Talon Ortiz

Talon Ortiz


Building Image Classification Project with Pre-trained Keras Models

In this hands-on webinar, we aim to impart the knowledge of how to access the pre-trained models(here we get pre-trained ResNet model) from Keras of TensorFlow 2, and appreciate its powerful classification capacity by making the model predict the class of an input image.

Understanding the pre-trained models is very important because this forms the basis of transfer learning. one of the most appreciated techniques to perform the classification of a different task thus reducing the training time, the number of iterations, and resource consumption. Learning about the pre-trained models and working hands-on with such models is thus very crucial in deep learning, and the same is the aim of this project.

Skills you will develop:

  1. TensorFlow 2
  2. Python Programming
  3. Deep Learning

#keras #tensorflow #python #deep-learning

What is GEEK

Buddha Community

Building Image Classification Project with Pre-trained Keras Models
Queenie  Davis

Queenie Davis


EasyMDE: Simple, Beautiful and Embeddable JavaScript Markdown Editor

EasyMDE - Markdown Editor 

This repository is a fork of SimpleMDE, made by Sparksuite. Go to the dedicated section for more information.

A drop-in JavaScript text area replacement for writing beautiful and understandable Markdown. EasyMDE allows users who may be less experienced with Markdown to use familiar toolbar buttons and shortcuts.

In addition, the syntax is rendered while editing to clearly show the expected result. Headings are larger, emphasized words are italicized, links are underlined, etc.

EasyMDE also features both built-in auto saving and spell checking. The editor is entirely customizable, from theming to toolbar buttons and javascript hooks.

Try the demo


Quick access

Install EasyMDE

Via npm:

npm install easymde

Via the UNPKG CDN:

<link rel="stylesheet" href="https://unpkg.com/easymde/dist/easymde.min.css">
<script src="https://unpkg.com/easymde/dist/easymde.min.js"></script>

Or jsDelivr:

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/easymde/dist/easymde.min.css">
<script src="https://cdn.jsdelivr.net/npm/easymde/dist/easymde.min.js"></script>

How to use

Loading the editor

After installing and/or importing the module, you can load EasyMDE onto the first textarea element on the web page:

const easyMDE = new EasyMDE();

Alternatively you can select a specific textarea, via JavaScript:

<textarea id="my-text-area"></textarea>
const easyMDE = new EasyMDE({element: document.getElementById('my-text-area')});

Editor functions

Use easyMDE.value() to get the content of the editor:


Use easyMDE.value(val) to set the content of the editor:

easyMDE.value('New input for **EasyMDE**');


Options list

  • autoDownloadFontAwesome: If set to true, force downloads Font Awesome (used for icons). If set to false, prevents downloading. Defaults to undefined, which will intelligently check whether Font Awesome has already been included, then download accordingly.
  • autofocus: If set to true, focuses the editor automatically. Defaults to false.
  • autosave: Saves the text that's being written and will load it back in the future. It will forget the text when the form it's contained in is submitted.
    • enabled: If set to true, saves the text automatically. Defaults to false.
    • delay: Delay between saves, in milliseconds. Defaults to 10000 (10 seconds).
    • submit_delay: Delay before assuming that submit of the form failed and saving the text, in milliseconds. Defaults to autosave.delay or 10000 (10 seconds).
    • uniqueId: You must set a unique string identifier so that EasyMDE can autosave. Something that separates this from other instances of EasyMDE elsewhere on your website.
    • timeFormat: Set DateTimeFormat. More information see DateTimeFormat instances. Default locale: en-US, format: hour:minute.
    • text: Set text for autosave.
  • autoRefresh: Useful, when initializing the editor in a hidden DOM node. If set to { delay: 300 }, it will check every 300 ms if the editor is visible and if positive, call CodeMirror's refresh().
  • blockStyles: Customize how certain buttons that style blocks of text behave.
    • bold: Can be set to ** or __. Defaults to **.
    • code: Can be set to ``` or ~~~. Defaults to ```.
    • italic: Can be set to * or _. Defaults to *.
  • unorderedListStyle: can be *, - or +. Defaults to *.
  • scrollbarStyle: Chooses a scrollbar implementation. The default is "native", showing native scrollbars. The core library also provides the "null" style, which completely hides the scrollbars. Addons can implement additional scrollbar models.
  • element: The DOM element for the textarea element to use. Defaults to the first textarea element on the page.
  • forceSync: If set to true, force text changes made in EasyMDE to be immediately stored in original text area. Defaults to false.
  • hideIcons: An array of icon names to hide. Can be used to hide specific icons shown by default without completely customizing the toolbar.
  • indentWithTabs: If set to false, indent using spaces instead of tabs. Defaults to true.
  • initialValue: If set, will customize the initial value of the editor.
  • previewImagesInEditor: - EasyMDE will show preview of images, false by default, preview for images will appear only for images on separate lines.
  • imagesPreviewHandler: - A custom function for handling the preview of images. Takes the parsed string between the parantheses of the image markdown ![]( ) as argument and returns a string that serves as the src attribute of the <img> tag in the preview. Enables dynamic previewing of images in the frontend without having to upload them to a server, allows copy-pasting of images to the editor with preview.
  • insertTexts: Customize how certain buttons that insert text behave. Takes an array with two elements. The first element will be the text inserted before the cursor or highlight, and the second element will be inserted after. For example, this is the default link value: ["[", "](http://)"].
    • horizontalRule
    • image
    • link
    • table
  • lineNumbers: If set to true, enables line numbers in the editor.
  • lineWrapping: If set to false, disable line wrapping. Defaults to true.
  • minHeight: Sets the minimum height for the composition area, before it starts auto-growing. Should be a string containing a valid CSS value like "500px". Defaults to "300px".
  • maxHeight: Sets fixed height for the composition area. minHeight option will be ignored. Should be a string containing a valid CSS value like "500px". Defaults to undefined.
  • onToggleFullScreen: A function that gets called when the editor's full screen mode is toggled. The function will be passed a boolean as parameter, true when the editor is currently going into full screen mode, or false.
  • parsingConfig: Adjust settings for parsing the Markdown during editing (not previewing).
    • allowAtxHeaderWithoutSpace: If set to true, will render headers without a space after the #. Defaults to false.
    • strikethrough: If set to false, will not process GFM strikethrough syntax. Defaults to true.
    • underscoresBreakWords: If set to true, let underscores be a delimiter for separating words. Defaults to false.
  • overlayMode: Pass a custom codemirror overlay mode to parse and style the Markdown during editing.
    • mode: A codemirror mode object.
    • combine: If set to false, will replace CSS classes returned by the default Markdown mode. Otherwise the classes returned by the custom mode will be combined with the classes returned by the default mode. Defaults to true.
  • placeholder: If set, displays a custom placeholder message.
  • previewClass: A string or array of strings that will be applied to the preview screen when activated. Defaults to "editor-preview".
  • previewRender: Custom function for parsing the plaintext Markdown and returning HTML. Used when user previews.
  • promptURLs: If set to true, a JS alert window appears asking for the link or image URL. Defaults to false.
  • promptTexts: Customize the text used to prompt for URLs.
    • image: The text to use when prompting for an image's URL. Defaults to URL of the image:.
    • link: The text to use when prompting for a link's URL. Defaults to URL for the link:.
  • uploadImage: If set to true, enables the image upload functionality, which can be triggered by drag and drop, copy-paste and through the browse-file window (opened when the user click on the upload-image icon). Defaults to false.
  • imageMaxSize: Maximum image size in bytes, checked before upload (note: never trust client, always check the image size at server-side). Defaults to 1024 * 1024 * 2 (2 MB).
  • imageAccept: A comma-separated list of mime-types used to check image type before upload (note: never trust client, always check file types at server-side). Defaults to image/png, image/jpeg.
  • imageUploadFunction: A custom function for handling the image upload. Using this function will render the options imageMaxSize, imageAccept, imageUploadEndpoint and imageCSRFToken ineffective.
    • The function gets a file and onSuccess and onError callback functions as parameters. onSuccess(imageUrl: string) and onError(errorMessage: string)
  • imageUploadEndpoint: The endpoint where the images data will be sent, via an asynchronous POST request. The server is supposed to save this image, and return a JSON response.
    • if the request was successfully processed (HTTP 200 OK): {"data": {"filePath": "<filePath>"}} where filePath is the path of the image (absolute if imagePathAbsolute is set to true, relative if otherwise);
    • otherwise: {"error": "<errorCode>"}, where errorCode can be noFileGiven (HTTP 400 Bad Request), typeNotAllowed (HTTP 415 Unsupported Media Type), fileTooLarge (HTTP 413 Payload Too Large) or importError (see errorMessages below). If errorCode is not one of the errorMessages, it is alerted unchanged to the user. This allows for server-side error messages. No default value.
  • imagePathAbsolute: If set to true, will treat imageUrl from imageUploadFunction and filePath returned from imageUploadEndpoint as an absolute rather than relative path, i.e. not prepend window.location.origin to it.
  • imageCSRFToken: CSRF token to include with AJAX call to upload image. For various instances like Django, Spring and Laravel.
  • imageCSRFName: CSRF token filed name to include with AJAX call to upload image, applied when imageCSRFToken has value, defaults to csrfmiddlewaretoken.
  • imageCSRFHeader: If set to true, passing CSRF token via header. Defaults to false, which pass CSRF through request body.
  • imageTexts: Texts displayed to the user (mainly on the status bar) for the import image feature, where #image_name#, #image_size# and #image_max_size# will replaced by their respective values, that can be used for customization or internationalization:
    • sbInit: Status message displayed initially if uploadImage is set to true. Defaults to Attach files by drag and dropping or pasting from clipboard..
    • sbOnDragEnter: Status message displayed when the user drags a file to the text area. Defaults to Drop image to upload it..
    • sbOnDrop: Status message displayed when the user drops a file in the text area. Defaults to Uploading images #images_names#.
    • sbProgress: Status message displayed to show uploading progress. Defaults to Uploading #file_name#: #progress#%.
    • sbOnUploaded: Status message displayed when the image has been uploaded. Defaults to Uploaded #image_name#.
    • sizeUnits: A comma-separated list of units used to display messages with human-readable file sizes. Defaults to B, KB, MB (example: 218 KB). You can use B,KB,MB instead if you prefer without whitespaces (218KB).
  • errorMessages: Errors displayed to the user, using the errorCallback option, where #image_name#, #image_size# and #image_max_size# will replaced by their respective values, that can be used for customization or internationalization:
    • noFileGiven: The server did not receive any file from the user. Defaults to You must select a file..
    • typeNotAllowed: The user send a file type which doesn't match the imageAccept list, or the server returned this error code. Defaults to This image type is not allowed..
    • fileTooLarge: The size of the image being imported is bigger than the imageMaxSize, or if the server returned this error code. Defaults to Image #image_name# is too big (#image_size#).\nMaximum file size is #image_max_size#..
    • importError: An unexpected error occurred when uploading the image. Defaults to Something went wrong when uploading the image #image_name#..
  • errorCallback: A callback function used to define how to display an error message. Defaults to (errorMessage) => alert(errorMessage).
  • renderingConfig: Adjust settings for parsing the Markdown during previewing (not editing).
    • codeSyntaxHighlighting: If set to true, will highlight using highlight.js. Defaults to false. To use this feature you must include highlight.js on your page or pass in using the hljs option. For example, include the script and the CSS files like:
      <script src="https://cdn.jsdelivr.net/highlight.js/latest/highlight.min.js"></script>
      <link rel="stylesheet" href="https://cdn.jsdelivr.net/highlight.js/latest/styles/github.min.css">
    • hljs: An injectible instance of highlight.js. If you don't want to rely on the global namespace (window.hljs), you can provide an instance here. Defaults to undefined.
    • markedOptions: Set the internal Markdown renderer's options. Other renderingConfig options will take precedence.
    • singleLineBreaks: If set to false, disable parsing GitHub Flavored Markdown (GFM) single line breaks. Defaults to true.
    • sanitizerFunction: Custom function for sanitizing the HTML output of Markdown renderer.
  • shortcuts: Keyboard shortcuts associated with this instance. Defaults to the array of shortcuts.
  • showIcons: An array of icon names to show. Can be used to show specific icons hidden by default without completely customizing the toolbar.
  • spellChecker: If set to false, disable the spell checker. Defaults to true. Optionally pass a CodeMirrorSpellChecker-compliant function.
  • inputStyle: textarea or contenteditable. Defaults to textarea for desktop and contenteditable for mobile. contenteditable option is necessary to enable nativeSpellcheck.
  • nativeSpellcheck: If set to false, disable native spell checker. Defaults to true.
  • sideBySideFullscreen: If set to false, allows side-by-side editing without going into fullscreen. Defaults to true.
  • status: If set to false, hide the status bar. Defaults to the array of built-in status bar items.
    • Optionally, you can set an array of status bar items to include, and in what order. You can even define your own custom status bar items.
  • styleSelectedText: If set to false, remove the CodeMirror-selectedtext class from selected lines. Defaults to true.
  • syncSideBySidePreviewScroll: If set to false, disable syncing scroll in side by side mode. Defaults to true.
  • tabSize: If set, customize the tab size. Defaults to 2.
  • theme: Override the theme. Defaults to easymde.
  • toolbar: If set to false, hide the toolbar. Defaults to the array of icons.
  • toolbarTips: If set to false, disable toolbar button tips. Defaults to true.
  • direction: rtl or ltr. Changes text direction to support right-to-left languages. Defaults to ltr.

