Mart carici

1635592964

Come puoi convertire i tuoi file OST in formato Outlook ad alta veloci

Gli utenti convertono tutti i loro file OST in formato PST di Outlook senza affrontare alcun ostacolo utilizzando lo strumento di conversione da datavare OST a PST. Questa applicazione Convertitore da OST a PST è un'applicazione legalmente testata che converte tutti i file OST. I trasferimenti di file sicuri e protetti sono sempre gestiti dallo strumento. Questo convertitore da OST a PST è un forum affidabile per tutti gli utenti.

Scarica ora

Questo incredibile convertitore da OST a PST aiuta gli utenti a convertire i propri file OST in formato PST di Outlook in modo affidabile e senza intoppi. Inoltre, l'app consente agli utenti di convertire i propri file OST in pochi passaggi. Il processo di conversione del file OST avviene in modo semplice ed efficiente. Il risultato fornito dall'app è accurato al 100%. Pertanto, attraverso lo strumento avviene un sano processo di conversione. Inoltre, gli utenti possono sempre ottenere un risultato ben definito. Grazie all'interfaccia visiva di facile utilizzo fornita da questo strumento, gli utenti con o senza assistenza tecnica possono utilizzare lo strumento. Senza utilizzare altre applicazioni, gli utenti possono convertire i propri file OST. Questo convertitore da OST a PST di Datavare è uno strumento altamente compatibile che aiuta gli utenti a estrarre i propri file OST senza problemi da qualsiasi versione del sistema operativo Windows dalle versioni precedenti a quelle più recenti.

La conversione istantanea dei file avviene tramite l'app e il risultato desiderato viene fornito agli utenti in ogni momento.

Conversione professionale dei file OST in formato PST!

Per convertire il file OST in formato PST, gli utenti devono seguire alcuni passaggi. Di seguito è riportato il metodo passo passo per convertire i file OST in formato PST di Outlook senza perdita di dati:

Passaggio 1: installa l'applicazione su qualsiasi versione di Windows dalla più vecchia alla più recente
Passo 2- Scegli il file OST che vuoi convertire
Passo 3- Ora, scegli la posizione in cui vuoi salvare il tuo file convertito
Step 4- Premi il pulsante "converti ora"

Il processo di conversione inizierà e il risultato apparirà in un istante

Motivi per scegliere il metodo professionale

Ci sono vari vantaggi nell'usare il metodo professionale. Diamo un'occhiata a questi vantaggi:

· Facile da maneggiare
· Dà un risultato istantaneo
· Fornisce una comoda conversione dei file OST
· Viene elaborata un'attività di conversione sicura e protetta

Funzionalità dell'app

Vediamo ora alcune delle funzionalità intelligenti dell'app che l'utente dovrebbe vedere:

• Facile conversione dei file: l'app converte liberamente i file OST in formato PST di Outlook in modo semplice e affidabile senza alcun obbligo. La conversione diretta dei file OST viene eseguita con questo straordinario strumento. Inoltre, gli utenti possono utilizzare l'app in qualsiasi versione di Windows, dalla più recente alla più vecchia dell'app. L'app converte tutti i dati dopo l'anteprima e la scansione dei dati.

• Precisione: con la massima precisione, l'intero processo di conversione viene eseguito dall'app. Indipendentemente dal numero di numeri utente che l'utente ha incluso, gli utenti possono convertire i file in modo semplice. Tutti i file OST vengono convertiti facilmente in modo sicuro e protetto senza perdita di dati o danneggiamento dei dati.

• Posizione specificata dall'utente: i file OST convertiti possono essere archiviati ovunque in base alla posizione specifica dell'utente. La flessibilità completa dei file è fornita dall'app in modo che l'utente possa affrontare qualsiasi tipo di problema nell'archiviazione dei file.

• App altamente compatibile: l'app più compatibile che può essere utilizzata in qualsiasi versione di Windows. Dalla versione più vecchia alla più recente di Windows, l'app può essere facilmente utilizzata senza problemi. La compatibilità delle applicazioni è diversa da qualsiasi altra applicazione. Un risultato desiderato viene fornito agli utenti ogni volta.

• Conversione cartella/file: il convertitore da OST a PST consente agli utenti di convertire uno o più file. Per questo, gli utenti forniscono la modalità file e la modalità cartella. La modalità file viene utilizzata per convertire un file OST e la modalità cartella viene utilizzata per convertire più file OST. Questa doppia opzione aiuta gli utenti a risparmiare molto tempo.

Facile modifica: il semplice processo di conversione avviene con l'app. I passaggi per convertire i file OST sono semplici e diretti. Il file viene convertito in pochi semplici passaggi. Senza dover affrontare alcuna difficoltà, i file OST possono essere facilmente convertiti. Inoltre, l'app può essere facilmente utilizzata da qualsiasi utente inesperto.

• Mantiene la qualità: i file effettivi rimangono gli stessi con l'applicazione. Senza modifiche, i file OST vengono convertiti dall'applicazione. Nessun danno è stato fatto alla qualità del file OST. Poiché sono i file OST forniti agli utenti dall'app.

• Non è necessario installare MS Outlook: gli utenti non devono installare MS Outlook per convertire i file OST in formato PST di Outlook. La conversione senza problemi avviene senza l'installazione di un convertitore MS Outlook. Inoltre, l'app supporta l'ultimo programma di archiviazione di Outlook.

Metodo di conversione manuale

Il metodo manuale di trasferimento dei file in formato OST PST è complesso. Impariamo i passaggi:

Passaggio 1: prima installa e apri l'applicazione MS Outlook sul tuo sistema
Passo 2- Ora, fai clic sul menu "File" e seleziona l'opzione "Importa e converti".
Passaggio 3- Apparirà una finestra di importazione e conversione, da quella finestra selezionare l'opzione "Converti in file" e fare clic con il pulsante destro del mouse sul pulsante "Avanti".
Passo 4- Ora dalla finestra Importa file, seleziona l'opzione "File dati Outlook (.pst) e fai clic con il pulsante destro del mouse sul pulsante" Avanti ".
Passaggio 5: selezionare la cartella della cassetta postale in cui si desidera convertire i file OST.
Passaggio 6- Immettere una posizione per salvare il file OST trasferito.

Questi sono i passaggi per convertire i tuoi file OST in formato PST.

Perché non scegliere il metodo manuale?

Gli utenti non devono scegliere il metodo manuale per convertire i propri file OST in formato PST come:

• Molti obblighi sono affrontati dagli utenti
• Il risultato istantaneo non è fornito dallo strumento
• La corruzione dei dati è più visibile nel metodo manuale

Dichiarazione finale

Prova questo fantastico convertitore da OST a PST che farà in modo che tutti i tuoi file OST vengano convertiti senza problemi. L'applicazione è ben adatta all'uso da parte di qualsiasi utente. Provare questa applicazione sarà una decisione intelligente da prendere.
Puoi scaricare la versione di prova dell'applicazione per avere maggiori informazioni sull'app. Inoltre, l'applicazione proteggerà tutte le tue informazioni. Prova subito questa applicazione!

What is GEEK

Buddha Community

Come puoi convertire i tuoi file OST in formato Outlook ad alta veloci

Простой способ конвертировать файл OST в формат Outlook PST

Пользователи могут надежно конвертировать свои файлы OST в формат Outlook PST без каких-либо препятствий, используя инструмент Datavare Конвертер OST в PST. Приложение легко и эффективно конвертирует файлы OST в формат Outlook PST. Пользователи могут удобно конвертировать свои файлы OST.

Инструмент OST to PST Converter - потрясающий инструмент, который безопасно и надежно конвертирует файлы OST. Приложение предоставляет пользователям безошибочный и безупречный результат. Файлы OST конвертируются со 100% точностью. Пользователи могут предварительно просмотреть все OST, которые пользователи хотят преобразовать. Без установки MS Outlook пользователи могут легко конвертировать файлы OST. Эта версия MS Outlook может быть любой редакции. Причем от последней до заархивированной версии платформы Windows. Пользователи могут сохранять преобразованные файлы в любом месте, где они хотят сохранить их на локальном диске. Более того, пользователям не нужно устанавливать какое-либо другое программное обеспечение для выполнения процесса преобразования. Этот удивительный инструмент OST to PST Converter всегда производит прямое преобразование. Все файлы OST надежно защищены этим замечательным инструментом.

Более того, преобразование файлов OST выполняется в мгновение ока без каких-либо ошибок. Все файлы электронной почты, контакты, вложения, календари и т. Д. Приложение выполняет надлежащее сканирование и предварительный просмотр файлов OST. Все файлы с поврежденными данными не повреждаются приложением. Кроме того, приложение сохраняет оригинальность файлов OST.

Шаги по конвертации

Пользователи могут легко конвертировать файлы OST, выполнив несколько простых шагов.
Шаг 1. Загрузите OST в инструмент PST Converter.
Шаг 2 - Запустите приложение в вашей системе
Шаг 3. Добавьте файлы OST, которые пользователь хочет преобразовать.
Шаг 4 - Предварительный просмотр файлов OST
Шаг 5- Выберите место для сохранения преобразованных файлов OST
Шаг 6 - Завершите задачу преобразования, нажав кнопку «Конвертировать сейчас».

Эти шаги легко выполнить любой начинающий пользователь, не сталкиваясь с какими-либо препятствиями. Приложение предоставляет пользователям надлежащий снимок экрана с этими шагами, чтобы они могли легко выполнять их.

