Vincent Lab

Vincent Lab

1618841738

Getting Started with AssemblyScript

In this video, I’ll be showing you how to get started with AssemblyScript.

#assemblyscript #web development #webassembly #webassembly tutorial #explaination #wasm

What is GEEK

Buddha Community

Getting Started with AssemblyScript
Carmen  Grimes

Carmen Grimes

1595494844

How to start an electric scooter facility/fleet in a university campus/IT park

Are you leading an organization that has a large campus, e.g., a large university? You are probably thinking of introducing an electric scooter/bicycle fleet on the campus, and why wouldn’t you?

Introducing micro-mobility in your campus with the help of such a fleet would help the people on the campus significantly. People would save money since they don’t need to use a car for a short distance. Your campus will see a drastic reduction in congestion, moreover, its carbon footprint will reduce.

Micro-mobility is relatively new though and you would need help. You would need to select an appropriate fleet of vehicles. The people on your campus would need to find electric scooters or electric bikes for commuting, and you need to provide a solution for this.

To be more specific, you need a short-term electric bike rental app. With such an app, you will be able to easily offer micro-mobility to the people on the campus. We at Devathon have built Autorent exactly for this.

What does Autorent do and how can it help you? How does it enable you to introduce micro-mobility on your campus? We explain these in this article, however, we will touch upon a few basics first.

Micro-mobility: What it is

micro-mobility

You are probably thinking about micro-mobility relatively recently, aren’t you? A few relevant insights about it could help you to better appreciate its importance.

Micro-mobility is a new trend in transportation, and it uses vehicles that are considerably smaller than cars. Electric scooters (e-scooters) and electric bikes (e-bikes) are the most popular forms of micro-mobility, however, there are also e-unicycles and e-skateboards.

You might have already seen e-scooters, which are kick scooters that come with a motor. Thanks to its motor, an e-scooter can achieve a speed of up to 20 km/h. On the other hand, e-bikes are popular in China and Japan, and they come with a motor, and you can reach a speed of 40 km/h.

You obviously can’t use these vehicles for very long commutes, however, what if you need to travel a short distance? Even if you have a reasonable public transport facility in the city, it might not cover the route you need to take. Take the example of a large university campus. Such a campus is often at a considerable distance from the central business district of the city where it’s located. While public transport facilities may serve the central business district, they wouldn’t serve this large campus. Currently, many people drive their cars even for short distances.

As you know, that brings its own set of challenges. Vehicular traffic adds significantly to pollution, moreover, finding a parking spot can be hard in crowded urban districts.

Well, you can reduce your carbon footprint if you use an electric car. However, electric cars are still new, and many countries are still building the necessary infrastructure for them. Your large campus might not have the necessary infrastructure for them either. Presently, electric cars don’t represent a viable option in most geographies.

As a result, you need to buy and maintain a car even if your commute is short. In addition to dealing with parking problems, you need to spend significantly on your car.

All of these factors have combined to make people sit up and think seriously about cars. Many people are now seriously considering whether a car is really the best option even if they have to commute only a short distance.

This is where micro-mobility enters the picture. When you commute a short distance regularly, e-scooters or e-bikes are viable options. You limit your carbon footprints and you cut costs!

Businesses have seen this shift in thinking, and e-scooter companies like Lime and Bird have entered this field in a big way. They let you rent e-scooters by the minute. On the other hand, start-ups like Jump and Lyft have entered the e-bike market.

Think of your campus now! The people there might need to travel short distances within the campus, and e-scooters can really help them.

How micro-mobility can benefit you

benefits-micromobility

What advantages can you get from micro-mobility? Let’s take a deeper look into this question.