Options example

Most options demonstrate the non-default behavior:

const editor = new EasyMDE({
    autofocus: true,
    autosave: {
        enabled: true,
        uniqueId: "MyUniqueID",
        delay: 1000,
        submit_delay: 5000,
        timeFormat: {
            locale: 'en-US',
            format: {
                year: 'numeric',
                month: 'long',
                day: '2-digit',
                hour: '2-digit',
                minute: '2-digit',
        text: "Autosaved: "
    blockStyles: {
        bold: "__",
        italic: "_",
    unorderedListStyle: "-",
    element: document.getElementById("MyID"),
    forceSync: true,
    hideIcons: ["guide", "heading"],
    indentWithTabs: false,
    initialValue: "Hello world!",
    insertTexts: {
        horizontalRule: ["", "\n\n-----\n\n"],
        image: ["![](http://", ")"],
        link: ["[", "](https://)"],
        table: ["", "\n\n| Column 1 | Column 2 | Column 3 |\n| -------- | -------- | -------- |\n| Text     | Text      | Text     |\n\n"],
    lineWrapping: false,
    minHeight: "500px",
    parsingConfig: {
        allowAtxHeaderWithoutSpace: true,
        strikethrough: false,
        underscoresBreakWords: true,
    placeholder: "Type here...",

    previewClass: "my-custom-styling",
    previewClass: ["my-custom-styling", "more-custom-styling"],

    previewRender: (plainText) => customMarkdownParser(plainText), // Returns HTML from a custom parser
    previewRender: (plainText, preview) => { // Async method
        setTimeout(() => {
            preview.innerHTML = customMarkdownParser(plainText);
        }, 250);

        return "Loading...";
    promptURLs: true,
    promptTexts: {
        image: "Custom prompt for URL:",
        link: "Custom prompt for URL:",
    renderingConfig: {
        singleLineBreaks: false,
        codeSyntaxHighlighting: true,
        sanitizerFunction: (renderedHTML) => {
            // Using DOMPurify and only allowing <b> tags
            return DOMPurify.sanitize(renderedHTML, {ALLOWED_TAGS: ['b']})
    shortcuts: {
        drawTable: "Cmd-Alt-T"
    showIcons: ["code", "table"],
    spellChecker: false,
    status: false,
    status: ["autosave", "lines", "words", "cursor"], // Optional usage
    status: ["autosave", "lines", "words", "cursor", {
        className: "keystrokes",
        defaultValue: (el) => {
            el.setAttribute('data-keystrokes', 0);
        onUpdate: (el) => {
            const keystrokes = Number(el.getAttribute('data-keystrokes')) + 1;
            el.innerHTML = `${keystrokes} Keystrokes`;
            el.setAttribute('data-keystrokes', keystrokes);
    }], // Another optional usage, with a custom status bar item that counts keystrokes
    styleSelectedText: false,
    sideBySideFullscreen: false,
    syncSideBySidePreviewScroll: false,
    tabSize: 4,
    toolbar: false,
    toolbarTips: false,

Toolbar icons

Below are the built-in toolbar icons (only some of which are enabled by default), which can be reorganized however you like. "Name" is the name of the icon, referenced in the JavaScript. "Action" is either a function or a URL to open. "Class" is the class given to the icon. "Tooltip" is the small tooltip that appears via the title="" attribute. Note that shortcut hints are added automatically and reflect the specified action if it has a key bind assigned to it (i.e. with the value of action set to bold and that of tooltip set to Bold, the final text the user will see would be "Bold (Ctrl-B)").