Ключевые атрибуты приложения

Вот ключевые особенности приложения, которое помогает пользователям легко конвертировать файлы OST в формат PST.

Конвертация папок / файлов
Конвертер OST в PST позволяет пользователям конвертировать один или несколько файлов. Для этого пользователи предоставляют файловый режим и режим папки. Файловый режим используется для преобразования одного файла OST, а режим папки используется для преобразования нескольких файлов OST. Этот двойной вариант помогает пользователям сэкономить много времени пользователей.

Легкое преобразование
Приложение выполняет простой процесс преобразования. Шаги по преобразованию файлов OST просты и легки. Файл конвертируется в несколько простых шагов. Файлы OST легко конвертируются без каких-либо трудностей. Более того, приложением может легко управлять любой начинающий пользователь.

Без ущерба качеству
Оригинальность файлов остается неизменной по приложению. Файлы OST конвертируются приложением без каких-либо изменений. Нет никакого ущерба для качества файлов OST. Так как файлы OST предоставляются пользователям приложением.

Нет необходимости устанавливать MS Outlook
Пользователям не нужно устанавливать MS Outlook для преобразования файлов OST в формат Outlook PST. Плавное преобразование происходит без установки конвертера MS Outlook. Кроме того, приложение поддерживает последнюю заархивированную версию Outlook.

Легкое управление файлами
Иерархия файлов поддерживается приложением. Приложение выполняет простое управление файлами, поэтому пользователю легко найти файл, а затем преобразовать файлы OST без каких-либо трудностей.

Легкое преобразование
Приложение выполняет простой процесс преобразования. Пользователи не испытывают затруднений при конвертации файлов OST.
Эти функции играют важную роль в преобразовании файлов OST в формат Outlook PST.

Заключительное заявление

Этот инструмент Конвертер OST в PST отлично подходит для использования любым пользователем. Файлы OST безопасно конвертируются файлами OST. Пользователи должны опробовать инструмент OST to PST Converter. Демо-версия инструмента OST to PST Converter доступна для пользователей, эта демо-версия бесплатна для всех пользователей. Кроме того, предоставляется лицензионная версия приложения, так что пользователи могут конвертировать неограниченное количество файлов OST.

Больше информации:- https://www.datavare.com/ru/конвертер-ost-в-pst.html

#преобразовать ost в outlook pst #экспорт ost в outlook pst #импорт ost в outlook pst #ost to outlook pst импортер #конвертер ost в outlook pst #ost to outlook pst экспортер

joe biden

1619528640

¿Cómo convertir archivos OST al formato PST?

Los usuarios tienen dos formas de convertir los archivos OST al formato PST de Outlook manualmente o mediante la aplicación. La conversión manual de los archivos OST requiere mucho tiempo, así como el esfuerzo de los usuarios. Por lo tanto, los usuarios deben usar una herramienta de conversor de OST a PST de Datavare es la mejor solución para convertir los archivos OST al formato PST de Outlook.

Para realizar la conversión de los archivos OST, los usuarios deben descargar esta increíble aplicación. Esta aplicación hace la tarea de manera eficiente y sin esfuerzo. Los usuarios pueden convertir archivos OST completos con la ayuda de esta increíble herramienta y a una velocidad rápida. Los datos completos, incluidas notas, mensajes, contactos y calendarios, se convierten al formato PST con la ayuda de esta increíble herramienta. Además, los usuarios pueden guardar el archivo convertido en cualquier lugar de su sistema local. Con esta aplicación altamente compatible, los usuarios pueden usar fácilmente este conversor de OST a PST en cualquiera de los sistemas operativos de Windows. Es una aplicación altamente interactiva que incluso un usuario novato puede usar. La aplicación es una plataforma segura para todos los usuarios. Los pasos necesarios para convertir el archivo OST al formato PST son sencillos de implementar.

Los usuarios son libres de guardar el archivo en cualquier lugar de su sistema local sin enfrentar ninguna dificultad.

Pasos para convertir los archivos

Siga los pasos que se indican a continuación para convertir los archivos OST al formato PST:
Paso 1- Descargue la herramienta de conversión de OST a PST en su sistema operativo Windows
Paso 2- Inicie la aplicación
Paso 3- Agrega los archivos OST
Paso 4- Vista previa de los archivos OST seleccionados
Paso 5- Elija la ubicación para guardar los archivos convertidos
Paso 6- Por último, haga clic en el botón “Convertir ahora”. Por lo tanto, estos son

Características de la aplicación

Características de la aplicación

Convierte los archivos OST
La aplicación convierte libremente los archivos OST al formato PST de Outlook de manera fácil y confiable sin enfrentar ninguna obligación. La conversión directa de los archivos OST se realiza con esta increíble herramienta. Además, los usuarios pueden usar la aplicación en cualquiera de las versiones de Windows, desde la versión más reciente hasta la más antigua de la aplicación. La aplicación convierte todos los datos después de obtener una vista previa y escanear los datos. El tamaño de los archivos OST no importa en todo el proceso de conversión.

La aplicación convierte libremente los archivos OST al formato PST de Outlook de manera fácil y confiable sin enfrentar ninguna obligación. La conversión directa de los archivos OST se realiza con esta increíble herramienta. Además, los usuarios pueden usar la aplicación en cualquiera de las versiones de Windows, desde la versión más reciente hasta la más antigua de la aplicación. La aplicación convierte todos los datos después de obtener una vista previa y escanear los datos. El tamaño de los archivos OST no importa en todo el proceso de conversión.

Precisión
Con total precisión, la aplicación realiza todo un proceso de conversión. No importa que un usuario ingrese cuántos archivos numéricos ingresa, los usuarios pueden convertir los archivos de manera impecable. Todos los archivos OST se exportan fácilmente de manera segura y sin ningún tipo de pérdida o corrupción de datos.

Ubicación especificada por el usuario
Los archivos OST convertidos se pueden guardar en cualquier lugar según el deseo del lugar específico del usuario. La aplicación proporciona una flexibilidad total de los archivos para que el usuario no tenga ningún tipo de problema al guardar el archivo.

Aplicación altamente compatible
Es una aplicación altamente compatible que se puede utilizar en cualquier versión de Windows. Desde la versión más antigua hasta la más reciente de Windows, la aplicación se puede operar fácilmente sin enfrentar ninguna dificultad. La compatibilidad de la aplicación es incomparable con cualquier otra aplicación. El resultado deseado lo proporciona la aplicación.

Declaración final

Descargue este increíble convertidor de OST a PST para convertir sus archivos OST al formato PST de Outlook. La aplicación mantiene la integridad de los archivos y la aplicación conserva la calidad de los archivos. Con esta aplicación altamente compatible, los usuarios obtienen el resultado deseado por los usuarios. Además, debe probar la versión de demostración de la aplicación para saber más sobre la aplicación. La versión demo de la aplicación es gratuita para todos los usuarios. Esta versión de demostración de la aplicación otorga a los usuarios la autoridad para convertir algunos archivos OST. Para convertir los archivos ilimitados, el usuario debe comprar la versión con licencia de la aplicación ahora.

**Más información:- https://www.datavare.com/es/convertir-ost-a-pst.html
**

#convertidor de ost a pst #importador de ost a pst #convertir archivo ost a outlook pst #importar archivo ost a outlook pst #convertir ost a pst #exportar ost a pst

Rajat Rajput

1625301328

OST to PST Converter Free to Convert OST to PST Online

When the exchange server is synchronised with MS Outlook then, automatically a copy of its mailboxes will be generated in OST (Offline Storage Table) file format. The user can access OST data in the offline mode and work on them. The changes will get updated when the internet connectivity is re-established. OST files cannot be accessed in the other system or remote system. So to access the OST files in another system Outlook, then convert Outlook OST to PST format. Due to various reasons for which users’ want to convert OST to PST file format such as the Exchange might face some technical issues, downtime or crash. How to convert OST to PST in Outlook 2016, 2013, 2010? Well, in this blog, we will discuss both manual as well as the professional best OST to PST Converter online solution.
For better understanding of users’, we have listed some common reasons below.

Why There is a Need to Export OST to PST Outlook?

Before providing methods to the query “how to convert OST file to PST in outlook 2016”, first understand why users’ need to convert OST to PST. Some of the basic reasons are provided below.

  • When the Exchange server is under maintenance.
  • Accidental deletion of the Exchange server account.
  • Virus or Malware attacks.
  • Power Failures or intrusions by malicious software.

These are a few reasons for Outlook OST to PST conversion. Now let’s proceed ahead to different methods to convert OST to PST online.

How to Convert OST to PST in Outlook 2016 Manually?

Manual strategies are cost-effective methods and here, we will discuss the complete manual steps for OST to PST conversion. Before starting the steps, it is suggested to create a backup copy of the original data as there might be a risk of human error that can ultimately lead to severe data loss. How to convert OST to PST manually? Follow the methods provided below -

Method 1: Import/ Export Feature

  1. Open your Microsoft Outlook program.
  2. Click on the File tab.
  3. Select the Import/Export option.
  4. Click on Export to a file.
  5. Press the Next button.
  6. Now Select the Personal File folder (.pst).
  7. Click on the Parent root.
  8. Check on the include subfolders
  9. Click on browse and navigate to the path to save the resultant data.
  10. Click on the finish button.