Micro-mobility can offer several advantages to the people on your campus, e.g.:

  • Affordability: Shared e-scooters are cheaper than other mass transportation options. Remember that the people on your campus will use them on a shared basis, and they will pay for their short commutes only. Well, depending on your operating model, you might even let them use shared e-scooters or e-bikes for free!
  • Convenience: Users don’t need to worry about finding parking spots for shared e-scooters since these are small. They can easily travel from point A to point B on your campus with the help of these e-scooters.
  • Environmentally sustainable: Shared e-scooters reduce the carbon footprint, moreover, they decongest the roads. Statistics from the pilot programs in cities like Portland and Denver showimpressive gains around this key aspect.
  • Safety: This one’s obvious, isn’t it? When people on your campus use small e-scooters or e-bikes instead of cars, the problem of overspeeding will disappear. you will see fewer accidents.

#android app #autorent #ios app #mobile app development #app like bird #app like bounce #app like lime #autorent #bird scooter business model #bird scooter rental #bird scooter rental cost #bird scooter rental price #clone app like bird #clone app like bounce #clone app like lime #electric rental scooters #electric scooter company #electric scooter rental business #how do you start a moped #how to start a moped #how to start a scooter rental business #how to start an electric company #how to start electric scooterrental business #lime scooter business model #scooter franchise #scooter rental business #scooter rental business for sale #scooter rental business insurance #scooters franchise cost #white label app like bird #white label app like bounce #white label app like lime

How to Get Current URL in Laravel

In this small post we will see how to get current url in laravel, if you want to get current page url in laravel then we can use many method such type current(), full(), request(), url().

Here i will give you all example to get current page url in laravel, in this example i have used helper and function as well as so let’s start example of how to get current url id in laravel.

Read More : How to Get Current URL in Laravel

https://websolutionstuff.com/post/how-to-get-current-url-in-laravel


Read More : Laravel Signature Pad Example

https://websolutionstuff.com/post/laravel-signature-pad-example

#how to get current url in laravel #laravel get current url #get current page url in laravel #find current url in laravel #get full url in laravel #how to get current url id in laravel

Ian  Robinson

Ian Robinson

1623993300

4 Key Tips to Get Started With Data Democratization

Data democratization means the cycle where one can utilize the data whenever to make decisions.

Business data is more bountiful than ever. Regardless of whether this data is gathered directly or bought from a third-party or syndicated source, it must be appropriately managed to bring organizations the most worth.

To achieve this goal, organizations are putting resources into data infrastructure and platforms, for example, data lakes and data warehouses. This investment is crucial to harnessing insights, yet it’s only essential for the solution.

Organizations are quickly embracing data-driven decision making processes. With insight-driven organizations growing multiple times quicker than their competitors, they don’t have a choice.

The gauntlet has adequately been tossed down. Either give admittance to significant data for your business, or join the developing memorial park of dinosaur organizations, incapable or reluctant to adapt to the cutting-edge digital economy

Self-service BI and analytics solutions can address this challenge by empowering business owners to access data straightforwardly and gain the insights they need. Nonetheless, just offering Self-service BI doesn’t ensure that an organization will become insights-rich and that key partners will be able to follow up on insights without contribution from technical team members.

The progress to genuinely insights-driven decisions requires a purposeful leadership effort, investment in the correct devices, and employee empowerment with the goal that leaders across capacities can counsel data independently prior to acting.

As such, organizations must take a stab at data democratization: opening up admittance to data and analytics among non-technical people without technical guards. In data democratization, the user experience must line up with the practices and needs of business owners to guarantee maximum adoption.

Data democratization means the process where one can utilize the data whenever to make decisions. In the company, everybody profits by having snappy admittance to data and the capacity to make decisions instantly.

Deploying data democratization requires data program to be self-aware; that is, with more prominent broad admittance to data, protocols should be set up to guarantee that users presented to certain data comprehend what it is they’re seeing — that nothing is misconstrued when deciphered and that overall data security itself is kept up, as more noteworthy availability to data may likewise effectively build risk to data integrity. These protections, while vital, are far exceeded by the perception of and data contribution from all edges of a company. With support empowered and encouraged across a company’s ecosystem,further knowledge becomes conceivable, driving advancement and better performance.

