1598110560
For the past year, due to the need of distributed transaction monitoring and root cause analysis in a complex distributed micro-service environment, we introduced Jaeger framework to help us tackle the problem. Since our platform is being used by multiple tenants, we had to take a decision on how we would implement the multi-tenancy Jaeger with Elasticsearch as backend.
This is a practical exercise on how to setup Jaeger with Elasticsearch to support multiple tenants. But first, you should read the following article Jaeger and multitenancy which talks about various multi-tenancy options with Jaeger.
We are building and running a platform based on Kubernetes, which allows our customers to build and deploy their own applications using our platform, thus the specific requirements when it comes to tracing data:
After going through enough material from different sources to have a clear picture, I decided on the following solution which consists of:
#multitenancy #kubernetes #helm #jaeger #elasticsearch
1656151740
Flutter Console Coverage Test
This small dart tools is used to generate Flutter Coverage Test report to console
Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):
dev_dependencies:
test_cov_console: ^0.2.2
flutter pub get
Running "flutter pub get" in coverage... 0.5s
flutter test --coverage
00:02 +1: All tests passed!
flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
print_cov_constants.dart | 0.00 | 0.00 | 0.00 | no unit testing|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE> The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...> A list of contains string for files without unit testing
to be excluded from report
-l, --line It will print Lines & Uncovered Lines only
Branch & Functions coverage percentage will not be printed
-i, --ignore It will not print any file without unit testing
-m, --multi Report from multiple lcov.info files
-c, --csv Output to CSV file
-o, --output=<CSV-FILE> Full path of output CSV file
If not given, "coverage/test_cov_console.csv" will be used
-t, --total Print only the total coverage
Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM> Print only the whether total coverage is passed MINIMUM value or not
If the value >= MINIMUM, it will print PASSED, otherwise FAILED
Note: it will ignore all other option (if any), except -m
-h, --help Show this help
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
flutter pub run test_cov_console -c --output=coverage/test_coverage.csv
#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""
You can install the package from the command line:
dart pub global activate test_cov_console
The package has the following executables:
$ test_cov_console
Run this command:
With Dart:
$ dart pub add test_cov_console
With Flutter:
$ flutter pub add test_cov_console
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
test_cov_console: ^0.2.2
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:test_cov_console/test_cov_console.dart';
example/lib/main.dart
import 'package:flutter/material.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
// This is the theme of your application.
//
// Try running your application with "flutter run". You'll see the
// application has a blue toolbar. Then, without quitting the app, try
// changing the primarySwatch below to Colors.green and then invoke
// "hot reload" (press "r" in the console where you ran "flutter run",
// or simply save your changes to "hot reload" in a Flutter IDE).
// Notice that the counter didn't reset back to zero; the application
// is not restarted.
primarySwatch: Colors.blue,
// This makes the visual density adapt to the platform that you run
// the app on. For desktop platforms, the controls will be smaller and
// closer together (more dense) than on mobile platforms.
visualDensity: VisualDensity.adaptivePlatformDensity,
),
home: MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
MyHomePage({Key? key, required this.title}) : super(key: key);
// This widget is the home page of your application. It is stateful, meaning
// that it has a State object (defined below) that contains fields that affect
// how it looks.
// This class is the configuration for the state. It holds the values (in this
// case the title) provided by the parent (in this case the App widget) and
// used by the build method of the State. Fields in a Widget subclass are
// always marked "final".
final String title;
@override
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
// This call to setState tells the Flutter framework that something has
// changed in this State, which causes it to rerun the build method below
// so that the display can reflect the updated values. If we changed
// _counter without calling setState(), then the build method would not be
// called again, and so nothing would appear to happen.
_counter++;
});
}
@override
Widget build(BuildContext context) {
// This method is rerun every time setState is called, for instance as done
// by the _incrementCounter method above.
//
// The Flutter framework has been optimized to make rerunning build methods
// fast, so that you can just rebuild anything that needs updating rather
// than having to individually change instances of widgets.
return Scaffold(
appBar: AppBar(
// Here we take the value from the MyHomePage object that was created by
// the App.build method, and use it to set our appbar title.
title: Text(widget.title),
),
body: Center(
// Center is a layout widget. It takes a single child and positions it
// in the middle of the parent.
child: Column(
// Column is also a layout widget. It takes a list of children and
// arranges them vertically. By default, it sizes itself to fit its
// children horizontally, and tries to be as tall as its parent.