Method 2: Use Outlook Archive Feature

  1. Sign-in to Microsoft Outlook.
  2. Go to the File section
  3. Click on Options
  4. Now, click on the Advanced section
  5. Click on Auto Archive settings…
  6. Navigate to the path to save the archived files.
  7. Click on the OK button.

Drawbacks

  • Manual Processes are lengthy and more time-consuming.
  • Need connectivity with the Exchange server.
  • Unable to export corrupt OST data.
  • Outlook application installation is required.
  • Feasible for small sized OST files only.
  • High risk of data loss.

How to Convert OST to PST in Outlook 2016 Using DRS OST to PST Converter

To avoid all the limitations that we have already seen above with the conventional manual techniques, users can opt for a well known and reliable automated method for conversion. There are numerous third-party solutions available to convert OST to PST, however it is suggested to use a trusted software. Using the smart DRS Best OST to PST Converter online utility that allows to export OST to PST, MBOX, MSG, EML, PDF, CSV, HTML, Gmail, Yandex mail, Yahoo, Office 365, etc. It can easily open corrupt OST files and convert them to healthy PST. The tool even allows users to smoothly export all the mailbox items like attachments, calendar, contacts, journals, tasks, etc. There are no file size restrictions and no risk of severe data loss. The advanced software is compatible with all versions of Mac and Windows. The free OST to PST Converter online version allows to export 50 emails for free.

Conclusion

Above in this blog, we have discussed the recommended solutions by experts on the query “how to convert OST to PST in Outlook 2016”. At the end of this article, we can conclude that manual strategies have several limitations, so it is suggested to use the well known DRS OST to PST Converter for an effective, accurate and effortless conversion.

#how to convert ost file to pst in outlook 2016 #how to convert ost to pst online #how to convert ost to pst manually #convert ost to pst #ost to pst converter #outlook ost to pst

Swift Tips: A Collection Useful Tips for The Swift Language

SwiftTips

The following is a collection of tips I find to be useful when working with the Swift language. More content is available on my Twitter account!

Property Wrappers as Debugging Tools

Property Wrappers allow developers to wrap properties with specific behaviors, that will be seamlessly triggered whenever the properties are accessed.

While their primary use case is to implement business logic within our apps, it's also possible to use Property Wrappers as debugging tools!

For example, we could build a wrapper called @History, that would be added to a property while debugging and would keep track of all the values set to this property.

import Foundation

@propertyWrapper
struct History<Value> {
    private var value: Value
    private(set) var history: [Value] = []

    init(wrappedValue: Value) {
        self.value = wrappedValue
    }
    
    var wrappedValue: Value {
        get { value }

        set {
            history.append(value)
            value = newValue
        }
    }
    
    var projectedValue: Self {
        return self
    }
}

// We can then decorate our business code
// with the `@History` wrapper
struct User {
    @History var name: String = ""
}

var user = User()

// All the existing call sites will still
// compile, without the need for any change
user.name = "John"
user.name = "Jane"

// But now we can also access an history of
// all the previous values!
user.$name.history // ["", "John"]

Localization through String interpolation

Swift 5 gave us the possibility to define our own custom String interpolation methods.

This feature can be used to power many use cases, but there is one that is guaranteed to make sense in most projects: localizing user-facing strings.

import Foundation

extension String.StringInterpolation {
    mutating func appendInterpolation(localized key: String, _ args: CVarArg...) {
        let localized = String(format: NSLocalizedString(key, comment: ""), arguments: args)
        appendLiteral(localized)
    }
}


/*
 Let's assume that this is the content of our Localizable.strings:
 
 "welcome.screen.greetings" = "Hello %@!";
 */

let userName = "John"
print("\(localized: "welcome.screen.greetings", userName)") // Hello John!

Implementing pseudo-inheritance between structs

If you’ve always wanted to use some kind of inheritance mechanism for your structs, Swift 5.1 is going to make you very happy!

Using the new KeyPath-based dynamic member lookup, you can implement some pseudo-inheritance, where a type inherits the API of another one 🎉

(However, be careful, I’m definitely not advocating inheritance as a go-to solution 🙃)

import Foundation

protocol Inherits {
    associatedtype SuperType
    
    var `super`: SuperType { get }
}

extension Inherits {
    subscript<T>(dynamicMember keyPath: KeyPath<SuperType, T>) -> T {
        return self.`super`[keyPath: keyPath]
    }
}

struct Person {
    let name: String
}

@dynamicMemberLookup
struct User: Inherits {
    let `super`: Person
    
    let login: String
    let password: String
}

let user = User(super: Person(name: "John Appleseed"), login: "Johnny", password: "1234")

user.name // "John Appleseed"
user.login // "Johnny"

Composing NSAttributedString through a Function Builder

Swift 5.1 introduced Function Builders: a great tool for building custom DSL syntaxes, like SwiftUI. However, one doesn't need to be building a full-fledged DSL in order to leverage them.

For example, it's possible to write a simple Function Builder, whose job will be to compose together individual instances of NSAttributedString through a nicer syntax than the standard API.

import UIKit

@_functionBuilder
class NSAttributedStringBuilder {
    static func buildBlock(_ components: NSAttributedString...) -> NSAttributedString {
        let result = NSMutableAttributedString(string: "")
        
        return components.reduce(into: result) { (result, current) in result.append(current) }
    }
}

extension NSAttributedString {
    class func composing(@NSAttributedStringBuilder _ parts: () -> NSAttributedString) -> NSAttributedString {
        return parts()
    }
}

let result = NSAttributedString.composing {
    NSAttributedString(string: "Hello",
                       attributes: [.font: UIFont.systemFont(ofSize: 24),
                                    .foregroundColor: UIColor.red])
    NSAttributedString(string: " world!",
                       attributes: [.font: UIFont.systemFont(ofSize: 20),
                                    .foregroundColor: UIColor.orange])
}

Using switch and if as expressions

Contrary to other languages, like Kotlin, Swift does not allow switch and if to be used as expressions. Meaning that the following code is not valid Swift:

let constant = if condition {
                  someValue
               } else {
                  someOtherValue
               }

A common solution to this problem is to wrap the if or switch statement within a closure, that will then be immediately called. While this approach does manage to achieve the desired goal, it makes for a rather poor syntax.

To avoid the ugly trailing () and improve on the readability, you can define a resultOf function, that will serve the exact same purpose, in a more elegant way.

import Foundation

func resultOf<T>(_ code: () -> T) -> T {
    return code()
}

let randomInt = Int.random(in: 0...3)

let spelledOut: String = resultOf {
    switch randomInt {
    case 0:
        return "Zero"
    case 1:
        return "One"
    case 2:
        return "Two"
    case 3:
        return "Three"
    default:
        return "Out of range"
    }
}

print(spelledOut)

Avoiding double negatives within guard statements

A guard statement is a very convenient way for the developer to assert that a condition is met, in order for the execution of the program to keep going.

However, since the body of a guard statement is meant to be executed when the condition evaluates to false, the use of the negation (!) operator within the condition of a guard statement can make the code hard to read, as it becomes a double negative.

A nice trick to avoid such double negatives is to encapsulate the use of the ! operator within a new property or function, whose name does not include a negative.

import Foundation

extension Collection {
    var hasElements: Bool {
        return !isEmpty
    }
}

let array = Bool.random() ? [1, 2, 3] : []

guard array.hasElements else { fatalError("array was empty") }

print(array)

Defining a custom init without loosing the compiler-generated one

It's common knowledge for Swift developers that, when you define a struct, the compiler is going to automatically generate a memberwise init for you. That is, unless you also define an init of your own. Because then, the compiler won't generate any memberwise init.

Yet, there are many instances where we might enjoy the opportunity to get both. As it turns out, this goal is quite easy to achieve: you just need to define your own init in an extension rather than inside the type definition itself.

import Foundation

struct Point {
    let x: Int
    let y: Int
}

extension Point {
    init() {
        x = 0
        y = 0
    }
}

let usingDefaultInit = Point(x: 4, y: 3)
let usingCustomInit = Point()

Implementing a namespace through an empty enum

Swift does not really have an out-of-the-box support of namespaces. One could argue that a Swift module can be seen as a namespace, but creating a dedicated Framework for this sole purpose can legitimately be regarded as overkill.

Some developers have taken the habit to use a struct which only contains static fields to implement a namespace. While this does the job, it requires us to remember to implement an empty private init(), because it wouldn't make sense for such a struct to be instantiated.

It's actually possible to take this approach one step further, by replacing the struct with an enum. While it might seem weird to have an enum with no case, it's actually a very idiomatic way to declare a type that cannot be instantiated.

import Foundation

enum NumberFormatterProvider {
    static var currencyFormatter: NumberFormatter {
        let formatter = NumberFormatter()
        formatter.numberStyle = .currency
        formatter.roundingIncrement = 0.01
        return formatter
    }
    
    static var decimalFormatter: NumberFormatter {
        let formatter = NumberFormatter()
        formatter.numberStyle = .decimal
        formatter.decimalSeparator = ","
        return formatter
    }
}

NumberFormatterProvider() // ❌ impossible to instantiate by mistake

NumberFormatterProvider.currencyFormatter.string(from: 2.456) // $2.46
NumberFormatterProvider.decimalFormatter.string(from: 2.456) // 2,456

Using Never to represent impossible code paths

Never is quite a peculiar type in the Swift Standard Library: it is defined as an empty enum enum Never { }.

While this might seem odd at first glance, it actually yields a very interesting property: it makes it a type that cannot be constructed (i.e. it possesses no instances).