#big data #data management #latest news #4 key tips to get started with data democratization #data democratization #key tips to get started with data democratization

Carmen  Grimes

Carmen Grimes

1595491178

Best Electric Bikes and Scooters for Rental Business or Campus Facility

The electric scooter revolution has caught on super-fast taking many cities across the globe by storm. eScooters, a renovated version of old-school scooters now turned into electric vehicles are an environmentally friendly solution to current on-demand commute problems. They work on engines, like cars, enabling short traveling distances without hassle. The result is that these groundbreaking electric machines can now provide faster transport for less — cheaper than Uber and faster than Metro.

Since they are durable, fast, easy to operate and maintain, and are more convenient to park compared to four-wheelers, the eScooters trend has and continues to spike interest as a promising growth area. Several companies and universities are increasingly setting up shop to provide eScooter services realizing a would-be profitable business model and a ready customer base that is university students or residents in need of faster and cheap travel going about their business in school, town, and other surrounding areas.

Electric Scooters Trends and Statistics

In many countries including the U.S., Canada, Mexico, U.K., Germany, France, China, Japan, India, Brazil and Mexico and more, a growing number of eScooter users both locals and tourists can now be seen effortlessly passing lines of drivers stuck in the endless and unmoving traffic.

A recent report by McKinsey revealed that the E-Scooter industry will be worth― $200 billion to $300 billion in the United States, $100 billion to $150 billion in Europe, and $30 billion to $50 billion in China in 2030. The e-Scooter revenue model will also spike and is projected to rise by more than 20% amounting to approximately $5 billion.

And, with a necessity to move people away from high carbon prints, traffic and congestion issues brought about by car-centric transport systems in cities, more and more city planners are developing more bike/scooter lanes and adopting zero-emission plans. This is the force behind the booming electric scooter market and the numbers will only go higher and higher.

Companies that have taken advantage of the growing eScooter trend develop an appthat allows them to provide efficient eScooter services. Such an app enables them to be able to locate bike pick-up and drop points through fully integrated google maps.

List of Best Electric Bikes for Rental Business or Campus Facility 2020:

It’s clear that e scooters will increasingly become more common and the e-scooter business model will continue to grab the attention of manufacturers, investors, entrepreneurs. All this should go ahead with a quest to know what are some of the best electric bikes in the market especially for anyone who would want to get started in the electric bikes/scooters rental business.

We have done a comprehensive list of the best electric bikes! Each bike has been reviewed in depth and includes a full list of specs and a photo.

Billy eBike

mobile-best-electric-bikes-scooters https://www.kickstarter.com/projects/enkicycles/billy-were-redefining-joyrides

To start us off is the Billy eBike, a powerful go-anywhere urban electric bike that’s specially designed to offer an exciting ride like no other whether you want to ride to the grocery store, cafe, work or school. The Billy eBike comes in 4 color options – Billy Blue, Polished aluminium, Artic white, and Stealth black.

Price: $2490

Available countries

Available in the USA, Europe, Asia, South Africa and Australia.This item ships from the USA. Buyers are therefore responsible for any taxes and/or customs duties incurred once it arrives in your country.

Features

  • Control – Ride with confidence with our ultra-wide BMX bars and a hyper-responsive twist throttle.
  • Stealth- Ride like a ninja with our Gates carbon drive that’s as smooth as butter and maintenance-free.
  • Drive – Ride further with our high torque fat bike motor, giving a better climbing performance.
  • Accelerate – Ride quicker with our 20-inch lightweight cutout rims for improved acceleration.
  • Customize – Ride your own way with 5 levels of power control. Each level determines power and speed.
  • Flickable – Ride harder with our BMX /MotoX inspired geometry and lightweight aluminum package

Specifications

  • Maximum speed: 20 mph (32 km/h)
  • Range per charge: 41 miles (66 km)
  • Maximum Power: 500W
  • Motor type: Fat Bike Motor: Bafang RM G060.500.DC
  • Load capacity: 300lbs (136kg)
  • Battery type: 13.6Ah Samsung lithium-ion,
  • Battery capacity: On/off-bike charging available
  • Weight: w/o batt. 48.5lbs (22kg), w/ batt. 54lbs (24.5kg)
  • Front Suspension: Fully adjustable air shock, preload/compression damping /lockout
  • Rear Suspension: spring, preload adjustment
  • Built-in GPS

Why Should You Buy This?