Additionally, you can add a separator between any icons by adding "|" to the toolbar array.

fa fa-bold
fa fa-italic
fa fa-strikethrough
fa fa-header
heading-smallertoggleHeadingSmallerSmaller Heading
fa fa-header
heading-biggertoggleHeadingBiggerBigger Heading
fa fa-lg fa-header
heading-1toggleHeading1Big Heading
fa fa-header header-1
heading-2toggleHeading2Medium Heading
fa fa-header header-2
heading-3toggleHeading3Small Heading
fa fa-header header-3
fa fa-code
fa fa-quote-left
unordered-listtoggleUnorderedListGeneric List
fa fa-list-ul
ordered-listtoggleOrderedListNumbered List
fa fa-list-ol
clean-blockcleanBlockClean block
fa fa-eraser
linkdrawLinkCreate Link
fa fa-link
imagedrawImageInsert Image
fa fa-picture-o
tabledrawTableInsert Table
fa fa-table
horizontal-ruledrawHorizontalRuleInsert Horizontal Line
fa fa-minus
previewtogglePreviewToggle Preview
fa fa-eye no-disable
side-by-sidetoggleSideBySideToggle Side by Side
fa fa-columns no-disable no-mobile
fullscreentoggleFullScreenToggle Fullscreen
fa fa-arrows-alt no-disable no-mobile
guideThis linkMarkdown Guide
fa fa-question-circle
fa fa-undo
fa fa-redo

Toolbar customization

Customize the toolbar using the toolbar option.

Only the order of existing buttons:

const easyMDE = new EasyMDE({
    toolbar: ["bold", "italic", "heading", "|", "quote"]

All information and/or add your own icons

const easyMDE = new EasyMDE({
    toolbar: [
            name: "bold",
            action: EasyMDE.toggleBold,
            className: "fa fa-bold",
            title: "Bold",
        "italics", // shortcut to pre-made button
            name: "custom",
            action: (editor) => {
                // Add your own code
            className: "fa fa-star",
            title: "Custom Button",
            attributes: { // for custom attributes
                id: "custom-id",
                "data-value": "custom value" // HTML5 data-* attributes need to be enclosed in quotation marks ("") because of the dash (-) in its name.
        "|" // Separator
        // [, ...]

Put some buttons on dropdown menu

const easyMDE = new EasyMDE({
    toolbar: [{
                name: "heading",
                action: EasyMDE.toggleHeadingSmaller,
                className: "fa fa-header",
                title: "Headers",
                name: "others",
                className: "fa fa-blind",
                title: "others buttons",
                children: [
                        name: "image",
                        action: EasyMDE.drawImage,
                        className: "fa fa-picture-o",
                        title: "Image",
                        name: "quote",
                        action: EasyMDE.toggleBlockquote,
                        className: "fa fa-percent",
                        title: "Quote",
                        name: "link",
                        action: EasyMDE.drawLink,
                        className: "fa fa-link",
                        title: "Link",
        // [, ...]

Keyboard shortcuts

EasyMDE comes with an array of predefined keyboard shortcuts, but they can be altered with a configuration option. The list of default ones is as follows:

Shortcut (Windows / Linux)Shortcut (macOS)Action

Here is how you can change a few, while leaving others untouched:

const editor = new EasyMDE({
    shortcuts: {
        "toggleOrderedList": "Ctrl-Alt-K", // alter the shortcut for toggleOrderedList
        "toggleCodeBlock": null, // unbind Ctrl-Alt-C
        "drawTable": "Cmd-Alt-T", // bind Cmd-Alt-T to drawTable action, which doesn't come with a default shortcut

Shortcuts are automatically converted between platforms. If you define a shortcut as "Cmd-B", on PC that shortcut will be changed to "Ctrl-B". Conversely, a shortcut defined as "Ctrl-B" will become "Cmd-B" for Mac users.

The list of actions that can be bound is the same as the list of built-in actions available for toolbar buttons.

Advanced use

Event handling

You can catch the following list of events: https://codemirror.net/doc/manual.html#events

const easyMDE = new EasyMDE();
easyMDE.codemirror.on("change", () => {

Removing EasyMDE from text area

You can revert to the initial text area by calling the toTextArea method. Note that this clears up the autosave (if enabled) associated with it. The text area will retain any text from the destroyed EasyMDE instance.

const easyMDE = new EasyMDE();
// ...
easyMDE = null;

If you need to remove registered event listeners (when the editor is not needed anymore), call easyMDE.cleanup().

Useful methods

The following self-explanatory methods may be of use while developing with EasyMDE.

const easyMDE = new EasyMDE();
easyMDE.isPreviewActive(); // returns boolean
easyMDE.isSideBySideActive(); // returns boolean
easyMDE.isFullscreenActive(); // returns boolean
easyMDE.clearAutosavedValue(); // no returned value

How it works

EasyMDE is a continuation of SimpleMDE.

SimpleMDE began as an improvement of lepture's Editor project, but has now taken on an identity of its own. It is bundled with CodeMirror and depends on Font Awesome.

CodeMirror is the backbone of the project and parses much of the Markdown syntax as it's being written. This allows us to add styles to the Markdown that's being written. Additionally, a toolbar and status bar have been added to the top and bottom, respectively. Previews are rendered by Marked using GitHub Flavored Markdown (GFM).

SimpleMDE fork

I originally made this fork to implement FontAwesome 5 compatibility into SimpleMDE. When that was done I submitted a pull request, which has not been accepted yet. This, and the project being inactive since May 2017, triggered me to make more changes and try to put new life into the project.

Changes include:

  • FontAwesome 5 compatibility
  • Guide button works when editor is in preview mode
  • Links are now https:// by default
  • Small styling changes
  • Support for Node 8 and beyond
  • Lots of refactored code
  • Links in preview will open in a new tab by default
  • TypeScript support

My intention is to continue development on this project, improving it and keeping it alive.

Hacking EasyMDE

You may want to edit this library to adapt its behavior to your needs. This can be done in some quick steps:

  1. Follow the prerequisites and installation instructions in the contribution guide;
  2. Do your changes;
  3. Run gulp command, which will generate files: dist/easymde.min.css and dist/easymde.min.js;
  4. Copy-paste those files to your code base, and you are done.


Want to contribute to EasyMDE? Thank you! We have a contribution guide just for you!

Author: Ionaru
Source Code: https://github.com/Ionaru/easy-markdown-editor
License: MIT license

#react-native #react 

Flutter Dev

Flutter Dev


How to Add Splash Screen in Android and iOS with Flutter

When your app is opened, there is a brief time while the native app loads Flutter. By default, during this time, the native app displays a white splash screen. This package automatically generates iOS, Android, and Web-native code for customizing this native splash screen background color and splash image. Supports dark mode, full screen, and platform-specific options.

What's New

[BETA] Support for flavors is in beta. Currently only Android and iOS are supported. See instructions below.

You can now keep the splash screen up while your app initializes! No need for a secondary splash screen anymore. Just use the preserve and remove methods together to remove the splash screen after your initialization is complete. See details below.


Would you prefer a video tutorial instead? Check out Johannes Milke's tutorial.

First, add flutter_native_splash as a dependency in your pubspec.yaml file.

  flutter_native_splash: ^2.2.19

Don't forget to flutter pub get.

1. Setting the splash screen


Customize the following settings and add to your project's pubspec.yaml file or place in a new file in your root project folder named flutter_native_splash.yaml.

  # This package generates native code to customize Flutter's default white native splash screen
  # with background color and splash image.
  # Customize the parameters below, and run the following command in the terminal:
  # flutter pub run flutter_native_splash:create
  # To restore Flutter's default white splash screen, run the following command in the terminal:
  # flutter pub run flutter_native_splash:remove

  # color or background_image is the only required parameter.  Use color to set the background
  # of your splash screen to a solid color.  Use background_image to set the background of your
  # splash screen to a png image.  This is useful for gradients. The image will be stretch to the
  # size of the app. Only one parameter can be used, color and background_image cannot both be set.
  color: "#42a5f5"
  #background_image: "assets/background.png"

  # Optional parameters are listed below.  To enable a parameter, uncomment the line by removing
  # the leading # character.