This way, Never can be used as a generic parameter to let the compiler know that a particular feature will not be used.

import Foundation

enum Result<Value, Error> {
    case success(value: Value)
    case failure(error: Error)
}

func willAlwaysSucceed(_ completion: @escaping ((Result<String, Never>) -> Void)) {
    completion(.success(value: "Call was successful"))
}

willAlwaysSucceed( { result in
    switch result {
    case .success(let value):
        print(value)
    // the compiler knows that the `failure` case cannot happen
    // so it doesn't require us to handle it.
    }
})

Providing a default value to a Decodable enum

Swift's Codable framework does a great job at seamlessly decoding entities from a JSON stream. However, when we integrate web-services, we are sometimes left to deal with JSONs that require behaviors that Codable does not provide out-of-the-box.

For instance, we might have a string-based or integer-based enum, and be required to set it to a default value when the data found in the JSON does not match any of its cases.

We might be tempted to implement this via an extensive switch statement over all the possible cases, but there is a much shorter alternative through the initializer init?(rawValue:):

import Foundation

enum State: String, Decodable {
    case active
    case inactive
    case undefined
    
    init(from decoder: Decoder) throws {
        let container = try decoder.singleValueContainer()
        let decodedString = try container.decode(String.self)
        
        self = State(rawValue: decodedString) ?? .undefined
    }
}

let data = """
["active", "inactive", "foo"]
""".data(using: .utf8)!

let decoded = try! JSONDecoder().decode([State].self, from: data)

print(decoded) // [State.active, State.inactive, State.undefined]

Another lightweight dependency injection through default values for function parameters

Dependency injection boils down to a simple idea: when an object requires a dependency, it shouldn't create it by itself, but instead it should be given a function that does it for him.

Now the great thing with Swift is that, not only can a function take another function as a parameter, but that parameter can also be given a default value.

When you combine both those features, you can end up with a dependency injection pattern that is both lightweight on boilerplate, but also type safe.

import Foundation

protocol Service {
    func call() -> String
}

class ProductionService: Service {
    func call() -> String {
        return "This is the production"
    }
}

class MockService: Service {
    func call() -> String {
        return "This is a mock"
    }
}

typealias Provider<T> = () -> T

class Controller {
    
    let service: Service
    
    init(serviceProvider: Provider<Service> = { return ProductionService() }) {
        self.service = serviceProvider()
    }
    
    func work() {
        print(service.call())
    }
}

let productionController = Controller()
productionController.work() // prints "This is the production"

let mockedController = Controller(serviceProvider: { return MockService() })
mockedController.work() // prints "This is a mock"

Lightweight dependency injection through protocol-oriented programming

Singletons are pretty bad. They make your architecture rigid and tightly coupled, which then results in your code being hard to test and refactor. Instead of using singletons, your code should rely on dependency injection, which is a much more architecturally sound approach.

But singletons are so easy to use, and dependency injection requires us to do extra-work. So maybe, for simple situations, we could find an in-between solution?

One possible solution is to rely on one of Swift's most know features: protocol-oriented programming. Using a protocol, we declare and access our dependency. We then store it in a private singleton, and perform the injection through an extension of said protocol.

This way, our code will indeed be decoupled from its dependency, while at the same time keeping the boilerplate to a minimum.

import Foundation

protocol Formatting {
    var formatter: NumberFormatter { get }
}

private let sharedFormatter: NumberFormatter = {
    let sharedFormatter = NumberFormatter()
    sharedFormatter.numberStyle = .currency
    return sharedFormatter
}()

extension Formatting {
    var formatter: NumberFormatter { return sharedFormatter }
}

class ViewModel: Formatting {
    var displayableAmount: String?
    
    func updateDisplay(to amount: Double) {
        displayableAmount = formatter.string(for: amount)
    }
}

let viewModel = ViewModel()

viewModel.updateDisplay(to: 42000.45)
viewModel.displayableAmount // "$42,000.45"

Getting rid of overabundant [weak self] and guard

Callbacks are a part of almost all iOS apps, and as frameworks such as RxSwift keep gaining in popularity, they become ever more present in our codebase.

Seasoned Swift developers are aware of the potential memory leaks that @escaping callbacks can produce, so they make real sure to always use [weak self], whenever they need to use self inside such a context. And when they need to have self be non-optional, they then add a guard statement along.

Consequently, this syntax of a [weak self] followed by a guard rapidly tends to appear everywhere in the codebase. The good thing is that, through a little protocol-oriented trick, it's actually possible to get rid of this tedious syntax, without loosing any of its benefits!

import Foundation
import PlaygroundSupport

PlaygroundPage.current.needsIndefiniteExecution = true

protocol Weakifiable: class { }

extension Weakifiable {
    func weakify(_ code: @escaping (Self) -> Void) -> () -> Void {
        return { [weak self] in
            guard let self = self else { return }
            
            code(self)
        }
    }
    
    func weakify<T>(_ code: @escaping (T, Self) -> Void) -> (T) -> Void {
        return { [weak self] arg in
            guard let self = self else { return }
            
            code(arg, self)
        }
    }
}

extension NSObject: Weakifiable { }

class Producer: NSObject {
    
    deinit {
        print("deinit Producer")
    }
    
    private var handler: (Int) -> Void = { _ in }
    
    func register(handler: @escaping (Int) -> Void) {
        self.handler = handler
        
        DispatchQueue.main.asyncAfter(deadline: .now() + 1.0, execute: { self.handler(42) })
    }
}

class Consumer: NSObject {
    
    deinit {
        print("deinit Consumer")
    }
    
    let producer = Producer()
    
    func consume() {
        producer.register(handler: weakify { result, strongSelf in
            strongSelf.handle(result)
        })
    }
    
    private func handle(_ result: Int) {
        print("🎉 \(result)")
    }
}

var consumer: Consumer? = Consumer()

consumer?.consume()

DispatchQueue.main.asyncAfter(deadline: .now() + 2.0, execute: { consumer = nil })

// This code prints:
// 🎉 42
// deinit Consumer
// deinit Producer

Solving callback hell with function composition

Asynchronous functions are a big part of iOS APIs, and most developers are familiar with the challenge they pose when one needs to sequentially call several asynchronous APIs.

This often results in callbacks being nested into one another, a predicament often referred to as callback hell.

Many third-party frameworks are able to tackle this issue, for instance RxSwift or PromiseKit. Yet, for simple instances of the problem, there is no need to use such big guns, as it can actually be solved with simple function composition.

import Foundation

typealias CompletionHandler<Result> = (Result?, Error?) -> Void

infix operator ~>: MultiplicationPrecedence

func ~> <T, U>(_ first: @escaping (CompletionHandler<T>) -> Void, _ second: @escaping (T, CompletionHandler<U>) -> Void) -> (CompletionHandler<U>) -> Void {
    return { completion in
        first({ firstResult, error in
            guard let firstResult = firstResult else { completion(nil, error); return }
            
            second(firstResult, { (secondResult, error) in
                completion(secondResult, error)
            })
        })
    }
}

func ~> <T, U>(_ first: @escaping (CompletionHandler<T>) -> Void, _ transform: @escaping (T) -> U) -> (CompletionHandler<U>) -> Void {
    return { completion in
        first({ result, error in
            guard let result = result else { completion(nil, error); return }
            
            completion(transform(result), nil)
        })
    }
}

func service1(_ completionHandler: CompletionHandler<Int>) {
    completionHandler(42, nil)
}

func service2(arg: String, _ completionHandler: CompletionHandler<String>) {
    completionHandler("🎉 \(arg)", nil)
}

let chainedServices = service1
    ~> { int in return String(int / 2) }
    ~> service2

chainedServices({ result, _ in
    guard let result = result else { return }
    
    print(result) // Prints: 🎉 21
})

Transform an asynchronous function into a synchronous one

Asynchronous functions are a great way to deal with future events without blocking a thread. Yet, there are times where we would like them to behave in exactly such a blocking way.

Think about writing unit tests and using mocked network calls. You will need to add complexity to your test in order to deal with asynchronous functions, whereas synchronous ones would be much easier to manage.

Thanks to Swift proficiency in the functional paradigm, it is possible to write a function whose job is to take an asynchronous function and transform it into a synchronous one.

import Foundation

func makeSynchrone<A, B>(_ asyncFunction: @escaping (A, (B) -> Void) -> Void) -> (A) -> B {
    return { arg in
        let lock = NSRecursiveLock()
        
        var result: B? = nil
        
        asyncFunction(arg) {
            result = $0
            lock.unlock()
        }
        
        lock.lock()
        
        return result!
    }
}

func myAsyncFunction(arg: Int, completionHandler: (String) -> Void) {
    completionHandler("🎉 \(arg)")
}

let syncFunction = makeSynchrone(myAsyncFunction)

print(syncFunction(42)) // prints 🎉 42

Using KeyPaths instead of closures

Closures are a great way to interact with generic APIs, for instance APIs that allow to manipulate data structures through the use of generic functions, such as filter() or sorted().

The annoying part is that closures tend to clutter your code with many instances of {, } and $0, which can quickly undermine its readably.