  • Riding fun and excitement
  • Better climbing ability and faster acceleration.
  • Ride with confidence
  • Billy folds for convenient storage and transportation.
  • Shorty levers connect to disc brakes ensuring you stop on a dime
  • belt drives are maintenance-free and clean (no oil or lubrication needed)

**Who Should Ride Billy? **

Both new and experienced riders

**Where to Buy? **Local distributors or ships from the USA.

Genze 200 series e-Bike

genze-best-electric-bikes-scooters https://www.genze.com/fleet/

Featuring a sleek and lightweight aluminum frame design, the 200-Series ebike takes your riding experience to greater heights. Available in both black and white this ebike comes with a connected app, which allows you to plan activities, map distances and routes while also allowing connections with fellow riders.

Price: $2099.00

Available countries

The Genze 200 series e-Bike is available at GenZe retail locations across the U.S or online via GenZe.com website. Customers from outside the US can ship the product while incurring the relevant charges.

Features

  • 2 Frame Options
  • 2 Sizes
  • Integrated/Removable Battery
  • Throttle and Pedal Assist Ride Modes
  • Integrated LCD Display
  • Connected App
  • 24 month warranty
  • GPS navigation
  • Bluetooth connectivity

Specifications

  • Maximum speed: 20 mph with throttle
  • Range per charge: 15-18 miles w/ throttle and 30-50 miles w/ pedal assist
  • Charging time: 3.5 hours
  • Motor type: Brushless Rear Hub Motor
  • Gears: Microshift Thumb Shifter
  • Battery type: Removable Samsung 36V, 9.6AH Li-Ion battery pack
  • Battery capacity: 36V and 350 Wh
  • Weight: 46 pounds
  • Derailleur: 8-speed Shimano
  • Brakes: Dual classic
  • Wheels: 26 x 20 inches
  • Frame: 16, and 18 inches
  • Operating Mode: Analog mode 5 levels of Pedal Assist Thrott­le Mode

Norco from eBikestore

norco-best-electric-bikes-scooters https://ebikestore.com/shop/norco-vlt-s2/

The Norco VLT S2 is a front suspension e-Bike with solid components alongside the reliable Bosch Performance Line Power systems that offer precise pedal assistance during any riding situation.

Price: $2,699.00

Available countries

This item is available via the various Norco bikes international distributors.

Features

  • VLT aluminum frame- for stiffness and wheel security.
  • Bosch e-bike system – for their reliability and performance.
  • E-bike components â€“ for added durability.
  • Hydraulic disc brakes – offer riders more stopping power for safety and control at higher speeds.
  • Practical design features â€“ to add convenience and versatility.

Specifications

  • Maximum speed: KMC X9 9spd
  • Motor type: Bosch Active Line
  • Gears: Shimano Altus RD-M2000, SGS, 9 Speed
  • Battery type: Power Pack 400
  • Battery capacity: 396Wh
  • Suspension: SR Suntour suspension fork
  • Frame: Norco VLT, Aluminum, 12x142mm TA Dropouts

Bodo EV

bodo-best-electric-bikes-scootershttp://www.bodoevs.com/bodoev/products_show.asp?product_id=13

Manufactured by Bodo Vehicle Group Limited, the Bodo EV is specially designed for strong power and extraordinary long service to facilitate super amazing rides. The Bodo Vehicle Company is a striking top in electric vehicles brand field in China and across the globe. Their Bodo EV will no doubt provide your riders with high-level riding satisfaction owing to its high-quality design, strength, breaking stability and speed.