  # The image parameter allows you to specify an image used in the splash screen.  It must be a
  # png file and should be sized for 4x pixel density.
  #image: assets/splash.png

  # The branding property allows you to specify an image used as branding in the splash screen.
  # It must be a png file. It is supported for Android, iOS and the Web.  For Android 12,
  # see the Android 12 section below.
  #branding: assets/dart.png

  # To position the branding image at the bottom of the screen you can use bottom, bottomRight,
  # and bottomLeft. The default values is bottom if not specified or specified something else.
  #branding_mode: bottom

  # The color_dark, background_image_dark, image_dark, branding_dark are parameters that set the background
  # and image when the device is in dark mode. If they are not specified, the app will use the
  # parameters from above. If the image_dark parameter is specified, color_dark or
  # background_image_dark must be specified.  color_dark and background_image_dark cannot both be
  # set.
  #color_dark: "#042a49"
  #background_image_dark: "assets/dark-background.png"
  #image_dark: assets/splash-invert.png
  #branding_dark: assets/dart_dark.png

  # Android 12 handles the splash screen differently than previous versions.  Please visit
  # https://developer.android.com/guide/topics/ui/splash-screen
  # Following are Android 12 specific parameter.
    # The image parameter sets the splash screen icon image.  If this parameter is not specified,
    # the app's launcher icon will be used instead.
    # Please note that the splash screen will be clipped to a circle on the center of the screen.
    # App icon with an icon background: This should be 960×960 pixels, and fit within a circle
    # 640 pixels in diameter.
    # App icon without an icon background: This should be 1152×1152 pixels, and fit within a circle
    # 768 pixels in diameter.
    #image: assets/android12splash.png

    # Splash screen background color.
    #color: "#42a5f5"

    # App icon background color.
    #icon_background_color: "#111111"

    # The branding property allows you to specify an image used as branding in the splash screen.
    #branding: assets/dart.png

    # The image_dark, color_dark, icon_background_color_dark, and branding_dark set values that
    # apply when the device is in dark mode. If they are not specified, the app will use the
    # parameters from above.
    #image_dark: assets/android12splash-invert.png
    #color_dark: "#042a49"
    #icon_background_color_dark: "#eeeeee"

  # The android, ios and web parameters can be used to disable generating a splash screen on a given
  # platform.
  #android: false
  #ios: false
  #web: false

  # Platform specific images can be specified with the following parameters, which will override
  # the respective parameter.  You may specify all, selected, or none of these parameters:
  #color_android: "#42a5f5"
  #color_dark_android: "#042a49"
  #color_ios: "#42a5f5"
  #color_dark_ios: "#042a49"
  #color_web: "#42a5f5"
  #color_dark_web: "#042a49"
  #image_android: assets/splash-android.png
  #image_dark_android: assets/splash-invert-android.png
  #image_ios: assets/splash-ios.png
  #image_dark_ios: assets/splash-invert-ios.png
  #image_web: assets/splash-web.png
  #image_dark_web: assets/splash-invert-web.png
  #background_image_android: "assets/background-android.png"
  #background_image_dark_android: "assets/dark-background-android.png"
  #background_image_ios: "assets/background-ios.png"
  #background_image_dark_ios: "assets/dark-background-ios.png"
  #background_image_web: "assets/background-web.png"
  #background_image_dark_web: "assets/dark-background-web.png"
  #branding_android: assets/brand-android.png
  #branding_dark_android: assets/dart_dark-android.png
  #branding_ios: assets/brand-ios.png
  #branding_dark_ios: assets/dart_dark-ios.png

  # The position of the splash image can be set with android_gravity, ios_content_mode, and
  # web_image_mode parameters.  All default to center.
  # android_gravity can be one of the following Android Gravity (see
  # https://developer.android.com/reference/android/view/Gravity): bottom, center,
  # center_horizontal, center_vertical, clip_horizontal, clip_vertical, end, fill, fill_horizontal,
  # fill_vertical, left, right, start, or top.
  #android_gravity: center
  # ios_content_mode can be one of the following iOS UIView.ContentMode (see
  # https://developer.apple.com/documentation/uikit/uiview/contentmode): scaleToFill,
  # scaleAspectFit, scaleAspectFill, center, top, bottom, left, right, topLeft, topRight,
  # bottomLeft, or bottomRight.
  #ios_content_mode: center
  # web_image_mode can be one of the following modes: center, contain, stretch, and cover.
  #web_image_mode: center

  # The screen orientation can be set in Android with the android_screen_orientation parameter.
  # Valid parameters can be found here:
  # https://developer.android.com/guide/topics/manifest/activity-element#screen
  #android_screen_orientation: sensorLandscape

  # To hide the notification bar, use the fullscreen parameter.  Has no effect in web since web
  # has no notification bar.  Defaults to false.
  # NOTE: Unlike Android, iOS will not automatically show the notification bar when the app loads.
  #       To show the notification bar, add the following code to your Flutter app:
  #       WidgetsFlutterBinding.ensureInitialized();
  #       SystemChrome.setEnabledSystemUIOverlays([SystemUiOverlay.bottom, SystemUiOverlay.top]);
  #fullscreen: true

  # If you have changed the name(s) of your info.plist file(s), you can specify the filename(s)
  # with the info_plist_files parameter.  Remove only the # characters in the three lines below,
  # do not remove any spaces:
  #  - 'ios/Runner/Info-Debug.plist'
  #  - 'ios/Runner/Info-Release.plist'

2. Run the package

After adding your settings, run the following command in the terminal:

flutter pub run flutter_native_splash:create

When the package finishes running, your splash screen is ready.

To specify the YAML file location just add --path with the command in the terminal:

flutter pub run flutter_native_splash:create --path=path/to/my/file.yaml

3. Set up app initialization (optional)

By default, the splash screen will be removed when Flutter has drawn the first frame. If you would like the splash screen to remain while your app initializes, you can use the preserve() and remove() methods together. Pass the preserve() method the value returned from WidgetsFlutterBinding.ensureInitialized() to keep the splash on screen. Later, when your app has initialized, make a call to remove() to remove the splash screen.

import 'package:flutter_native_splash/flutter_native_splash.dart';

void main() {
  WidgetsBinding widgetsBinding = WidgetsFlutterBinding.ensureInitialized();
  FlutterNativeSplash.preserve(widgetsBinding: widgetsBinding);
  runApp(const MyApp());

// whenever your initialization is completed, remove the splash screen:

NOTE: If you do not need to use the preserve() and remove() methods, you can place the flutter_native_splash dependency in the dev_dependencies section of pubspec.yaml.

4. Support the package (optional)

If you find this package useful, you can support it for free by giving it a thumbs up at the top of this page. Here's another option to support the package:

Android 12+ Support

Android 12 has a new method of adding splash screens, which consists of a window background, icon, and the icon background. Note that a background image is not supported.

Be aware of the following considerations regarding these elements:

1: image parameter. By default, the launcher icon is used:

  • App icon without an icon background, as shown on the left: This should be 1152×1152 pixels, and fit within a circle 768 pixels in diameter.
  • App icon with an icon background, as shown on the right: This should be 960×960 pixels, and fit within a circle 640 pixels in diameter.

2: icon_background_color is optional, and is useful if you need more contrast between the icon and the window background.

3: One-third of the foreground is masked.

4: color the window background consists of a single opaque color.

PLEASE NOTE: The splash screen may not appear when you launch the app from Android Studio on API 31. However, it should appear when you launch by clicking on the launch icon in Android. This seems to be resolved in API 32+.

PLEASE NOTE: There are a number of reports that non-Google launchers do not display the launch image correctly. If the launch image does not display correctly, please try the Google launcher to confirm that this package is working.

PLEASE NOTE: The splash screen does not appear when you launch the app from a notification. Apparently this is the intended behavior on Android 12: core-splashscreen Icon not shown when cold launched from notification.

Flavor Support

If you have a project setup that contains multiple flavors or environments, and you created more than one flavor this would be a feature for you.

Instead of maintaining multiple files and copy/pasting images, you can now, using this tool, create different splash screens for different environments.


In order to use the new feature, and generate the desired splash images for you app, a couple of changes are required.

If you want to generate just one flavor and one file you would use either options as described in Step 1. But in order to setup the flavors, you will then be required to move all your setup values to the flutter_native_splash.yaml file, but with a prefix.

Let's assume for the rest of the setup that you have 3 different flavors, Production, Acceptance, Development.

First this you will need to do is to create a different setup file for all 3 flavors with a suffix like so:


You would setup those 3 files the same way as you would the one, but with different assets depending on which environment you would be generating. For example (Note: these are just examples, you can use whatever setup you need for your project that is already supported by the package):

# flutter_native_splash-development.yaml
  color: "#ffffff"
  image: assets/logo-development.png
  branding: assets/branding-development.png
  color_dark: "#121212"
  image_dark: assets/logo-development.png
  branding_dark: assets/branding-development.png

    image: assets/logo-development.png
    icon_background_color: "#ffffff"
    image_dark: assets/logo-development.png
    icon_background_color_dark: "#121212"

  web: false

# flutter_native_splash-acceptance.yaml
  color: "#ffffff"
  image: assets/logo-acceptance.png
  branding: assets/branding-acceptance.png
  color_dark: "#121212"
  image_dark: assets/logo-acceptance.png
  branding_dark: assets/branding-acceptance.png

    image: assets/logo-acceptance.png
    icon_background_color: "#ffffff"
    image_dark: assets/logo-acceptance.png
    icon_background_color_dark: "#121212"

  web: false

# flutter_native_splash-production.yaml
  color: "#ffffff"
  image: assets/logo-production.png
  branding: assets/branding-production.png
  color_dark: "#121212"
  image_dark: assets/logo-production.png
  branding_dark: assets/branding-production.png

    image: assets/logo-production.png
    icon_background_color: "#ffffff"
    image_dark: assets/logo-production.png
    icon_background_color_dark: "#121212"

  web: false

Great, now comes the fun part running the new command!