A nice alternative for a cleaner syntax is to use a KeyPath instead of a closure, along with an operator that will deal with transforming the provided KeyPath in a closure.

import Foundation

prefix operator ^

prefix func ^ <Element, Attribute>(_ keyPath: KeyPath<Element, Attribute>) -> (Element) -> Attribute {
    return { element in element[keyPath: keyPath] }
}

struct MyData {
    let int: Int
    let string: String
}

let data = [MyData(int: 2, string: "Foo"), MyData(int: 4, string: "Bar")]

data.map(^\.int) // [2, 4]
data.map(^\.string) // ["Foo", "Bar"]

Bringing some type-safety to a userInfo Dictionary

Many iOS APIs still rely on a userInfo Dictionary to handle use-case specific data. This Dictionary usually stores untyped values, and is declared as follows: [String: Any] (or sometimes [AnyHashable: Any].

Retrieving data from such a structure will involve some conditional casting (via the as? operator), which is prone to both errors and repetitions. Yet, by introducing a custom subscript, it's possible to encapsulate all the tedious logic, and end-up with an easier and more robust API.

import Foundation

typealias TypedUserInfoKey<T> = (key: String, type: T.Type)

extension Dictionary where Key == String, Value == Any {
    subscript<T>(_ typedKey: TypedUserInfoKey<T>) -> T? {
        return self[typedKey.key] as? T
    }
}

let userInfo: [String : Any] = ["Foo": 4, "Bar": "forty-two"]

let integerTypedKey = TypedUserInfoKey(key: "Foo", type: Int.self)
let intValue = userInfo[integerTypedKey] // returns 4
type(of: intValue) // returns Int?

let stringTypedKey = TypedUserInfoKey(key: "Bar", type: String.self)
let stringValue = userInfo[stringTypedKey] // returns "forty-two"
type(of: stringValue) // returns String?

Lightweight data-binding for an MVVM implementation

MVVM is a great pattern to separate business logic from presentation logic. The main challenge to make it work, is to define a mechanism for the presentation layer to be notified of model updates.

RxSwift is a perfect choice to solve such a problem. Yet, some developers don't feel confortable with leveraging a third-party library for such a central part of their architecture.

For those situation, it's possible to define a lightweight Variable type, that will make the MVVM pattern very easy to use!

import Foundation

class Variable<Value> {
    var value: Value {
        didSet {
            onUpdate?(value)
        }
    }
    
    var onUpdate: ((Value) -> Void)? {
        didSet {
            onUpdate?(value)
        }
    }
    
    init(_ value: Value, _ onUpdate: ((Value) -> Void)? = nil) {
        self.value = value
        self.onUpdate = onUpdate
        self.onUpdate?(value)
    }
}

let variable: Variable<String?> = Variable(nil)

variable.onUpdate = { data in
    if let data = data {
        print(data)
    }
}

variable.value = "Foo"
variable.value = "Bar"

// prints:
// Foo
// Bar

Using typealias to its fullest

The keyword typealias allows developers to give a new name to an already existing type. For instance, Swift defines Void as a typealias of (), the empty tuple.

But a less known feature of this mechanism is that it allows to assign concrete types for generic parameters, or to rename them. This can help make the semantics of generic types much clearer, when used in specific use cases.

import Foundation

enum Either<Left, Right> {
    case left(Left)
    case right(Right)
}

typealias Result<Value> = Either<Value, Error>

typealias IntOrString = Either<Int, String>

Writing an interruptible overload of forEach

Iterating through objects via the forEach(_:) method is a great alternative to the classic for loop, as it allows our code to be completely oblivious of the iteration logic. One limitation, however, is that forEach(_:) does not allow to stop the iteration midway.

Taking inspiration from the Objective-C implementation, we can write an overload that will allow the developer to stop the iteration, if needed.

import Foundation

extension Sequence {
    func forEach(_ body: (Element, _ stop: inout Bool) throws -> Void) rethrows {
        var stop = false
        for element in self {
            try body(element, &stop)
            
            if stop {
                return
            }
        }
    }
}

["Foo", "Bar", "FooBar"].forEach { element, stop in
    print(element)
    stop = (element == "Bar")
}

// Prints:
// Foo
// Bar

Optimizing the use of reduce()

Functional programing is a great way to simplify a codebase. For instance, reduce is an alternative to the classic for loop, without most the boilerplate. Unfortunately, simplicity often comes at the price of performance.

Consider that you want to remove duplicate values from a Sequence. While reduce() is a perfectly fine way to express this computation, the performance will be sub optimal, because of all the unnecessary Array copying that will happen every time its closure gets called.

That's when reduce(into:_:) comes into play. This version of reduce leverages the capacities of copy-on-write type (such as Array or Dictionnary) in order to avoid unnecessary copying, which results in a great performance boost.

import Foundation

func time(averagedExecutions: Int = 1, _ code: () -> Void) {
    let start = Date()
    for _ in 0..<averagedExecutions { code() }
    let end = Date()
    
    let duration = end.timeIntervalSince(start) / Double(averagedExecutions)
    
    print("time: \(duration)")
}

let data = (1...1_000).map { _ in Int(arc4random_uniform(256)) }


// runs in 0.63s
time {
    let noDuplicates: [Int] = data.reduce([], { $0.contains($1) ? $0 : $0 + [$1] })
}

// runs in 0.15s
time {
    let noDuplicates: [Int] = data.reduce(into: [], { if !$0.contains($1) { $0.append($1) } } )
}

Avoiding hardcoded reuse identifiers

UI components such as UITableView and UICollectionView rely on reuse identifiers in order to efficiently recycle the views they display. Often, those reuse identifiers take the form of a static hardcoded String, that will be used for every instance of their class.

Through protocol-oriented programing, it's possible to avoid those hardcoded values, and instead use the name of the type as a reuse identifier.

import Foundation
import UIKit

protocol Reusable {
    static var reuseIdentifier: String { get }
}

extension Reusable {
    static var reuseIdentifier: String {
        return String(describing: self)
    }
}

extension UITableViewCell: Reusable { }

extension UITableView {
    func register<T: UITableViewCell>(_ class: T.Type) {
        register(`class`, forCellReuseIdentifier: T.reuseIdentifier)
    }
    func dequeueReusableCell<T: UITableViewCell>(for indexPath: IndexPath) -> T {
        return dequeueReusableCell(withIdentifier: T.reuseIdentifier, for: indexPath) as! T
    }
}

class MyCell: UITableViewCell { }

let tableView = UITableView()

tableView.register(MyCell.self)
let myCell: MyCell = tableView.dequeueReusableCell(for: [0, 0])

Defining a union type

The C language has a construct called union, that allows a single variable to hold values from different types. While Swift does not provide such a construct, it provides enums with associated values, which allows us to define a type called Either that implements a union of two types.

import Foundation

enum Either<A, B> {
    case left(A)
    case right(B)
    
    func either(ifLeft: ((A) -> Void)? = nil, ifRight: ((B) -> Void)? = nil) {
        switch self {
        case let .left(a):
            ifLeft?(a)
        case let .right(b):
            ifRight?(b)
        }
    }
}

extension Bool { static func random() -> Bool { return arc4random_uniform(2) == 0 } }

var intOrString: Either<Int, String> = Bool.random() ? .left(2) : .right("Foo")

intOrString.either(ifLeft: { print($0 + 1) }, ifRight: { print($0 + "Bar") })

If you're interested by this kind of data structure, I strongly recommend that you learn more about Algebraic Data Types.

Asserting that classes have associated NIBs and vice-versa

Most of the time, when we create a .xib file, we give it the same name as its associated class. From that, if we later refactor our code and rename such a class, we run the risk of forgetting to rename the associated .xib.

While the error will often be easy to catch, if the .xib is used in a remote section of its app, it might go unnoticed for sometime. Fortunately it's possible to build custom test predicates that will assert that 1) for a given class, there exists a .nib with the same name in a given Bundle, 2) for all the .nib in a given Bundle, there exists a class with the same name.

import XCTest

public func XCTAssertClassHasNib(_ class: AnyClass, bundle: Bundle, file: StaticString = #file, line: UInt = #line) {
    let associatedNibURL = bundle.url(forResource: String(describing: `class`), withExtension: "nib")
    
    XCTAssertNotNil(associatedNibURL, "Class \"\(`class`)\" has no associated nib file", file: file, line: line)
}

public func XCTAssertNibHaveClasses(_ bundle: Bundle, file: StaticString = #file, line: UInt = #line) {
    guard let bundleName = bundle.infoDictionary?["CFBundleName"] as? String,
        let basePath = bundle.resourcePath,
        let enumerator = FileManager.default.enumerator(at: URL(fileURLWithPath: basePath),
                                                    includingPropertiesForKeys: nil,
                                                    options: [.skipsHiddenFiles, .skipsSubdirectoryDescendants]) else { return }
    
    var nibFilesURLs = [URL]()
    
    for case let fileURL as URL in enumerator {
        if fileURL.pathExtension.uppercased() == "NIB" {
            nibFilesURLs.append(fileURL)
        }
    }
    
    nibFilesURLs.map { $0.lastPathComponent }
        .compactMap { $0.split(separator: ".").first }
        .map { String($0) }
        .forEach {
            let associatedClass: AnyClass? = bundle.classNamed("\(bundleName).\($0)")
            
            XCTAssertNotNil(associatedClass, "File \"\($0).nib\" has no associated class", file: file, line: line)
        }
}

XCTAssertClassHasNib(MyFirstTableViewCell.self, bundle: Bundle(for: AppDelegate.self))
XCTAssertClassHasNib(MySecondTableViewCell.self, bundle: Bundle(for: AppDelegate.self))
        
XCTAssertNibHaveClasses(Bundle(for: AppDelegate.self))

Many thanks Benjamin Lavialle for coming up with the idea behind the second test predicate.