Price: $799

Available countries

This item ships from China with buyers bearing the shipping costs and other variables prior to delivery.

Features

  • Reliable
  • Environment friendly
  • Comfortable riding
  • Fashionable
  • Economical
  • Durable – long service life
  • Braking stability
  • LED lighting technology

Specifications

  • Maximum speed: 45km/h
  • Range per charge: 50km per person
  • Charging time: 8 hours
  • Maximum Power: 3000W
  • Motor type: Brushless DC Motor
  • Load capacity: 100kg
  • Battery type: Lead-acid battery
  • Battery capacity: 60V 20AH
  • Weight: w/o battery 47kg

#android app #autorent #entrepreneurship #ios app #minimum viable product (mvp) #mobile app development #news #app like bird #app like bounce #app like lime #autorent #best electric bikes 2020 #best electric bikes for rental business #best electric kick scooters 2020 #best electric kickscooters for rental business #best electric scooters 2020 #best electric scooters for rental business #bird scooter business model #bird scooter rental #bird scooter rental cost #bird scooter rental price #clone app like bird #clone app like bounce #clone app like lime #electric rental scooters #electric scooter company #electric scooter rental business #how do you start a moped #how to start a moped #how to start a scooter rental business #how to start an electric company #how to start electric scooterrental business #lime scooter business model #scooter franchise #scooter rental business #scooter rental business for sale #scooter rental business insurance #scooters franchise cost #white label app like bird #white label app like bounce #white label app like lime

Build a GraphQL app in Node.js with TypeScript and graphql-request

In this article, you will build a full-stack app using GraphQL and Node.js in the backend. Meanwhile, our frontend will use the graphql-request library to perform network operations on our backend.

Why use graphql-request and TypeScript?

Whenever developers build a GraphQL server using Apollo, the library generates a “frontend” which looks like so:

Frontend Developed By GraphQL And Apollo

This interface allows users to make query or mutation requests to the server via code. However, let’s address the elephant in the room: it doesn’t look very user friendly. Since the frontend doesn’t feature any buttons or any helpful interface elements, it might be hard for many users to navigate around your app. Consequently, this shrinks your user base. So how do we solve this problem?

This is where graphql-request comes in. It is an open source library which lets users perform queries on a GraphQL server. It boasts the following features:

  • Lightweight — This library is just over 21 kilobytes minified, which ensures your app stays performant
  • Promise-based API — This brings in support for asynchronous applications
  • TypeScript support — graphql-request is one of many libraries which allows for TypeScript. One major advantage of Typescript is that it allows for stable and predictable code

For example, look at the following program:

let myNumber = 9; //here, myNumber is an integer
myNumber = 'hello'; //now it is a string.
myNumber = myNumber + 10; //even though we are adding a string to an integer,
//JavaScript won't return an error. In the real world, it might bring unexpected outputs.
//However, in Typescript, we can tell the compiler..
//what data types we need to choose.
let myNumber:number = 39; //tell TS that we want to declare an integer.
myNumber = 9+'hello'; //returns an error. Therefore, it's easier to debug the program
//this promises stability and security. 

In this article, we will build a full-stack app using GraphQL and TypeScript. Here, we will use the apollo-server-express package to build a backend server. Furthermore, for the frontend, we will use Next and graphql-request to consume our GraphQL API.

Building our server

Project initialization

To initialize a blank Node.js project, run these terminal commands:

mkdir graphql-ts-tutorial #create project folder 
cd graphql-ts-tutorial 
npm init -y #initialize the app

When that’s done, we now have to tell Node that we need to use TypeScript in our codebase:

#configure our Typescript:
npx tsc --init --rootDir app --outDir dist --esModuleInterop --resolveJsonModule --lib es6 --module commonjs --allowJs true --noImplicitAny true
mkdir app #our main code folder
mkdir dist #Typescript will use this folder to compile our program.