//
// Invoke "debug painting" (press "p" in the console, choose the
// "Toggle Debug Paint" action from the Flutter Inspector in Android
// Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
// to see the wireframe for each widget.
//
// Column has various properties to control how it sizes itself and
// how it positions its children. Here we use mainAxisAlignment to
// center the children vertically; the main axis here is the vertical
// axis because Columns are vertical (the cross axis would be
// horizontal).
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
'You have pushed the button this many times:',
),
Text(
'$_counter',
style: Theme.of(context).textTheme.headline4,
),
],
),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer for build methods.
);
}
}
Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console
License: BSD-3-Clause license
1598110560
For the past year, due to the need of distributed transaction monitoring and root cause analysis in a complex distributed micro-service environment, we introduced Jaeger framework to help us tackle the problem. Since our platform is being used by multiple tenants, we had to take a decision on how we would implement the multi-tenancy Jaeger with Elasticsearch as backend.
This is a practical exercise on how to setup Jaeger with Elasticsearch to support multiple tenants. But first, you should read the following article Jaeger and multitenancy which talks about various multi-tenancy options with Jaeger.
We are building and running a platform based on Kubernetes, which allows our customers to build and deploy their own applications using our platform, thus the specific requirements when it comes to tracing data:
After going through enough material from different sources to have a clear picture, I decided on the following solution which consists of:
#multitenancy #kubernetes #helm #jaeger #elasticsearch
1598155740
In 2016 I wrote an Article about Elasticsearch Backup, it had and still has quite good interests from people. I decided to start a new series of articles with the Backup topic as the main argument.
The old article covered Snapshot & Restore functionalities based on Elasticsearch 2.4.x and the upcoming version, the 5.0. As it was 4 years ago I choose to refresh this tutorial and making it the first of a series of more.
I will prepare a small article on how to use the snapshot & restore functionality with different cloud-provider. This article is based on Elasticsearch 7.x, it doesn’t mean it couldn’t work on older versions but I focused on the latest one.
Elasticsearch has a smart solution to backup single indices or entire clusters to remote shared filesystem or S3 or HDFS. The snapshot ES creates does not so resource consuming and is relatively small.
The idea behind these snapshots is that they are not “archive” in a strict sense, these snapshots can only be read by a version of Elasticsearch that is capable to read the index version stored inside the snapshot.
So you can follow this quick scheme if you want to restore ES snapshots :
Snapshots of indices created with ES 1.x cannot be restored to 5.x or 6.x, snapshots of indices created in 2.x cannot be restored to 6.x or 7.x, and snapshots of indices created in 5.x cannot be restored to 7.x or 8.x.
#elasticsearch-snapshot #elasticsearch-plugins #elasticsearch #backup #elasticsearch-backup #aws
1661842560
什麼是 Docker Compose?
Compose是一個用於定義和運行多容器 Docker 應用程序的工具。使用 Compose,您可以使用 YAML 文件來配置應用程序的服務。然後,使用一個命令,您可以從您的配置中創建並啟動所有服務。
為什麼使用 Elasticsearch 作為存儲後端?