Small footprint type-erasing with functions

Seasoned Swift developers know it: a protocol with associated type (PAT) "can only be used as a generic constraint because it has Self or associated type requirements". When we really need to use a PAT to type a variable, the goto workaround is to use a type-erased wrapper.

While this solution works perfectly, it requires a fair amount of boilerplate code. In instances where we are only interested in exposing one particular function of the PAT, a shorter approach using function types is possible.

import Foundation
import UIKit

protocol Configurable {
    associatedtype Model
    
    func configure(with model: Model)
}

typealias Configurator<Model> = (Model) -> ()

extension UILabel: Configurable {
    func configure(with model: String) {
        self.text = model
    }
}

let label = UILabel()
let configurator: Configurator<String> = label.configure

configurator("Foo")

label.text // "Foo"

Performing animations sequentially

UIKit exposes a very powerful and simple API to perform view animations. However, this API can become a little bit quirky to use when we want to perform animations sequentially, because it involves nesting closure within one another, which produces notoriously hard to maintain code.

Nonetheless, it's possible to define a rather simple class, that will expose a really nicer API for this particular use case 👌

import Foundation
import UIKit

class AnimationSequence {
    typealias Animations = () -> Void
    
    private let current: Animations
    private let duration: TimeInterval
    private var next: AnimationSequence? = nil
    
    init(animations: @escaping Animations, duration: TimeInterval) {
        self.current = animations
        self.duration = duration
    }
    
    @discardableResult func append(animations: @escaping Animations, duration: TimeInterval) -> AnimationSequence {
        var lastAnimation = self
        while let nextAnimation = lastAnimation.next {
            lastAnimation = nextAnimation
        }
        lastAnimation.next = AnimationSequence(animations: animations, duration: duration)
        return self
    }
    
    func run() {
        UIView.animate(withDuration: duration, animations: current, completion: { finished in
            if finished, let next = self.next {
                next.run()
            }
        })
    }
}

var firstView = UIView()
var secondView = UIView()

firstView.alpha = 0
secondView.alpha = 0

AnimationSequence(animations: { firstView.alpha = 1.0 }, duration: 1)
            .append(animations: { secondView.alpha = 1.0 }, duration: 0.5)
            .append(animations: { firstView.alpha = 0.0 }, duration: 2.0)
            .run()

Debouncing a function call

Debouncing is a very useful tool when dealing with UI inputs. Consider a search bar, whose content is used to query an API. It wouldn't make sense to perform a request for every character the user is typing, because as soon as a new character is entered, the result of the previous request has become irrelevant.

Instead, our code will perform much better if we "debounce" the API call, meaning that we will wait until some delay has passed, without the input being modified, before actually performing the call.

import Foundation

func debounced(delay: TimeInterval, queue: DispatchQueue = .main, action: @escaping (() -> Void)) -> () -> Void {
    var workItem: DispatchWorkItem?
    
    return {
        workItem?.cancel()
        workItem = DispatchWorkItem(block: action)
        queue.asyncAfter(deadline: .now() + delay, execute: workItem!)
    }
}

let debouncedPrint = debounced(delay: 1.0) { print("Action performed!") }

debouncedPrint()
debouncedPrint()
debouncedPrint()

// After a 1 second delay, this gets
// printed only once to the console:

// Action performed!

Providing useful operators for Optional booleans

When we need to apply the standard boolean operators to Optional booleans, we often end up with a syntax unnecessarily crowded with unwrapping operations. By taking a cue from the world of three-valued logics, we can define a couple operators that make working with Bool? values much nicer.

import Foundation

func && (lhs: Bool?, rhs: Bool?) -> Bool? {
    switch (lhs, rhs) {
    case (false, _), (_, false):
        return false
    case let (unwrapLhs?, unwrapRhs?):
        return unwrapLhs && unwrapRhs
    default:
        return nil
    }
}

func || (lhs: Bool?, rhs: Bool?) -> Bool? {
    switch (lhs, rhs) {
    case (true, _), (_, true):
        return true
    case let (unwrapLhs?, unwrapRhs?):
        return unwrapLhs || unwrapRhs
    default:
        return nil
    }
}

false && nil // false
true && nil // nil
[true, nil, false].reduce(true, &&) // false

nil || true // true
nil || false // nil
[true, nil, false].reduce(false, ||) // true

Removing duplicate values from a Sequence

Transforming a Sequence in order to remove all the duplicate values it contains is a classic use case. To implement it, one could be tempted to transform the Sequence into a Set, then back to an Array. The downside with this approach is that it will not preserve the order of the sequence, which can definitely be a dealbreaker. Using reduce() it is possible to provide a concise implementation that preserves ordering:

import Foundation

extension Sequence where Element: Equatable {
    func duplicatesRemoved() -> [Element] {
        return reduce([], { $0.contains($1) ? $0 : $0 + [$1] })
    }
}

let data = [2, 5, 2, 3, 6, 5, 2]

data.duplicatesRemoved() // [2, 5, 3, 6]

Shorter syntax to deal with optional strings

Optional strings are very common in Swift code, for instance many objects from UIKit expose the text they display as a String?. Many times you will need to manipulate this data as an unwrapped String, with a default value set to the empty string for nil cases.

While the nil-coalescing operator (e.g. ??) is a perfectly fine way to a achieve this goal, defining a computed variable like orEmpty can help a lot in cleaning the syntax.

import Foundation
import UIKit

extension Optional where Wrapped == String {
    var orEmpty: String {
        switch self {
        case .some(let value):
            return value
        case .none:
            return ""
        }
    }
}

func doesNotWorkWithOptionalString(_ param: String) {
    // do something with `param`
}

let label = UILabel()
label.text = "This is some text."

doesNotWorkWithOptionalString(label.text.orEmpty)

Encapsulating background computation and UI update

Every seasoned iOS developers knows it: objects from UIKit can only be accessed from the main thread. Any attempt to access them from a background thread is a guaranteed crash.

Still, running a costly computation on the background, and then using it to update the UI can be a common pattern.

In such cases you can rely on asyncUI to encapsulate all the boilerplate code.

import Foundation
import UIKit

func asyncUI<T>(_ computation: @autoclosure @escaping () -> T, qos: DispatchQoS.QoSClass = .userInitiated, _ completion: @escaping (T) -> Void) {
    DispatchQueue.global(qos: qos).async {
        let value = computation()
        DispatchQueue.main.async {
            completion(value)
        }
    }
}

let label = UILabel()

func costlyComputation() -> Int { return (0..<10_000).reduce(0, +) }

asyncUI(costlyComputation()) { value in
    label.text = "\(value)"
}

Retrieving all the necessary data to build a debug view

A debug view, from which any controller of an app can be instantiated and pushed on the navigation stack, has the potential to bring some real value to a development process. A requirement to build such a view is to have a list of all the classes from a given Bundle that inherit from UIViewController. With the following extension, retrieving this list becomes a piece of cake 🍰

import Foundation
import UIKit
import ObjectiveC

extension Bundle {
    func viewControllerTypes() -> [UIViewController.Type] {
        guard let bundlePath = self.executablePath else { return [] }
        
        var size: UInt32 = 0
        var rawClassNames: UnsafeMutablePointer<UnsafePointer<Int8>>!
        var parsedClassNames = [String]()
        
        rawClassNames = objc_copyClassNamesForImage(bundlePath, &size)
        
        for index in 0..<size {
            let className = rawClassNames[Int(index)]
            
            if let name = NSString.init(utf8String:className) as String?,
                NSClassFromString(name) is UIViewController.Type {
                parsedClassNames.append(name)
            }
        }
        
        return parsedClassNames
            .sorted()
            .compactMap { NSClassFromString($0) as? UIViewController.Type }
    }
}

// Fetch all view controller types in UIKit
Bundle(for: UIViewController.self).viewControllerTypes()

I share the credit for this tip with Benoît Caron.

Defining a function to map over dictionaries

Update As it turns out, map is actually a really bad name for this function, because it does not preserve composition of transformations, a property that is required to fit the definition of a real map function.

Surprisingly enough, the standard library doesn't define a map() function for dictionaries that allows to map both keys and values into a new Dictionary. Nevertheless, such a function can be helpful, for instance when converting data across different frameworks.

import Foundation

extension Dictionary {
    func map<T: Hashable, U>(_ transform: (Key, Value) throws -> (T, U)) rethrows -> [T: U] {
        var result: [T: U] = [:]
        
        for (key, value) in self {
            let (transformedKey, transformedValue) = try transform(key, value)
            result[transformedKey] = transformedValue
        }
        
        return result
    }
}

let data = [0: 5, 1: 6, 2: 7]
data.map { ("\($0)", $1 * $1) } // ["2": 49, "0": 25, "1": 36]

A shorter syntax to remove nil values

Swift provides the function compactMap(), that can be used to remove nil values from a Sequence of optionals when calling it with an argument that just returns its parameter (i.e. compactMap { $0 }). Still, for such use cases it would be nice to get rid of the trailing closure.