Next, install these dependencies:

#development dependencies. Will tell Node that we will use Typescript
npm install -d ts-node @types/node typescript @types/express nodemon
#Installing Apollo Server and its associated modules. Will help us build our GraphQL
#server
npm install apollo-server-express apollo-server-core express graphql

After this step, navigate to your app folder. Here, create the following files:

  • index.ts: Our main file. This will execute and run our Express GraphQL server
  • dataset.ts: This will serve as our database, which will be served to the client
  • Resolvers.ts: This module will handle user commands. We will learn about resolvers later in this article
  • Schema.ts: As the name suggests, this file will store the schematics needed to send data to the client

In the end, your folder structure should look like so:

Folder Structure

Creating our database

In this section, we will create a dummy database which will be used to send requested data. To do so, go to app/dataset.ts and write the following code:

let people: { id: number; name: string }[] = [
  { id: 1, name: "Cassie" },
  { id: 2, name: "Rue" },
  { id: 3, name: "Lexi" },
];
export default people;
  • First, we created an array of objects called people
  • This array will have two fields: id of type number, and name of type string

Defining our schema

Here, we will now create a schema for our GraphQL server.

To put it simply, a GraphQL schema is a description of the dataset that clients can request from an API. This concept is similar to that of the Mongoose library.
To build a schema, navigate to the app/Schema.ts file. There, write the following code:

import { gql } from "apollo-server-express"; //will create a schema
const Schema = gql`
  type Person {
    id: ID!
    name: String
  }
  #handle user commands
  type Query {
    getAllPeople: [Person] #will return multiple Person instances
    getPerson(id: Int): Person #has an argument of 'id` of type Integer.
  }
`;
export default Schema; 
//export this Schema so we can use it in our project

Let’s break down this code piece by piece:

  • The Schema variable contains our GraphQL schema
  • First, we created a Person schema. It will have two fields: id of type ID and name of type String
  • Later on, we instructed GraphQL that if the client runs the getAllPeople command, the server will return an array of Person objects
  • Furthermore, if the user uses the getPerson command, GraphQL will return a single Person instance

Creating resolvers

Now that we have coded our schema, our next step is to define our resolvers.
In simple terms, a resolver is a group of functions that generate response for a GraphQL query. In other words, a resolver serves as a GraphQL query handler.
In Resolvers.ts, write the following code:

import people from "./dataset"; //get all of the available data from our database.
const Resolvers = {
  Query: {
    getAllPeople: () => people, //if the user runs the getAllPeople command
    //if the user runs the getPerson command:
    getPerson: (_: any, args: any) => { 
      console.log(args);
      //get the object that contains the specified ID.
      return people.find((person) => person.id === args.id);
    },
  },
};
export default Resolvers;
  • Here, we created a Query object that handles all the incoming queries going to the server
  • If the user executes the getAllPeople command, the program will return all the objects present in our database
  • Moreover, the getPerson command requires an argument id. This will return a Person instance with the matching ID
  • In the end, we exported our resolver so that it could be linked with our app

Configuring our server

We’re almost done! Now that we have built both our schema and resolver, our next step is to link them together.

In index.js, write this block of code:

import { ApolloServer } from "apollo-server-express";
import Schema from "./Schema";
import Resolvers from "./Resolvers";
import express from "express";
import { ApolloServerPluginDrainHttpServer } from "apollo-server-core";
import http from "http";

async function startApolloServer(schema: any, resolvers: any) {
  const app = express();
  const httpServer = http.createServer(app);
  const server = new ApolloServer({
    typeDefs: schema,
    resolvers,
    //tell Express to attach GraphQL functionality to the server
    plugins: [ApolloServerPluginDrainHttpServer({ httpServer })],
  }) as any;
  await server.start(); //start the GraphQL server.
  server.applyMiddleware({ app });
  await new Promise<void>((resolve) =>
    httpServer.listen({ port: 4000 }, resolve) //run the server on port 4000
  );
  console.log(`Server ready at http://localhost:4000${server.graphqlPath}`);
}
//in the end, run the server and pass in our Schema and Resolver.
startApolloServer(Schema, Resolvers);

Let’s test it out! To run the code, use this Bash command:

npx nodemon app/index.ts 

This will create a server at the localhost:4000/graphql URL.

