stopOnTerminate [true]

Set false to continue background-fetch events after user terminates the app. Default to true.

@config {Boolean} startOnBoot [false]

Set true to initiate background-fetch events when the device is rebooted. Defaults to false.

NOTE: startOnBoot requires stopOnTerminate: false.

@config {Boolean} forceAlarmManager [false]

By default, the plugin will use Android's JobScheduler when possible. The JobScheduler API prioritizes for battery-life, throttling task-execution based upon device usage and battery level.

Configuring forceAlarmManager: true will bypass JobScheduler to use Android's older AlarmManager API, resulting in more accurate task-execution at the cost of higher battery usage.

let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15,
  forceAlarmManager: true
}, async (taskId) => {  // <-- Event callback
  console.log("[BackgroundFetch] taskId: ", taskId);
  BackgroundFetch.finish(taskId);
}, async (taskId) => {  // <-- Task timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  BackgroundFetch.finish(taskId);
});
.
.
.
// And with with #scheduleTask
BackgroundFetch.scheduleTask({
  taskId: 'com.foo.customtask',
  delay: 5000,       // milliseconds
  forceAlarmManager: true,
  periodic: false
});

@config {Boolean} enableHeadless [false]

Set true to enable React Native's Headless JS mechanism, for handling fetch events after app termination.

  • 📂 index.js (MUST BE IN index.js):
import BackgroundFetch from "react-native-background-fetch";

let MyHeadlessTask = async (event) => {
  // Get task id from event {}:
  let taskId = event.taskId;
  let isTimeout = event.timeout;  // <-- true when your background-time has expired.
  if (isTimeout) {
    // This task has exceeded its allowed running-time.
    // You must stop what you're doing immediately finish(taskId)
    console.log('[BackgroundFetch] Headless TIMEOUT:', taskId);
    BackgroundFetch.finish(taskId);
    return;
  }
  console.log('[BackgroundFetch HeadlessTask] start: ', taskId);

  // Perform an example HTTP request.
  // Important:  await asychronous tasks when using HeadlessJS.
  let response = await fetch('https://reactnative.dev/movies.json');
  let responseJson = await response.json();
  console.log('[BackgroundFetch HeadlessTask] response: ', responseJson);

  // Required:  Signal to native code that your task is complete.
  // If you don't do this, your app could be terminated and/or assigned
  // battery-blame for consuming too much time in background.
  BackgroundFetch.finish(taskId);
}

// Register your BackgroundFetch HeadlessTask
BackgroundFetch.registerHeadlessTask(MyHeadlessTask);

@config {integer} requiredNetworkType [BackgroundFetch.NETWORK_TYPE_NONE]

Set basic description of the kind of network your job requires.

If your job doesn't need a network connection, you don't need to use this option as the default value is BackgroundFetch.NETWORK_TYPE_NONE.

NetworkTypeDescription
BackgroundFetch.NETWORK_TYPE_NONEThis job doesn't care about network constraints, either any or none.
BackgroundFetch.NETWORK_TYPE_ANYThis job requires network connectivity.
BackgroundFetch.NETWORK_TYPE_CELLULARThis job requires network connectivity that is a cellular network.
BackgroundFetch.NETWORK_TYPE_UNMETEREDThis job requires network connectivity that is unmetered. Most WiFi networks are unmetered, as in "you can upload as much as you like".
BackgroundFetch.NETWORK_TYPE_NOT_ROAMINGThis job requires network connectivity that is not roaming (being outside the country of origin)

@config {Boolean} requiresBatteryNotLow [false]

Specify that to run this job, the device's battery level must not be low.

This defaults to false. If true, the job will only run when the battery level is not low, which is generally the point where the user is given a "low battery" warning.

@config {Boolean} requiresStorageNotLow [false]

Specify that to run this job, the device's available storage must not be low.

This defaults to false. If true, the job will only run when the device is not in a low storage state, which is generally the point where the user is given a "low storage" warning.

@config {Boolean} requiresCharging [false]

Specify that to run this job, the device must be charging (or be a non-battery-powered device connected to permanent power, such as Android TV devices). This defaults to false.

@config {Boolean} requiresDeviceIdle [false]

When set true, ensure that this job will not run if the device is in active use.

The default state is false: that is, the for the job to be runnable even when someone is interacting with the device.

This state is a loose definition provided by the system. In general, it means that the device is not currently being used interactively, and has not been in use for some time. As such, it is a good time to perform resource heavy jobs. Bear in mind that battery usage will still be attributed to your application, and shown to the user in battery stats.