The implementation isn't as straightforward as your usual extension, but once it has been written, the call site definitely gets cleaner 👌

import Foundation

protocol OptionalConvertible {
    associatedtype Wrapped
    func asOptional() -> Wrapped?
}

extension Optional: OptionalConvertible {
    func asOptional() -> Wrapped? {
        return self
    }
}

extension Sequence where Element: OptionalConvertible {
    func compacted() -> [Element.Wrapped] {
        return compactMap { $0.asOptional() }
    }
}

let data = [nil, 1, 2, nil, 3, 5, nil, 8, nil]
data.compacted() // [1, 2, 3, 5, 8]

Dealing with expirable values

It might happen that your code has to deal with values that come with an expiration date. In a game, it could be a score multiplier that will only last for 30 seconds. Or it could be an authentication token for an API, with a 15 minutes lifespan. In both instances you can rely on the type Expirable to encapsulate the expiration logic.

import Foundation

struct Expirable<T> {
    private var innerValue: T
    private(set) var expirationDate: Date
    
    var value: T? {
        return hasExpired() ? nil : innerValue
    }
    
    init(value: T, expirationDate: Date) {
        self.innerValue = value
        self.expirationDate = expirationDate
    }
    
    init(value: T, duration: Double) {
        self.innerValue = value
        self.expirationDate = Date().addingTimeInterval(duration)
    }
    
    func hasExpired() -> Bool {
        return expirationDate < Date()
    }
}

let expirable = Expirable(value: 42, duration: 3)

sleep(2)
expirable.value // 42
sleep(2)
expirable.value // nil

I share the credit for this tip with Benoît Caron.

Using parallelism to speed-up map()

Almost all Apple devices able to run Swift code are powered by a multi-core CPU, consequently making a good use of parallelism is a great way to improve code performance. map() is a perfect candidate for such an optimization, because it is almost trivial to define a parallel implementation.

import Foundation

extension Array {
    func parallelMap<T>(_ transform: (Element) -> T) -> [T] {
        let res = UnsafeMutablePointer<T>.allocate(capacity: count)
        
        DispatchQueue.concurrentPerform(iterations: count) { i in
            res[i] = transform(self[i])
        }
        
        let finalResult = Array<T>(UnsafeBufferPointer(start: res, count: count))
        res.deallocate(capacity: count)
        
        return finalResult
    }
}

let array = (0..<1_000).map { $0 }

func work(_ n: Int) -> Int {
    return (0..<n).reduce(0, +)
}

array.parallelMap { work($0) }

🚨 Make sure to only use parallelMap() when the transform function actually performs some costly computations. Otherwise performances will be systematically slower than using map(), because of the multithreading overhead.

Measuring execution time with minimum boilerplate

During development of a feature that performs some heavy computations, it can be helpful to measure just how much time a chunk of code takes to run. The time() function is a nice tool for this purpose, because of how simple it is to add and then to remove when it is no longer needed.

import Foundation

func time(averagedExecutions: Int = 1, _ code: () -> Void) {
    let start = Date()
    for _ in 0..<averagedExecutions { code() }
    let end = Date()
    
    let duration = end.timeIntervalSince(start) / Double(averagedExecutions)
    
    print("time: \(duration)")
}

time {
    (0...10_000).map { $0 * $0 }
}
// time: 0.183973908424377

Running two pieces of code in parallel

Concurrency is definitely one of those topics were the right encapsulation bears the potential to make your life so much easier. For instance, with this piece of code you can easily launch two computations in parallel, and have the results returned in a tuple.

import Foundation

func parallel<T, U>(_ left: @autoclosure () -> T, _ right: @autoclosure () -> U) -> (T, U) {
    var leftRes: T?
    var rightRes: U?
    
    DispatchQueue.concurrentPerform(iterations: 2, execute: { id in
        if id == 0 {
            leftRes = left()
        } else {
            rightRes = right()
        }
    })
    
    return (leftRes!, rightRes!)
}

let values = (1...100_000).map { $0 }

let results = parallel(values.map { $0 * $0 }, values.reduce(0, +))

Making good use of #file, #line and #function

Swift exposes three special variables #file, #line and #function, that are respectively set to the name of the current file, line and function. Those variables become very useful when writing custom logging functions or test predicates.

import Foundation

func log(_ message: String, _ file: String = #file, _ line: Int = #line, _ function: String = #function) {
    print("[\(file):\(line)] \(function) - \(message)")
}

func foo() {
    log("Hello world!")
}

foo() // [MyPlayground.playground:8] foo() - Hello world!

Comparing Optionals through Conditional Conformance

Swift 4.1 has introduced a new feature called Conditional Conformance, which allows a type to implement a protocol only when its generic type also does.

With this addition it becomes easy to let Optional implement Comparable only when Wrapped also implements Comparable:

import Foundation

extension Optional: Comparable where Wrapped: Comparable {
    public static func < (lhs: Optional, rhs: Optional) -> Bool {
        switch (lhs, rhs) {
        case let (lhs?, rhs?):
            return lhs < rhs
        case (nil, _?):
            return true // anything is greater than nil
        case (_?, nil):
            return false // nil in smaller than anything
        case (nil, nil):
            return true // nil is not smaller than itself
        }
    }
}

let data: [Int?] = [8, 4, 3, nil, 12, 4, 2, nil, -5]
data.sorted() // [nil, nil, Optional(-5), Optional(2), Optional(3), Optional(4), Optional(4), Optional(8), Optional(12)]

Safely subscripting a Collection

Any attempt to access an Array beyond its bounds will result in a crash. While it's possible to write conditions such as if index < array.count { array[index] } in order to prevent such crashes, this approach will rapidly become cumbersome.

A great thing is that this condition can be encapsulated in a custom subscript that will work on any Collection:

import Foundation

extension Collection {
    subscript (safe index: Index) -> Element? {
        return indices.contains(index) ? self[index] : nil
    }
}

let data = [1, 3, 4]

data[safe: 1] // Optional(3)
data[safe: 10] // nil

Easier String slicing using ranges

Subscripting a string with a range can be very cumbersome in Swift 4. Let's face it, no one wants to write lines like someString[index(startIndex, offsetBy: 0)..<index(startIndex, offsetBy: 10)] on a regular basis.

Luckily, with the addition of one clever extension, strings can be sliced as easily as arrays 🎉

import Foundation

extension String {
    public subscript(value: CountableClosedRange<Int>) -> Substring {
        get {
            return self[index(startIndex, offsetBy: value.lowerBound)...index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: CountableRange<Int>) -> Substring {
        get {
            return self[index(startIndex, offsetBy: value.lowerBound)..<index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: PartialRangeUpTo<Int>) -> Substring {
        get {
            return self[..<index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: PartialRangeThrough<Int>) -> Substring {
        get {
            return self[...index(startIndex, offsetBy: value.upperBound)]
        }
    }
    
    public subscript(value: PartialRangeFrom<Int>) -> Substring {
        get {
            return self[index(startIndex, offsetBy: value.lowerBound)...]
        }
    }
}

let data = "This is a string!"

data[..<4]  // "This"
data[5..<9] // "is a"
data[10...] // "string!"

Concise syntax for sorting using a KeyPath

By using a KeyPath along with a generic type, a very clean and concise syntax for sorting data can be implemented:

import Foundation

extension Sequence {
    func sorted<T: Comparable>(by attribute: KeyPath<Element, T>) -> [Element] {
        return sorted(by: { $0[keyPath: attribute] < $1[keyPath: attribute] })
    }
}

let data = ["Some", "words", "of", "different", "lengths"]

data.sorted(by: \.count) // ["of", "Some", "words", "lengths", "different"]

If you like this syntax, make sure to checkout KeyPathKit!

Manufacturing cache-efficient versions of pure functions

By capturing a local variable in a returned closure, it is possible to manufacture cache-efficient versions of pure functions. Be careful though, this trick only works with non-recursive function!

import Foundation

func cached<In: Hashable, Out>(_ f: @escaping (In) -> Out) -> (In) -> Out {
    var cache = [In: Out]()
    
    return { (input: In) -> Out in
        if let cachedValue = cache[input] {
            return cachedValue
        } else {
            let result = f(input)
            cache[input] = result
            return result
        }
    }
}

let cachedCos = cached { (x: Double) in cos(x) }

cachedCos(.pi * 2) // value of cos for 2π is now cached

Simplifying complex conditions with pattern matching

When distinguishing between complex boolean conditions, using a switch statement along with pattern matching can be more readable than the classic series of if {} else if {}.

import Foundation

let expr1: Bool
let expr2: Bool
let expr3: Bool

if expr1 && !expr3 {
    functionA()
} else if !expr2 && expr3 {
    functionB()
} else if expr1 && !expr2 && expr3 {
    functionC()
}

switch (expr1, expr2, expr3) {
    
case (true, _, false):
    functionA()
case (_, false, true):
    functionB()
case (true, false, true):
    functionC()
default:
    break
}

Easily generating arrays of data

Using map() on a range makes it easy to generate an array of data.

import Foundation

func randomInt() -> Int { return Int(arc4random()) }

let randomArray = (1...10).map { _ in randomInt() }

Using @autoclosure for cleaner call sites

Using @autoclosure enables the compiler to automatically wrap an argument within a closure, thus allowing for a very clean syntax at call sites.

import UIKit

extension UIView {
    class func animate(withDuration duration: TimeInterval, _ animations: @escaping @autoclosure () -> Void) {
        UIView.animate(withDuration: duration, animations: animations)
    }
}

let view = UIView()

UIView.animate(withDuration: 0.3, view.backgroundColor = .orange)

Observing new and old value with RxSwift

When working with RxSwift, it's very easy to observe both the current and previous value of an observable sequence by simply introducing a shift using skip().