Here, you can see your available schemas within the UI:

Available Schemas Within The UI

This means that our code works!

All of our GraphQL queries will go within the Operation panel. To see it in action, type this snippet within this box:

#make a query:
query {
  #get all of the people available in the server
  getAllPeople {
    #procure their IDs and names.
    id
    name
  }
}

To see the result, click on the Run button:

Run Button For Results

We can even search for a specific entity via the getPerson query:

query ($getPersonId: Int) { #the argument will be of type Integer
  getPerson(id: 1) {
    #get the person with the ID of 1
    name
    id
  }
}

Getperson Query

Creating mutations

In the GraphQL world, mutations are commands that perform side effects on the database. Common examples of this include:

  • Adding a user to the database — When a client signs up for a website, the user performs a mutation to save their data in their database
  • Editing or deleting an object — If a user modifies or removes data from a database, they are essentially creating a mutation on the server

To handle mutations, go to your Schema.ts module. Here, within the Schema variable, add the following lines of code:

const Schema = gql`
  #other code..
  type Mutation {
    #the addPerson commmand will accept an argument of type String.
    #it will return a 'Person' instance. 
    addPerson(name: String): Person
  }
`;

Our next step is to create a resolver to handle this mutation. To do so, within the Resolvers.ts file, add this block of code:

const Resolvers = {
  Query: {
    //..further code..
  },
  //code to add:
  //all our mutations go here.
  Mutation: {
    //create our mutation:
    addPerson: (_: any, args: any) => {
      const newPerson = {
        id: people.length + 1, //id field
        name: args.name, //name field
      };
      people.push(newPerson);
      return newPerson; //return the new object's result
    },
  },
};
  • The addPerson mutation accepts a name argument
  • When a name is passed, the program will create a new object with a matching name key
  • Next, it will use the push method to add this object to the people dataset
  • Finally, it will return the new object’s properties to the client

That’s it! To test it out, run this code within the Operations window:

#perform a mutation on the server
mutation($name: String) {
  addPerson(name:"Hussain") { #add a new person with the name "Hussain"
    #if the execution succeeds, return its 'id' and 'name` to the user.
    id
    name
  }
}

Addperson

Let’s verify if GraphQL has added the new entry to the database:

query {
  getAllPeople { #get all the results within the 'people' database. 
  #return only their names
  name 
  }
}

Verify That GraphQL Added A New Entry

Building our client

We have successfully built our server. In this section, we will build a client app using Next that will listen to the server and render data to the UI.

As a first step, initialize a blank Next.js app like so:

npx create-next-app@latest graphql-client --ts
touch constants.tsx #our query variables go here.

To perform GraphQL operations, we will use the graphql-request library. This is a minimal, open source module that will help us make mutations and queries on our server:

npm install graphql-request graphql
npm install react-hook-form #to capture user input

Creating query variables

In this section, we will code our queries and mutations to help us make GraphQL operations. To do so, go to constants.tsx and add the following code:

import { gql } from "graphql-request";
//create our query
const getAllPeopleQuery = gql`
  query {
    getAllPeople { #run the getAllPeople command
      id
      name
    }
  }
`;
//Next, declare a mutation
const addPersonMutation = gql`
  mutation addPeople($name: String!) {
    addPerson(name: $name) { #add a new entry. Argument will be 'name'
      id
      name
    }
  }
`;
export { getAllPeopleQuery, addPersonMutation };
  • In the first part, we created the getAllPeopleQuery variable. When the user runs this query, the program will instruct the server to get all the entries present in the database
  • Later on, the addPerson mutation tells GraphQL to add a new entry with its respected name field
  • In the end, we used the export keyword to link our variables with the rest of the project