The new command is:

# If you have a flavor called production you would do this:
flutter pub run flutter_native_splash:create --flavor production

# For a flavor with a name staging you would provide it's name like so:
flutter pub run flutter_native_splash:create --flavor staging

# And if you have a local version for devs you could do that:
flutter pub run flutter_native_splash:create --flavor development

Android setup

You're done! No, really, Android doesn't need any additional setup.

Note: If it didn't work, please make sure that your flavors are named the same as your config files, otherwise the setup will not work.

iOS setup

iOS is a bit tricky, so hang tight, it might look scary but most of the steps are just a single click, explained as much as possible to lower the possibility of mistakes.

When you run the new command, you will need to open xCode and follow the steps bellow:


  • In order for this setup to work, you would already have 3 different schemes setup; production, acceptance and development.


  • Open the iOS Flutter project in Xcode (open the Runner.xcworkspace)
  • Find the newly created Storyboard files at the same location where the original is {project root}/ios/Runner/Base.lproj
  • Select all of them and drag and drop into Xcode, directly to the left hand side where the current LaunchScreen.storyboard is located already
  • After you drop your files there Xcode will ask you to link them, make sure you select 'Copy if needed'
  • This part is done, you have linked the newly created storyboards in your project.


Xcode still doesn't know how to use them, so we need to specify for all the current flavors (schemes) which file to use and to use that value inside the Info.plist file.

  • Open the iOS Flutter project in Xcode (open the Runner.xcworkspace)
  • Click the Runner project in the top left corner (usually the first item in the list)
  • In the middle part of the screen, on the left side, select the Runner target
  • On the top part of the screen select Build Settings
  • Make sure that 'All' and 'Combined' are selected
  • Next to 'Combine' you have a '+' button, press it and select 'Add User-Defined Setting'
  • Once you do that Xcode will create a new variable for you to name. Suggestion is to name it LAUNCH_SCREEN_STORYBOARD
  • Once you do that, you will have the option to define a specific name for each flavor (scheme) that you have defined in the project. Make sure that you input the exact name of the LaunchScreen.storyboard that was created by this tool
    • Example: If you have a flavor Development, there is a Storyboard created name LaunchScreenDevelopment.storyboard, please add that name (without the storyboard part) to the variable value next to the flavor value
  • After you finish with that, you need to update Info.plist file to link the newly created variable so that it's used correctly
  • Open the Info.plist file
  • Find the entry called 'Launch screen interface file base name'
  • The default value is 'LaunchScreen', change that to the variable name that you create previously. If you follow these steps exactly, it would be LAUNCH_SCREEN_STORYBOARD, so input this $(LAUNCH_SCREEN_STORYBOARD)
  • And your done!

Congrats you finished your setup for multiple flavors,


I got the error "A splash screen was provided to Flutter, but this is deprecated."

This message is not related to this package but is related to a change in how Flutter handles splash screens in Flutter 2.5. It is caused by having the following code in your android/app/src/main/AndroidManifest.xml, which was included by default in previous versions of Flutter:


The solution is to remove the above code. Note that this will also remove the fade effect between the native splash screen and your app.

Are animations/lottie/GIF images supported?

Not at this time. PRs are always welcome!

I got the error AAPT: error: style attribute 'android:attr/windowSplashScreenBackground' not found

This attribute is only found in Android 12, so if you are getting this error, it means your project is not fully set up for Android 12. Did you update your app's build configuration?

I see a flash of the wrong splash screen on iOS

This is caused by an iOS splash caching bug, which can be solved by uninstalling your app, powering off your device, power back on, and then try reinstalling.

I see a white screen between splash screen and app

  1. It may be caused by an iOS splash caching bug, which can be solved by uninstalling your app, powering off your device, power back on, and then try reinstalling.
  2. It may be caused by the delay due to initialization in your app. To solve this, put any initialization code in the removeAfter method.

Can I base light/dark mode on app settings?

No. This package creates a splash screen that is displayed before Flutter is loaded. Because of this, when the splash screen loads, internal app settings are not available to the splash screen. Unfortunately, this means that it is impossible to control light/dark settings of the splash from app settings.


If the splash screen was not updated correctly on iOS or if you experience a white screen before the splash screen, run flutter clean and recompile your app. If that does not solve the problem, delete your app, power down the device, power up the device, install and launch the app as per this StackOverflow thread.

This package modifies launch_background.xml and styles.xml files on Android, LaunchScreen.storyboard and Info.plist on iOS, and index.html on Web. If you have modified these files manually, this plugin may not work properly. Please open an issue if you find any bugs.

How it works


  • Your splash image will be resized to mdpi, hdpi, xhdpi, xxhdpi and xxxhdpi drawables.
  • An <item> tag containing a <bitmap> for your splash image drawable will be added in launch_background.xml
  • Background color will be added in colors.xml and referenced in launch_background.xml.
  • Code for full screen mode toggle will be added in styles.xml.
  • Dark mode variants are placed in drawable-night, values-night, etc. resource folders.


  • Your splash image will be resized to @3x and @2x images.
  • Color and image properties will be inserted in LaunchScreen.storyboard.
  • The background color is implemented by using a single-pixel png file and stretching it to fit the screen.
  • Code for hidden status bar toggle will be added in Info.plist.


  • A web/splash folder will be created for splash screen images and CSS files.
  • Your splash image will be resized to 1x, 2x, 3x, and 4x sizes and placed in web/splash/img.
  • The splash style sheet will be added to the app's web/index.html, as well as the HTML for the splash pictures.


This package was originally created by Henrique Arthur and it is currently maintained by Jon Hanson.

Bugs or Requests

If you encounter any problems feel free to open an issue. If you feel the library is missing a feature, please raise a ticket. Pull request are also welcome.

Use this package as a library

Depend on it

Run this command:

With Flutter:

 $ flutter pub add flutter_native_splash

This will add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):

  flutter_native_splash: ^2.2.19

Alternatively, your editor might support flutter pub get. Check the docs for your editor to learn more.

Import it

Now in your Dart code, you can use:

import 'package:flutter_native_splash/flutter_native_splash.dart';


import 'package:flutter/material.dart';
import 'package:flutter_native_splash/flutter_native_splash.dart';

void main() {
  WidgetsBinding widgetsBinding = WidgetsFlutterBinding.ensureInitialized();
  FlutterNativeSplash.preserve(widgetsBinding: widgetsBinding);
  runApp(const MyApp());

class MyApp extends StatelessWidget {
  const MyApp({super.key});

  // This widget is the root of your application.
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'Flutter Demo',
      theme: ThemeData(
        // This is the theme of your application.
        // Try running your application with "flutter run". You'll see the
        // application has a blue toolbar. Then, without quitting the app, try
        // changing the primarySwatch below to Colors.green and then invoke
        // "hot reload" (press "r" in the console where you ran "flutter run",
        // or simply save your changes to "hot reload" in a Flutter IDE).
        // Notice that the counter didn't reset back to zero; the application
        // is not restarted.
        primarySwatch: Colors.blue,
      home: const MyHomePage(title: 'Flutter Demo Home Page'),

class MyHomePage extends StatefulWidget {
  const MyHomePage({super.key, required this.title});

  // This widget is the home page of your application. It is stateful, meaning
  // that it has a State object (defined below) that contains fields that affect
  // how it looks.

  // This class is the configuration for the state. It holds the values (in this
  // case the title) provided by the parent (in this case the App widget) and
  // used by the build method of the State. Fields in a Widget subclass are
  // always marked "final".

  final String title;

  State<MyHomePage> createState() => _MyHomePageState();

class _MyHomePageState extends State<MyHomePage> {
  int _counter = 0;

  void _incrementCounter() {
    setState(() {
      // This call to setState tells the Flutter framework that something has
      // changed in this State, which causes it to rerun the build method below
      // so that the display can reflect the updated values. If we changed
      // _counter without calling setState(), then the build method would not be
      // called again, and so nothing would appear to happen.

  void initState() {

  void initialization() async {
    // This is where you can initialize the resources needed by your app while
    // the splash screen is displayed.  Remove the following example because
    // delaying the user experience is a bad design practice!
    // ignore_for_file: avoid_print
    print('ready in 3...');
    await Future.delayed(const Duration(seconds: 1));
    print('ready in 2...');
    await Future.delayed(const Duration(seconds: 1));
    print('ready in 1...');
    await Future.delayed(const Duration(seconds: 1));

  Widget build(BuildContext context) {
    // This method is rerun every time setState is called, for instance as done
    // by the _incrementCounter method above.
    // The Flutter framework has been optimized to make rerunning build methods
    // fast, so that you can just rebuild anything that needs updating rather
    // than having to individually change instances of widgets.
    return Scaffold(
      appBar: AppBar(
        // Here we take the value from the MyHomePage object that was created by
        // the App.build method, and use it to set our appbar title.
        title: Text(widget.title),
      body: Center(
        // Center is a layout widget. It takes a single child and positions it
        // in the middle of the parent.
        child: Column(
          // Column is also a layout widget. It takes a list of children and
          // arranges them vertically. By default, it sizes itself to fit its
          // children horizontally, and tries to be as tall as its parent.
          // Invoke "debug painting" (press "p" in the console, choose the
          // "Toggle Debug Paint" action from the Flutter Inspector in Android
          // Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
          // to see the wireframe for each widget.
          // Column has various properties to control how it sizes itself and
          // how it positions its children. Here we use mainAxisAlignment to
          // center the children vertically; the main axis here is the vertical
          // axis because Columns are vertical (the cross axis would be
          // horizontal).
          mainAxisAlignment: MainAxisAlignment.center,
          children: <Widget>[
            const Text(
              'You have pushed the button this many times:',
              style: Theme.of(context).textTheme.headlineMedium,
      floatingActionButton: FloatingActionButton(
        onPressed: _incrementCounter,
        tooltip: 'Increment',
        child: const Icon(Icons.add),
      ), // This trailing comma makes auto-formatting nicer for build methods.