import RxSwift

let values = Observable.of(4, 8, 15, 16, 23, 42)

let newAndOld = Observable.zip(values, values.skip(1)) { (previous: $0, current: $1) }
    .subscribe(onNext: { pair in
        print("current: \(pair.current) - previous: \(pair.previous)")
    })

//current: 8 - previous: 4
//current: 15 - previous: 8
//current: 16 - previous: 15
//current: 23 - previous: 16
//current: 42 - previous: 23

Implicit initialization from literal values

Using protocols such as ExpressibleByStringLiteral it is possible to provide an init that will be automatically when a literal value is provided, allowing for nice and short syntax. This can be very helpful when writing mock or test data.

import Foundation

extension URL: ExpressibleByStringLiteral {
    public init(stringLiteral value: String) {
        self.init(string: value)!
    }
}

let url: URL = "http://www.google.fr"

NSURLConnection.canHandle(URLRequest(url: "http://www.google.fr"))

Achieving systematic validation of data

Through some clever use of Swift private visibility it is possible to define a container that holds any untrusted value (such as a user input) from which the only way to retrieve the value is by making it successfully pass a validation test.

import Foundation

struct Untrusted<T> {
    private(set) var value: T
}

protocol Validator {
    associatedtype T
    static func validation(value: T) -> Bool
}

extension Validator {
    static func validate(untrusted: Untrusted<T>) -> T? {
        if self.validation(value: untrusted.value) {
            return untrusted.value
        } else {
            return nil
        }
    }
}

struct FrenchPhoneNumberValidator: Validator {
    static func validation(value: String) -> Bool {
       return (value.count) == 10 && CharacterSet(charactersIn: value).isSubset(of: CharacterSet.decimalDigits)
    }
}

let validInput = Untrusted(value: "0122334455")
let invalidInput = Untrusted(value: "0123")

FrenchPhoneNumberValidator.validate(untrusted: validInput) // returns "0122334455"
FrenchPhoneNumberValidator.validate(untrusted: invalidInput) // returns nil

Implementing the builder pattern with keypaths

With the addition of keypaths in Swift 4, it is now possible to easily implement the builder pattern, that allows the developer to clearly separate the code that initializes a value from the code that uses it, without the burden of defining a factory method.

import UIKit

protocol With {}

extension With where Self: AnyObject {
    @discardableResult
    func with<T>(_ property: ReferenceWritableKeyPath<Self, T>, setTo value: T) -> Self {
        self[keyPath: property] = value
        return self
    }
}

extension UIView: With {}

let view = UIView()

let label = UILabel()
    .with(\.textColor, setTo: .red)
    .with(\.text, setTo: "Foo")
    .with(\.textAlignment, setTo: .right)
    .with(\.layer.cornerRadius, setTo: 5)

view.addSubview(label)

🚨 The Swift compiler does not perform OS availability checks on properties referenced by keypaths. Any attempt to use a KeyPath for an unavailable property will result in a runtime crash.

I share the credit for this tip with Marion Curtil.

Storing functions rather than values

When a type stores values for the sole purpose of parametrizing its functions, it’s then possible to not store the values but directly the function, with no discernable difference at the call site.

import Foundation

struct MaxValidator {
    let max: Int
    let strictComparison: Bool
    
    func isValid(_ value: Int) -> Bool {
        return self.strictComparison ? value < self.max : value <= self.max
    }
}

struct MaxValidator2 {
    var isValid: (_ value: Int) -> Bool
    
    init(max: Int, strictComparison: Bool) {
        self.isValid = strictComparison ? { $0 < max } : { $0 <= max }
    }
}

MaxValidator(max: 5, strictComparison: true).isValid(5) // false
MaxValidator2(max: 5, strictComparison: false).isValid(5) // true

Defining operators on function types

Functions are first-class citizen types in Swift, so it is perfectly legal to define operators for them.

import Foundation

let firstRange = { (0...3).contains($0) }
let secondRange = { (5...6).contains($0) }

func ||(_ lhs: @escaping (Int) -> Bool, _ rhs: @escaping (Int) -> Bool) -> (Int) -> Bool {
    return { value in
        return lhs(value) || rhs(value)
    }
}

(firstRange || secondRange)(2) // true
(firstRange || secondRange)(4) // false
(firstRange || secondRange)(6) // true

Typealiases for functions

Typealiases are great to express function signatures in a more comprehensive manner, which then enables us to easily define functions that operate on them, resulting in a nice way to write and use some powerful API.

import Foundation

typealias RangeSet = (Int) -> Bool

func union(_ left: @escaping RangeSet, _ right: @escaping RangeSet) -> RangeSet {
    return { left($0) || right($0) }
}

let firstRange = { (0...3).contains($0) }
let secondRange = { (5...6).contains($0) }

let unionRange = union(firstRange, secondRange)

unionRange(2) // true
unionRange(4) // false

Encapsulating state within a function

By returning a closure that captures a local variable, it's possible to encapsulate a mutable state within a function.

import Foundation

func counterFactory() -> () -> Int {
    var counter = 0
    
    return {
        counter += 1
        return counter
    }
}

let counter = counterFactory()

counter() // returns 1
counter() // returns 2

Generating all cases for an Enum

⚠️ Since Swift 4.2, allCases can now be synthesized at compile-time by simply conforming to the protocol CaseIterable. The implementation below should no longer be used in production code.

Through some clever leveraging of how enums are stored in memory, it is possible to generate an array that contains all the possible cases of an enum. This can prove particularly useful when writing unit tests that consume random data.

import Foundation

enum MyEnum { case first; case second; case third; case fourth }

protocol EnumCollection: Hashable {
    static var allCases: [Self] { get }
}

extension EnumCollection {
    public static var allCases: [Self] {
        var i = 0
        return Array(AnyIterator {
            let next = withUnsafePointer(to: &i) {
                $0.withMemoryRebound(to: Self.self, capacity: 1) { $0.pointee }
            }
            if next.hashValue != i { return nil }
            i += 1
            return next
        })
    }
}

extension MyEnum: EnumCollection { }

MyEnum.allCases // [.first, .second, .third, .fourth]

Using map on optional values

The if-let syntax is a great way to deal with optional values in a safe manner, but at times it can prove to be just a little bit to cumbersome. In such cases, using the Optional.map() function is a nice way to achieve a shorter code while retaining safeness and readability.

import UIKit

let date: Date? = Date() // or could be nil, doesn't matter
let formatter = DateFormatter()
let label = UILabel()

if let safeDate = date {
    label.text = formatter.string(from: safeDate)
}

label.text = date.map { return formatter.string(from: $0) }

label.text = date.map(formatter.string(from:)) // even shorter, tough less readable

📣 NEW 📣 Swift Tips are now available on YouTube 👇

Summary

Tips


Download Details:

Author: vincent-pradeilles
Source code: https://github.com/vincent-pradeilles/swift-tips

License: MIT license
#swift 

How to Open OST files in Outlook

Opening OST files in Outlook becomes a tedious procedure, if you are unaware of the steps. The article highlights upon what is OST file, why the user needs to open the file in Outlook, where it is located and methods to open the file. Let’s start with a brief introduction on what is OST file

What is OST file ?

OST- OST stands for Offline Storage Table file that allows users to work in the offline mode. It is a default file that is automatically created when you create an account for Outlook. The user can open OST mailbox items in Outlook profile by converting into PST format.

What is the purpose of a PST file?

PST file known as personal storage table which is created by Microsoft. This format is basically used to save the copy as a backup of mailbox items like calendars, contacts, tasks etc. It can be say that PST file used to save the archieve items.

Why users need to Open OST files in Outlook?

Here are the most common reasons to open OST file in PST:-

  • When the organization demands for it
  • The user needs to open OST file in Outlook when it gets corrupts or encrypted.

Where the OST file is situated in the computer system?

If you wish to see OST file, you need to open MS Outlook in the computer system where OST files are available. All the emails, attachments will be seen here. Select the Outlook profile and click on data file properties. The file location can be seen through this link “**C:\Users\Admin\AppData\Local\Microsoft\Outlook**”. You can paste the line and press the run command and then hit the enter tab. The OST file will be visible.

Manually Opening OST Files

  • From Outlook application, click on File and Open and Export and then press Import and Export tab.
  • A new dialogue box will be seen and from there, you can click on export to a file tab.
  • Select Outlook data PST file option and then hit the next tab.
  • Select the individual mailbox that you wish to transfer. You can’t do multiple conversions.
  • You can even include sub-folders that you wish to transfer and press the next tab
  • Select the location to save the file by clicking on the browse button
  • Now, press the finish tab. The user can add optional password to secure the contents of the file.

Automated Solution to Open OST file without Outlook

SysInspire have launched OST to PST converter tool that helps user for opening OST file. User can open OST file by doing the conversion of OST file into PST format.Here, are the steps on how to do it:-

  • Install the software on the computer
  • Tap on select OST file button to select the OST fileThis is image title
  • You can see the preview of items stored in itThis is image title
  • Then select the conversion format as PST to convert OST to PSTThis is image title
    So after following the above steps you will be able to open an.ost file.

Final Words
The blog entails both free and technical method to open OST files in Outlook. You can use them as per your need. However, OST to PST converter tool launched by SysInspire is the best way because it is 100% accurate and safe.

Also take a look on the related article:- Recover Email from OST File Outlook 2016

#osttopstconverter #ost #osttopst #convertosttopst #open ost files in outlook #importing ost file