Methods

Method NameArgumentsReturnsNotes
configure{FetchConfig}, callbackFn, timeoutFnPromise<BackgroundFetchStatus>Configures the plugin's callbackFn and timeoutFn. This callback will fire each time a background-fetch event occurs in addition to events from #scheduleTask. The timeoutFn will be called when the OS reports your task is nearing the end of its allowed background-time.
scheduleTask{TaskConfig}Promise<boolean>Executes a custom task. The task will be executed in the same Callback function provided to #configure.
statuscallbackFnPromise<BackgroundFetchStatus>Your callback will be executed with the current status (Integer) 0: Restricted, 1: Denied, 2: Available. These constants are defined as BackgroundFetch.STATUS_RESTRICTED, BackgroundFetch.STATUS_DENIED, BackgroundFetch.STATUS_AVAILABLE (NOTE: Android will always return STATUS_AVAILABLE)
finishString taskIdVoidYou MUST call this method in your callbackFn provided to #configure in order to signal to the OS that your task is complete. iOS provides only 30s of background-time for a fetch-event -- if you exceed this 30s, iOS will kill your app.
startnonePromise<BackgroundFetchStatus>Start the background-fetch API. Your callbackFn provided to #configure will be executed each time a background-fetch event occurs. NOTE the #configure method automatically calls #start. You do not have to call this method after you #configure the plugin
stop[taskId:String]Promise<boolean>Stop the background-fetch API and all #scheduleTask from firing events. Your callbackFn provided to #configure will no longer be executed. If you provide an optional taskId, only that #scheduleTask will be stopped.

Debugging

iOS

🆕 BGTaskScheduler API for iOS 13+

  • ⚠️ At the time of writing, the new task simulator does not yet work in Simulator; Only real devices.
  • See Apple docs Starting and Terminating Tasks During Development
  • After running your app in XCode, Click the [||] button to initiate a Breakpoint.
  • In the console (lldb), paste the following command (Note: use cursor up/down keys to cycle through previously run commands):
e -l objc -- (void)[[BGTaskScheduler sharedScheduler] _simulateLaunchForTaskWithIdentifier:@"com.transistorsoft.fetch"]
  • Click the [ > ] button to continue. The task will execute and the Callback function provided to BackgroundFetch.configure will receive the event.

Simulating task-timeout events

  • Only the new BGTaskScheduler api supports simulated task-timeout events. To simulate a task-timeout, your fetchCallback must not call BackgroundFetch.finish(taskId):
let status = await BackgroundFetch.configure({
  minimumFetchInterval: 15
}, async (taskId) => {  // <-- Event callback.
  // This is the task callback.
  console.log("[BackgroundFetch] taskId", taskId);
  //BackgroundFetch.finish(taskId); // <-- Disable .finish(taskId) when simulating an iOS task timeout
}, async (taskId) => {  // <-- Event timeout callback
  // This task has exceeded its allowed running-time.
  // You must stop what you're doing and immediately .finish(taskId)
  print("[BackgroundFetch] TIMEOUT taskId:", taskId);
  BackgroundFetch.finish(taskId);
});
  • Now simulate an iOS task timeout as follows, in the same manner as simulating an event above:
e -l objc -- (void)[[BGTaskScheduler sharedScheduler] _simulateExpirationForTaskWithIdentifier:@"com.transistorsoft.fetch"]

Old BackgroundFetch API

  • Simulate background fetch events in XCode using Debug->Simulate Background Fetch
  • iOS can take some hours or even days to start a consistently scheduling background-fetch events since iOS schedules fetch events based upon the user's patterns of activity. If Simulate Background Fetch works, your can be sure that everything is working fine. You just need to wait.

Android

  • Observe plugin logs in $ adb logcat:
$ adb logcat *:S ReactNative:V ReactNativeJS:V TSBackgroundFetch:V
  • Simulate a background-fetch event on a device (insert <your.application.id>) (only works for sdk 21+:
$ adb shell cmd jobscheduler run -f <your.application.id> 999
  • For devices with sdk <21, simulate a "Headless JS" event with (insert <your.application.id>)
$ adb shell am broadcast -a <your.application.id>.event.BACKGROUND_FETCH

Download Details:
Author: transistorsoft
Source Code: https://github.com/transistorsoft/react-native-background-fetch
License: MIT license

#react  #reactnative  #mobileapp  #javascript 

Top Kubernetes Health Metrics You Must Monitor

Kubernetes is one of the most popular choices for container management and automation today. A highly efficient Kubernetes setup generates innumerable new metrics every day, making monitoring cluster health quite challenging. You might find yourself sifting through several different metrics without being entirely sure which ones are the most insightful and warrant utmost attention.