Download Details:

Author: jonbhanson
Download Link: Download The Source Code
Official Website: https://github.com/jonbhanson/flutter_native_splash 
License: MIT license

#flutter #ios #android 

Autumn  Blick

Autumn Blick


Top Android Projects with Source Code

Android Projects with Source Code – Your entry pass into the world of Android

Hello Everyone, welcome to this article, which is going to be really important to all those who’re in dilemma for their projects and the project submissions. This article is also going to help you if you’re an enthusiast looking forward to explore and enhance your Android skills. The reason is that we’re here to provide you the best ideas of Android Project with source code that you can choose as per your choice.

These project ideas are simple suggestions to help you deal with the difficulty of choosing the correct projects. In this article, we’ll see the project ideas from beginners level and later we’ll move on to intermediate to advance.

top android projects with source code

Android Projects with Source Code

Before working on real-time projects, it is recommended to create a sample hello world project in android studio and get a flavor of project creation as well as execution: Create your first android project

Android Projects for beginners

1. Calculator

build a simple calculator app in android studio source code

Android Project: A calculator will be an easy application if you have just learned Android and coding for Java. This Application will simply take the input values and the operation to be performed from the users. After taking the input it’ll return the results to them on the screen. This is a really easy application and doesn’t need use of any particular package.

To make a calculator you’d need Android IDE, Kotlin/Java for coding, and for layout of your application, you’d need XML or JSON. For this, coding would be the same as that in any language, but in the form of an application. Not to forget creating a calculator initially will increase your logical thinking.

Once the user installs the calculator, they’re ready to use it even without the internet. They’ll enter the values, and the application will show them the value after performing the given operations on the entered operands.

Source Code: Simple Calculator Project

2. A Reminder App

Android Project: This is a good project for beginners. A Reminder App can help you set reminders for different events that you have throughout the day. It’ll help you stay updated with all your tasks for the day. It can be useful for all those who are not so good at organizing their plans and forget easily. This would be a simple application just whose task would be just to remind you of something at a particular time.

To make a Reminder App you need to code in Kotlin/Java and design the layout using XML or JSON. For the functionality of the app, you’d need to make use of AlarmManager Class and Notifications in Android.

In this, the user would be able to set reminders and time in the application. Users can schedule reminders that would remind them to drink water again and again throughout the day. Or to remind them of their medications.

3. Quiz Application

Android Project: Another beginner’s level project Idea can be a Quiz Application in android. Here you can provide the users with Quiz on various general knowledge topics. These practices will ensure that you’re able to set the layouts properly and slowly increase your pace of learning the Android application development. In this you’ll learn to use various Layout components at the same time understanding them better.

To make a quiz application you’ll need to code in Java and set layouts using xml or java whichever you prefer. You can also use JSON for the layouts whichever preferable.

In the app, questions would be asked and answers would be shown as multiple choices. The user selects the answer and gets shown on the screen if the answers are correct. In the end the final marks would be shown to the users.

4. Simple Tic-Tac-Toe

android project tic tac toe game app

Android Project: Tic-Tac-Toe is a nice game, I guess most of you all are well aware of it. This will be a game for two players. In this android game, users would be putting X and O in the given 9 parts of a box one by one. The first player to arrange X or O in an adjacent line of three wins.

To build this game, you’d need Java and XML for Android Studio. And simply apply the logic on that. This game will have a set of three matches. So, it’ll also have a scoreboard. This scoreboard will show the final result at the end of one complete set.

Upon entering the game they’ll enter their names. And that’s when the game begins. They’ll touch one of the empty boxes present there and get their turn one by one. At the end of the game, there would be a winner declared.

Source Code: Tic Tac Toe Game Project

5. Stopwatch

Android Project: A stopwatch is another simple android project idea that will work the same as a normal handheld timepiece that measures the time elapsed between its activation and deactivation. This application will have three buttons that are: start, stop, and hold.

This application would need to use Java and XML. For this application, we need to set the timer properly as it is initially set to milliseconds, and that should be converted to minutes and then hours properly. The users can use this application and all they’d need to do is, start the stopwatch and then stop it when they are done. They can also pause the timer and continue it again when they like.

6. To Do App

Android Project: This is another very simple project idea for you as a beginner. This application as the name suggests will be a To-Do list holding app. It’ll store the users schedules and their upcoming meetings or events. In this application, users will be enabled to write their important notes as well. To make it safe, provide a login page before the user can access it.

So, this app will have a login page, sign-up page, logout system, and the area to write their tasks, events, or important notes. You can build it in android studio using Java and XML at ease. Using XML you can build the user interface as user-friendly as you can. And to store the users’ data, you can use SQLite enabling the users to even delete the data permanently.

Now for users, they will sign up and get access to the write section. Here the users can note down the things and store them permanently. Users can also alter the data or delete them. Finally, they can logout and also, login again and again whenever they like.

7. Roman to decimal converter

Android Project: This app is aimed at the conversion of Roman numbers to their significant decimal number. It’ll help to check the meaning of the roman numbers. Moreover, it will be easy to develop and will help you get your hands on coding and Android.

You need to use Android Studio, Java for coding and XML for interface. The application will take input from the users and convert them to decimal. Once it converts the Roman no. into decimal, it will show the results on the screen.

The users are supposed to just enter the Roman Number and they’ll get the decimal values on the screen. This can be a good android project for final year students.

8. Virtual Dice Roller

Android Project: Well, coming to this part that is Virtual Dice or a random no. generator. It is another simple but interesting app for computer science students. The only task that it would need to do would be to generate a number randomly. This can help people who’re often confused between two or more things.

Using a simple random number generator you can actually create something as good as this. All you’d need to do is get you hands-on OnClick listeners. And a good layout would be cherry on the cake.

The user’s task would be to set the range of the numbers and then click on the roll button. And the app will show them a randomly generated number. Isn’t it interesting ? Try soon!

9. A Scientific Calculator App

Android Project: This application is very important for you as a beginner as it will let you use your logical thinking and improve your programming skills. This is a scientific calculator that will help the users to do various calculations at ease.

To make this application you’d need to use Android Studio. Here you’d need to use arithmetic logics for the calculations. The user would need to give input to the application that will be in terms of numbers. After that, the user will give the operator as an input. Then the Application will calculate and generate the result on the user screen.

10. SMS App

Android Project: An SMS app is another easy but effective idea. It will let you send the SMS to various no. just in the same way as you use the default messaging application in your phone. This project will help you with better understanding of SMSManager in Android.

For this application, you would need to implement Java class SMSManager in Android. For the Layout you can use XML or JSON. Implementing SMSManager into the app is an easy task, so you would love this.

The user would be provided with the facility to text to whichever number they wish also, they’d be able to choose the numbers from the contact list. Another thing would be the Textbox, where they’ll enter their message. Once the message is entered they can happily click on the send button.

#android tutorials #android application final year project #android mini projects #android project for beginners #android project ideas #android project ideas for beginners #android projects #android projects for students #android projects with source code #android topics list #intermediate android projects #real-time android projects

Aayush Singh

Aayush Singh


Keras Tutorial For Beginners | What is Keras | Keras Sequential Model | Keras Training

In this video on Keras, you will understand what is Keras and why do we need it, how to compose different models in Keras like the Sequential model and functional model, and later on how to define the inputs, how to connect layers over, and finally hands-on demo.
Why Keras is important

Keras is an Open Source Neural Network library written in Python that runs on top of Theano or Tensorflow. It is designed to be modular, fast, and easy to use. Keras is very quick to make a network model. If you want to make a simple network model with a few lines, Keras can help you with that.