在生產策略中,建議使用持久存儲後端。請記住,使用內存存儲組件(即 All-in-One Jaeger 映像)是為本地測試而設計的。
讓我們更新我們的docker-compose文件,看看我們如何集成Jaeger 以使用 Elasticsearch。
如前所述,您的應用程序必須先進行檢測,然後才能將跟踪數據發送到 Jaeger 後端。因此,我們將繼續使用演示應用程序(Hot ROD)。
如何使用 Docker Compose 部署 Jaeger & HotROD & Elasticsearch
創建一個名為的新文件docker-compose.yml
將其複制並粘貼到文件中:
version: "3"
services:
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:7.9.3
networks:
- elastic-jaeger
ports:
- "127.0.0.1:9200:9200"
- "127.0.0.1:9300:9300"
restart: on-failure
environment:
- cluster.name=jaeger-cluster
- discovery.type=single-node
- http.host=0.0.0.0
- transport.host=127.0.0.1
- ES_JAVA_OPTS=-Xms512m -Xmx512m
- xpack.security.enabled=false
volumes:
- esdata:/usr/share/elasticsearch/data
jaeger-collector:
image: jaegertracing/jaeger-collector
ports:
- "14269:14269"
- "14268:14268"
- "14267:14267"
- "14250:14250"
- "9411:9411"
networks:
- elastic-jaeger
restart: on-failure
environment:
- SPAN_STORAGE_TYPE=elasticsearch
command: [
"--es.server-urls=http://elasticsearch:9200",
"--es.num-shards=1",
"--es.num-replicas=0",
"--log-level=error"
]
depends_on:
- elasticsearch
jaeger-agent:
image: jaegertracing/jaeger-agent
hostname: jaeger-agent
command: ["--reporter.grpc.host-port=jaeger-collector:14250"]
ports:
- "5775:5775/udp"
- "6831:6831/udp"
- "6832:6832/udp"
- "5778:5778"
networks:
- elastic-jaeger
restart: on-failure
environment:
- SPAN_STORAGE_TYPE=elasticsearch
depends_on:
- jaeger-collector
jaeger-query:
image: jaegertracing/jaeger-query
environment:
- SPAN_STORAGE_TYPE=elasticsearch
- no_proxy=localhost
ports:
- "16686:16686"
- "16687:16687"
networks:
- elastic-jaeger
restart: on-failure
command: [
"--es.server-urls=http://elasticsearch:9200",
"--span-storage.type=elasticsearch",
"--log-level=debug"
]
depends_on:
- jaeger-agent
hotrod:
image: jaegertracing/example-hotrod:latest
ports:
- "8080:8080"
command: ["all"]
environment:
- JAEGER_AGENT_HOST=jaeger-agent
# Note: if your application is using Node.js Jaeger Client, you need port 6832,
# unless issue https://github.com/jaegertracing/jaeger/issues/1596 is resolved.
- JAEGER_AGENT_PORT=6831
networks:
- elastic-jaeger
depends_on:
- jaeger
volumes:
esdata:
driver: local
networks:
elastic-jaeger:
driver: bridge
此docker-compose.yml文件部署:
啟動所有服務:docker-compose up
注意:最初我在讓它工作時遇到了一些錯誤,但這個stackoverflow帖子解決了它。
所有容器都運行後,您可以通過鍵入以下內容訪問 Elasticsearch 集群:
curl -u elastic:changeme localhost:9200
{
"name" : "37c3e1d2ed3b",
"cluster_name" : "jaeger-cluster",
"cluster_uuid" : "v0r0tQKFTz-W_65FgX5VfQ",
"version" : {
"number" : "7.9.3",
"build_flavor" : "default",
"build_type" : "docker",
"build_hash" : "c4138e51121ef06a6404866cddc601906fe5c868",
"build_date" : "2020-10-16T10:36:16.141335Z",
"build_snapshot" : false,
"lucene_version" : "8.6.2",
"minimum_wire_compatibility_version" : "6.8.0",
"minimum_index_compatibility_version" : "6.0.0-beta1"
},
"tagline" : "You Know, for Search"
}
通過單擊任何按鈕向演示應用程序 (HotROD) 應用程序發送一些用戶請求。
再次運行該命令幾次以查看跟踪是否進入了 Elasticsearch 集群。
集群中所有索引的列表
curl -u "elastic:changeme" -X GET 'http://localhost:9200/_cat/indices?v'
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open jaeger-span-2022-07-24 F_H_9owpTzy-fFoJyKL3jg 1 0 953 0 56kb 56kb
green open jaeger-service-2022-07-24 022T1BQlTlan6TnPMlKhow 1 0 13 38 9.9kb 9.9kb
查看健康狀況
curl -u "elastic:changeme" -H 'Content-Type: application/json' -XGET http://localhost:9200/_cluster/health\?pretty
{
"cluster_name" : "jaeger-cluster",
"status" : "green",
"timed_out" : false,
"number_of_nodes" : 1,
"number_of_data_nodes" : 1,
"active_primary_shards" : 2,
"active_shards" : 2,
"relocating_shards" : 0,
"initializing_shards" : 0,
"unassigned_shards" : 0,
"delayed_unassigned_shards" : 0,
"number_of_pending_tasks" : 0,
"number_of_in_flight_fetch" : 0,
"task_max_waiting_in_queue_millis" : 0,
"active_shards_percent_as_number" : 100.0
}
在這一部分中,我們添加了 Elasticsearch。Elasticsearch 是用於跟踪的推薦存儲後端之一。
鏈接:https ://faun.pub/how-to-deploy-jaeger-and-elasticsearch-bf326e774cc8
#jaeger #elasticsearch #go
1661964720
What is Docker Compose?