Performing queries

In pages/index.ts, write the following code:

import type { NextPage, GetStaticProps, InferGetStaticPropsType } from "next";
import { request } from "graphql-request"; //allows us to perform a request on our server
import { getAllPeopleQuery } from "../constants"; 
import Link from "next/link";
const Home: NextPage = ({
  result, //extract the 'result' prop 
}: InferGetStaticPropsType<typeof getStaticProps>) => {
  return (
    <div className={styles.container}>
      {result.map((item: any) => { //render the 'result' array to the UI 
        return <p key={item.id}>{item.name}</p>;
      })}
    <Link href="/addpage">Add a new entry </Link>
    </div>
  );
};
//fetch data from the server
export const getStaticProps: GetStaticProps = async () => {
  //the first argument is the URL of our GraphQL server
  const res = await request("http://localhost:4000/graphql", getAllPeopleQuery);
  const result = res.getAllPeople;
  return {
    props: {
      result,
    }, // will be passed to the page component as props
  };
};
export default Home;

Here is a breakdown of this code piece by piece:

  • In the getStaticProps method, we instructed Next to run the getAllPeople command on our GraphQL server
  • Later on, we returned its response to the Home functional component. This means that we can now render the result to the UI
  • Next, the program used the map method to render all of the results of the getAllPeople command to the UI. Each paragraph element will display the name fields of each entry
  • Furthermore, we also used a Link component to redirect the user to the addpage route. This will allow the user to add a new Person instance to the table

To test out the code, run the following terminal command:

npm run dev

This will be the result:

Addpage Route

Our GraphQL server even updates in real time.

GraphQL Updating In Real Time

Performing mutations

Now that we have successfully performed a query, we can even perform mutations via the graphql-request library.

Within your pages folder, create a new file called addpage.tsx. As the name suggests, this component will allow the user to add a new entry to the database. Here, start by writing the following block of code:

import type { NextPage, GetStaticProps, InferGetStaticPropsType } from "next";
import { request } from "graphql-request";
import { addPersonMutation } from "../constants";
const AddPage: NextPage = () => {
  return (
    <div>
      <p>We will add a new entry here. </p>
    </div>
  );
};
export default AddPage;

In this piece of code, we are creating a blank page with a piece of text. We are doing this to ensure whether our URL routing system works.

Creating A Blank Page To Ensure URL Routing Works

This means that we used routing successfully! Next, write this snippet in your addpage.tsx file:

import { useForm } from "react-hook-form";
const { register, handleSubmit } = useForm();
//if the user submits the form, then the program will output the value of their input.
const onSubmit = (data: any) => console.log(data);
return (
  <div>
    <form onSubmit={handleSubmit(onSubmit)}> {/*Bind our handler to this form.*/}
      {/* The user's input will be saved within the 'name' property */}
      <input defaultValue="test" {...register("name")} />
      <input type="submit" />
    </form>
  </div>
);

This will be the output:

 Output

Now that we have successfully captured the user’s input, our last step is to add their entry to the server.

To do so, change the onSubmit handler located in pages/addpage.tsx file like so:

const onSubmit = async (data: any) => {
  const response = await request(
    "http://localhost:4000/graphql",
    addPersonMutation,
    data
  );
  console.log(response);
};
  • Here, we’re performing a mutation request to our GraphQL server via the request function
  • Furthermore, we also passed in the addPerson mutation command to our request header. This will tell GraphQL to perform the addMutation action on our server

This will be the result:

Result Of Addmutation Action

And we’re done!

Conclusion

Here is the full source code of this project.

In this article, you learned how to create a full-stack app using GraphQL and TypeScript. They both are extremely crucial skills within the programming world since they are in high demand nowadays.

If you encountered any difficulty in this code, I advise you to deconstruct the code and play with it so that you can fully grasp this concept.

Thank you so much for reading! Happy coding!

This story was originally published at https://blog.logrocket.com/build-graphql-app-node-js-typescript-graphql-request/

#graphql #typescript #nodejs