Call Our Course Advisors IND: +91-7022374614 US: 1-800-216-8930 (Toll-Free) sales@intellipaat.com
Link: https://www.youtube.com/watch?v=nS1J-2uoKto

#keras tutorial for beginners #what is keras #keras sequential model #keras training

Diego  Elizondo

Diego Elizondo


5 Formas De Realizar análisis De Sentimiento En Python

Ya sea que hables de Twitter, Goodreads o Amazon, difícilmente existe un espacio digital que no esté saturado con las opiniones de la gente. En el mundo actual, es fundamental que las organizaciones profundicen en estas opiniones y obtengan información sobre sus productos o servicios. Sin embargo, estos datos existen en cantidades tan asombrosas que medirlos manualmente es una tarea casi imposible. Aquí es donde entra en juego otra ventaja de la ciencia de datos  : el análisis de sentimientos . En este artículo, exploraremos qué abarca el análisis de sentimientos y las diversas formas de implementarlo en Python.

¿Qué es el análisis de sentimiento?

El análisis de sentimientos es un caso de uso del procesamiento del lenguaje natural (NLP) y se incluye en la categoría de clasificación de texto . En pocas palabras, el análisis de sentimientos implica clasificar un texto en varios sentimientos, como positivo o negativo, feliz, triste o neutral, etc. Por lo tanto, el objetivo final del análisis de sentimientos es descifrar el estado de ánimo, la emoción o el sentimiento subyacente de un texto. Esto también se conoce como Minería de Opinión .

Veamos cómo una búsqueda rápida en Google define el análisis de sentimiento:

definición de análisis de sentimiento

Obtener información y tomar decisiones con el análisis de sentimientos

Bueno, a estas alturas supongo que estamos algo acostumbrados a lo que es el análisis de sentimientos. Pero, ¿cuál es su importancia y cómo se benefician las organizaciones de ella? Intentemos explorar lo mismo con un ejemplo. Suponga que inicia una empresa que vende perfumes en una plataforma en línea. Pones una amplia gama de fragancias y pronto los clientes comienzan a llegar. Después de un tiempo, decides cambiar la estrategia de precios de los perfumes: planeas aumentar los precios de las fragancias populares y al mismo tiempo ofrecer descuentos en las impopulares. . Ahora, para determinar qué fragancias son populares, comienza a revisar las reseñas de los clientes de todas las fragancias. ¡Pero estás atascado! Son tantos que no puedes pasar por todos ellos en una sola vida. Aquí es donde el análisis de sentimientos puede sacarte del pozo.

Simplemente reúne todas las reseñas en un solo lugar y aplica un análisis de sentimiento. La siguiente es una representación esquemática del análisis de sentimientos sobre las reseñas de tres fragancias de perfumes: lavanda, rosa y limón. (Tenga en cuenta que estas revisiones pueden tener errores ortográficos, gramaticales y de puntuación como en los escenarios del mundo real)

análisis de los sentimientos

A partir de estos resultados, podemos ver claramente que:

Fragrance-1 (Lavender) tiene críticas muy positivas por parte de los clientes, lo que indica que su empresa puede aumentar sus precios dada su popularidad.

Fragrance-2 (Rose) tiene una perspectiva neutral entre el cliente, lo que significa que su empresa no debe cambiar su precio .

Fragrance-3 (Lemon) tiene un sentimiento general negativo asociado con él; por lo tanto, su empresa debería considerar ofrecer un descuento para equilibrar la balanza.

Este fue solo un ejemplo simple de cómo el análisis de sentimientos puede ayudarlo a obtener información sobre sus productos/servicios y ayudar a su organización a tomar decisiones.

Casos de uso de análisis de opinión

Acabamos de ver cómo el análisis de sentimientos puede empoderar a las organizaciones con conocimientos que pueden ayudarlas a tomar decisiones basadas en datos. Ahora, echemos un vistazo a algunos casos de uso más del análisis de sentimientos.

  1. Monitoreo de redes sociales para la gestión de marcas: las marcas pueden usar el análisis de sentimientos para medir la perspectiva pública de su marca. Por ejemplo, una empresa puede recopilar todos los Tweets con la mención o etiqueta de la empresa y realizar un análisis de opinión para conocer la perspectiva pública de la empresa.
  2. Análisis de productos/servicios: las marcas/organizaciones pueden realizar análisis de opinión sobre las reseñas de los clientes para ver qué tan bien se está desempeñando un producto o servicio en el mercado y tomar decisiones futuras en consecuencia.
  3. Predicción del precio de las acciones: predecir si las acciones de una empresa subirán o bajarán es crucial para los inversores. Se puede determinar lo mismo realizando un análisis de sentimiento en los titulares de noticias de los artículos que contienen el nombre de la empresa. Si los titulares de noticias relacionados con una organización en particular tienen un sentimiento positivo, los precios de sus acciones deberían subir y viceversa.

Formas de realizar análisis de sentimiento en Python

Python es una de las herramientas más poderosas cuando se trata de realizar tareas de ciencia de datos: ofrece una multitud de formas de realizar  análisis de sentimientos . Los más populares se enumeran aquí:

  1. Usar blob de texto
  2. usando vader
  3. Uso de modelos basados ​​en vectorización de bolsa de palabras
  4. Uso de modelos basados ​​en LSTM
  5. Uso de modelos basados ​​en transformadores

Profundicemos en ellos uno por uno.

Nota: A los efectos de las demostraciones de los métodos 3 y 4 (Uso de modelos basados ​​en vectorización de bolsa de palabras y uso de modelos basados ​​en LSTM) , se ha utilizado el análisis de sentimientos . Comprende más de 5000 fragmentos de texto etiquetados como positivos, negativos o neutrales. El conjunto de datos se encuentra bajo la licencia Creative Commons.

Usar blob de texto

Text Blob es una biblioteca de Python para el procesamiento del lenguaje natural. Usar Text Blob para el análisis de sentimientos es bastante simple. Toma texto como entrada y puede devolver polaridad y subjetividad como salidas.

La polaridad determina el sentimiento del texto. Sus valores se encuentran en [-1,1] donde -1 denota un sentimiento muy negativo y 1 denota un sentimiento muy positivo.

La subjetividad determina si una entrada de texto es información objetiva o una opinión personal. Su valor se encuentra entre [0,1], donde un valor más cercano a 0 denota una información fáctica y un valor más cercano a 1 denota una opinión personal.

Instalación :

pip install textblob

Importación de blob de texto:

from textblob import TextBlob

Implementación de código para el análisis de sentimiento usando Text Blob:

Escribir código para el análisis de sentimientos usando TextBlob es bastante simple. Simplemente importe el objeto TextBlob y pase el texto a analizar con los atributos apropiados de la siguiente manera:

from textblob import TextBlob
text_1 = "The movie was so awesome."
text_2 = "The food here tastes terrible."#Determining the Polarity 
p_1 = TextBlob(text_1).sentiment.polarity
p_2 = TextBlob(text_2).sentiment.polarity#Determining the Subjectivity
s_1 = TextBlob(text_1).sentiment.subjectivity
s_2 = TextBlob(text_2).sentiment.subjectivityprint("Polarity of Text 1 is", p_1)
print("Polarity of Text 2 is", p_2)
print("Subjectivity of Text 1 is", s_1)
print("Subjectivity of Text 2 is", s_2)


Polarity of Text 1 is 1.0 
Polarity of Text 2 is -1.0 
Subjectivity of Text 1 is 1.0 
Subjectivity of Text 2 is 1.0

Usando VADER

VADER (Valence Aware Dictionary and sEntiment Reasoner) es un analizador de sentimientos basado en reglas que ha sido entrenado en texto de redes sociales. Al igual que Text Blob, su uso en Python es bastante simple. Veremos su uso en la implementación de código con un ejemplo dentro de un rato.


pip install vaderSentiment

Importación de la clase SentimentIntensityAnalyzer de Vader:

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

Código para análisis de sentimiento usando Vader:

Primero, necesitamos crear un objeto de la clase SentimentIntensityAnalyzer; luego necesitamos pasar el texto a la función polarity_scores() del objeto de la siguiente manera:

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
sentiment = SentimentIntensityAnalyzer()
text_1 = "The book was a perfect balance between wrtiting style and plot."
text_2 =  "The pizza tastes terrible."
sent_1 = sentiment.polarity_scores(text_1)
sent_2 = sentiment.polarity_scores(text_2)
print("Sentiment of text 1:", sent_1)
print("Sentiment of text 2:", sent_2)

Salida :

Sentiment of text 1: {'neg': 0.0, 'neu': 0.73, 'pos': 0.27, 'compound': 0.5719} 
Sentiment of text 2: {'neg': 0.508, 'neu': 0.492, 'pos': 0.0, 'compound': -0.4767}

Como podemos ver, un objeto VaderSentiment devuelve un diccionario de puntajes de sentimiento para el texto a analizar.