As daunting a task as this may seem, you can hit the ground running by knowing which of these metrics provide the right kind of insights into the health of your Kubernetes clusters. Although there are observability platforms to help you monitor your Kubernetes clusters’ right metrics, knowing exactly which ones to watch will help you stay on top of your monitoring needs. In this article, we take you through a few Kubernetes health metrics that top our list.

Crash Loops

A crash loop is the last thing you’d want to go undetected. During a crash loop, your application breaks down as a pod starts and keeps crashing and restarting in a circle. Multiple reasons can lead to a crash loop, making it tricky to identify the root cause. Being alerted when a crash loop occurs can help you quickly narrow down the list of causes and take emergency measures to keep your application active.

#devops #kubernetes #monitoring #observability #kubernetes health monitoring #monitoring for kubernetes

Roberta  Ward

Roberta Ward

1595344320

Wondering how to upgrade your skills in the pandemic? Here's a simple way you can do it.

Corona Virus Pandemic has brought the world to a standstill.

Countries are on a major lockdown. Schools, colleges, theatres, gym, clubs, and all other public places are shut down, the country’s economy is suffering, human health is on stake, people are losing their jobs and nobody knows how worse it can get.

Since most of the places are on lockdown, and you are working from home or have enough time to nourish your skills, then you should use this time wisely! We always complain that we want some ‘time’ to learn and upgrade our knowledge but don’t get it due to our ‘busy schedules’. So, now is the time to make a ‘list of skills’ and learn and upgrade your skills at home!

And for the technology-loving people like us, Knoldus Techhub has already helped us a lot in doing it in a short span of time!

If you are still not aware of it, don’t worry as Georgia Byng has well said,

“No time is better than the present”

– Georgia Byng, a British children’s writer, illustrator, actress and film producer.

No matter if you are a developer (be it front-end or back-end) or a data scientisttester, or a DevOps person, or, a learner who has a keen interest in technology, Knoldus Techhub has brought it all for you under one common roof.

From technologies like Scala, spark, elastic-search to angular, go, machine learning, it has a total of 20 technologies with some recently added ones i.e. DAML, test automation, snowflake, and ionic.

How to upgrade your skills?

Every technology in Tech-hub has n number of templates. Once you click on any specific technology you’ll be able to see all the templates of that technology. Since these templates are downloadable, you need to provide your email to get the template downloadable link in your mail.

These templates helps you learn the practical implementation of a topic with so much of ease. Using these templates you can learn and kick-start your development in no time.

Apart from your learning, there are some out of the box templates, that can help provide the solution to your business problem that has all the basic dependencies/ implementations already plugged in. Tech hub names these templates as xlr8rs (pronounced as accelerators).

xlr8rs make your development real fast by just adding your core business logic to the template.

If you are looking for a template that’s not available, you can also request a template may be for learning or requesting for a solution to your business problem and tech-hub will connect with you to provide you the solution. Isn’t this helpful 🙂

Confused with which technology to start with?

To keep you updated, the Knoldus tech hub provides you with the information on the most trending technology and the most downloaded templates at present. This you’ll be informed and learn the one that’s most trending.

Since we believe:

“There’s always a scope of improvement“

If you still feel like it isn’t helping you in learning and development, you can provide your feedback in the feedback section in the bottom right corner of the website.

#ai #akka #akka-http #akka-streams #amazon ec2 #angular 6 #angular 9 #angular material #apache flink #apache kafka #apache spark #api testing #artificial intelligence #aws #aws services #big data and fast data #blockchain #css #daml #devops #elasticsearch #flink #functional programming #future #grpc #html #hybrid application development #ionic framework #java #java11 #kubernetes #lagom #microservices #ml # ai and data engineering #mlflow #mlops #mobile development #mongodb #non-blocking #nosql #play #play 2.4.x #play framework #python #react #reactive application #reactive architecture #reactive programming #rust #scala #scalatest #slick #software #spark #spring boot #sql #streaming #tech blogs #testing #user interface (ui) #web #web application #web designing #angular #coronavirus #daml #development #devops #elasticsearch #golang #ionic #java #kafka #knoldus #lagom #learn #machine learning #ml #pandemic #play framework #scala #skills #snowflake #spark streaming #techhub #technology #test automation #time management #upgrade