Uso de modelos basados ​​en vectorización de bolsa de palabras

En los dos enfoques discutidos hasta ahora, es decir, Text Blob y Vader, simplemente hemos usado bibliotecas de Python para realizar análisis de sentimiento. Ahora discutiremos un enfoque en el que entrenaremos nuestro propio modelo para la tarea. Los pasos necesarios para realizar el análisis de sentimiento mediante el método de vectorización Bolsa de palabras son los siguientes:

  1. Preprocesar el texto de los datos de entrenamiento (el preprocesamiento del texto implica la normalización, la tokenización, la eliminación de palabras vacías y la derivación/lematización).
  2. Cree una bolsa de palabras para los datos de texto preprocesados ​​utilizando el método de vectorización de conteo o vectorización TF-IDF.
  3. Entrene un modelo de clasificación adecuado en los datos procesados ​​para la clasificación de sentimientos.

Código para análisis de sentimiento utilizando el enfoque de vectorización de bolsa de palabras:

Para construir un modelo de análisis de sentimientos utilizando el enfoque de vectorización BOW, necesitamos un conjunto de datos etiquetado. Como se indicó anteriormente, el conjunto de datos utilizado para esta demostración se obtuvo de Kaggle. Simplemente hemos usado el vectorizador de conteo de sklearn para crear el ARCO. Posteriormente, entrenamos un clasificador Multinomial Naive Bayes, para el cual se obtuvo una puntuación de precisión de 0,84.

El conjunto de datos se puede obtener desde aquí .

#Loading the Dataset
import pandas as pd
data = pd.read_csv('Finance_data.csv')
#Pre-Prcoessing and Bag of Word Vectorization using Count Vectorizer
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import RegexpTokenizer
token = RegexpTokenizer(r'[a-zA-Z0-9]+')
cv = CountVectorizer(stop_words='english',ngram_range = (1,1),tokenizer = token.tokenize)
text_counts = cv.fit_transform(data['sentences'])
#Splitting the data into trainig and testing
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(text_counts, data['feedback'], test_size=0.25, random_state=5)
#Training the model
from sklearn.naive_bayes import MultinomialNB
MNB = MultinomialNB()
MNB.fit(X_train, Y_train)
#Caluclating the accuracy score of the model
from sklearn import metrics
predicted = MNB.predict(X_test)
accuracy_score = metrics.accuracy_score(predicted, Y_test)
print("Accuracuy Score: ",accuracy_score)

Salida :

Accuracuy Score:  0.9111675126903553

El clasificador entrenado se puede usar para predecir el sentimiento de cualquier entrada de texto dada.

Uso de modelos basados ​​en LSTM

Aunque pudimos obtener una puntuación de precisión decente con el método de vectorización Bolsa de palabras, es posible que no produzca los mismos resultados cuando se trata de conjuntos de datos más grandes. Esto da lugar a la necesidad de emplear modelos basados ​​en aprendizaje profundo para el entrenamiento del modelo de análisis de sentimiento.

Para las tareas de NLP, generalmente usamos modelos basados ​​en RNN, ya que están diseñados para tratar datos secuenciales. Aquí, entrenaremos un modelo LSTM (memoria a largo plazo) usando TensorFlow con Keras . Los pasos para realizar un análisis de sentimiento utilizando modelos basados ​​en LSTM son los siguientes:

  1. Preprocesar el texto de los datos de entrenamiento (el preprocesamiento del texto implica la normalización, la tokenización, la eliminación de palabras vacías y la derivación/lematización).
  2. Importe Tokenizer desde Keras.preprocessing.text y cree su objeto. Ajuste el tokenizador en todo el texto de entrenamiento (para que el tokenizador se entrene en el vocabulario de datos de entrenamiento). Incrustaciones de texto generadas usando el método texts_to_sequence() del Tokenizer y almacenarlas después de rellenarlas con la misma longitud. (Las incrustaciones son representaciones numéricas/vectorizadas de texto. Dado que no podemos alimentar nuestro modelo con los datos de texto directamente, primero debemos convertirlos en incrustaciones)
  3. Después de haber generado las incrustaciones, estamos listos para construir el modelo. Construimos el modelo usando TensorFlow: le agregamos Input, LSTM y capas densas. Agregue abandonos y ajuste los hiperparámetros para obtener una puntuación de precisión decente. En general, tendemos a usar las funciones de activación ReLU o LeakyReLU en las capas internas de los modelos LSTM, ya que evita el problema del gradiente de fuga. En la capa de salida, usamos la función de activación Softmax o Sigmoid.

Código para el análisis de sentimiento utilizando un enfoque de modelo basado en LSTM:

Aquí, hemos utilizado el mismo conjunto de datos que usamos en el caso del enfoque BOW. Se obtuvo una precisión de entrenamiento de 0,90.

#Importing necessary libraries
import nltk
import pandas as pd
from textblob import Word
from nltk.corpus import stopwords
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
from keras.models import Sequential
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Dense, Embedding, LSTM, SpatialDropout1D
from sklearn.model_selection import train_test_split 
#Loading the dataset
data = pd.read_csv('Finance_data.csv')
#Pre-Processing the text 
def cleaning(df, stop_words):
    df['sentences'] = df['sentences'].apply(lambda x: ' '.join(x.lower() for x in x.split()))
    # Replacing the digits/numbers
    df['sentences'] = df['sentences'].str.replace('d', '')
    # Removing stop words
    df['sentences'] = df['sentences'].apply(lambda x: ' '.join(x for x in x.split() if x not in stop_words))
    # Lemmatization
    df['sentences'] = df['sentences'].apply(lambda x: ' '.join([Word(x).lemmatize() for x in x.split()]))
    return df
stop_words = stopwords.words('english')
data_cleaned = cleaning(data, stop_words)
#Generating Embeddings using tokenizer
tokenizer = Tokenizer(num_words=500, split=' ') 
X = tokenizer.texts_to_sequences(data_cleaned['verified_reviews'].values)
X = pad_sequences(X)
#Model Building
model = Sequential()
model.add(Embedding(500, 120, input_length = X.shape[1]))
model.add(LSTM(704, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(352, activation='LeakyReLU'))
model.add(Dense(3, activation='softmax'))
model.compile(loss = 'categorical_crossentropy', optimizer='adam', metrics = ['accuracy'])
#Model Training
model.fit(X_train, y_train, epochs = 20, batch_size=32, verbose =1)
#Model Testing

Uso de modelos basados ​​en transformadores

Los modelos basados ​​en transformadores son una de las técnicas de procesamiento del lenguaje natural más avanzadas. Siguen una arquitectura basada en Codificador-Decodificador y emplean los conceptos de autoatención para producir resultados impresionantes. Aunque siempre se puede construir un modelo de transformador desde cero, es una tarea bastante tediosa. Por lo tanto, podemos usar modelos de transformadores preentrenados disponibles en Hugging Face . Hugging Face es una comunidad de IA de código abierto que ofrece una multitud de modelos preentrenados para aplicaciones de PNL. Estos modelos se pueden usar como tales o se pueden ajustar para tareas específicas.


pip install transformers

Importación de la clase SentimentIntensityAnalyzer de Vader:

import transformers

Código para análisis de sentimiento usando modelos basados ​​en transformadores:

Para realizar cualquier tarea usando transformadores, primero debemos importar la función de canalización desde los transformadores. Luego, se crea un objeto de la función de canalización y se pasa como argumento la tarea a realizar (es decir, análisis de sentimiento en nuestro caso). También podemos especificar el modelo que necesitamos usar para realizar la tarea. Aquí, dado que no hemos mencionado el modelo que se usará, el modo destilería-base-uncased-finetuned-sst-2-English se usa de forma predeterminada para el análisis de sentimiento. Puede consultar la lista de tareas y modelos disponibles aquí .

from transformers import pipeline
sentiment_pipeline = pipeline("sentiment-analysis")
data = ["It was the best of times.", "t was the worst of times."]
sentiment_pipeline(data)Output:[{'label': 'POSITIVE', 'score': 0.999457061290741},  {'label': 'NEGATIVE', 'score': 0.9987301230430603}]


En esta era en la que los usuarios pueden expresar sus puntos de vista sin esfuerzo y los datos se generan de manera superflua en fracciones de segundos, obtener información de dichos datos es vital para que las organizaciones tomen decisiones eficientes, ¡y el análisis de sentimientos demuestra ser la pieza faltante del rompecabezas!

Hasta ahora hemos cubierto con gran detalle qué implica exactamente el análisis de sentimientos y los diversos métodos que se pueden usar para realizarlo en Python. Pero estas fueron solo algunas demostraciones rudimentarias: seguramente debe seguir adelante y jugar con los modelos y probarlos con sus propios datos.

Fuente: https://www.analyticsvidhya.com/blog/2022/07/sentiment-analysis-using-python/