Compose is a tool for defining and running multi-container Docker applications. With Compose, you use a YAML file to configure your application’s services. Then, with a single command, you create and start all the services from your configuration.
Why use Elasticsearch as a storage backend?
In a production strategy, its recommended to use a persistent storage backend. Remember, using an in-memory storage component (that the All-in-One Jaeger image) provides is designed for local testing.
Let’s update our docker-compose
file to see how we can integrate Jaeger to use Elasticsearch.
As mentioned earlier, your applications must be instrumented before they can send tracing data to Jaeger backend. As such, we will continue to use the demo application (Hot ROD).
How to deploy Jaeger & HotROD & Elasticsearch with Docker Compose
Create a new file called docker-compose.yml
Copy and paste this to the file:
version: "3"
services:
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:7.9.3
networks:
- elastic-jaeger
ports:
- "127.0.0.1:9200:9200"
- "127.0.0.1:9300:9300"
restart: on-failure
environment:
- cluster.name=jaeger-cluster
- discovery.type=single-node
- http.host=0.0.0.0
- transport.host=127.0.0.1
- ES_JAVA_OPTS=-Xms512m -Xmx512m
- xpack.security.enabled=false
volumes:
- esdata:/usr/share/elasticsearch/data
jaeger-collector:
image: jaegertracing/jaeger-collector
ports:
- "14269:14269"
- "14268:14268"
- "14267:14267"
- "14250:14250"
- "9411:9411"
networks:
- elastic-jaeger
restart: on-failure
environment:
- SPAN_STORAGE_TYPE=elasticsearch
command: [
"--es.server-urls=http://elasticsearch:9200",
"--es.num-shards=1",
"--es.num-replicas=0",
"--log-level=error"
]
depends_on:
- elasticsearch
jaeger-agent:
image: jaegertracing/jaeger-agent
hostname: jaeger-agent
command: ["--reporter.grpc.host-port=jaeger-collector:14250"]
ports:
- "5775:5775/udp"
- "6831:6831/udp"
- "6832:6832/udp"
- "5778:5778"
networks:
- elastic-jaeger
restart: on-failure
environment:
- SPAN_STORAGE_TYPE=elasticsearch
depends_on:
- jaeger-collector
jaeger-query:
image: jaegertracing/jaeger-query
environment:
- SPAN_STORAGE_TYPE=elasticsearch
- no_proxy=localhost
ports:
- "16686:16686"
- "16687:16687"
networks:
- elastic-jaeger
restart: on-failure
command: [
"--es.server-urls=http://elasticsearch:9200",
"--span-storage.type=elasticsearch",
"--log-level=debug"
]
depends_on:
- jaeger-agent
hotrod:
image: jaegertracing/example-hotrod:latest
ports:
- "8080:8080"
command: ["all"]
environment:
- JAEGER_AGENT_HOST=jaeger-agent
# Note: if your application is using Node.js Jaeger Client, you need port 6832,
# unless issue https://github.com/jaegertracing/jaeger/issues/1596 is resolved.
- JAEGER_AGENT_PORT=6831
networks:
- elastic-jaeger
depends_on:
- jaeger
volumes:
esdata:
driver: local
networks:
elastic-jaeger:
driver: bridge
This docker-compose.yml
file deploys:
Start all services with : docker-compose up
Note: Initially I had some errors getting it to work, but this stackoverflow post solved it.
Once all the containers are running, you can access the Elasticsearch cluster by typing:
curl -u elastic:changeme localhost:9200
{
"name" : "37c3e1d2ed3b",
"cluster_name" : "jaeger-cluster",
"cluster_uuid" : "v0r0tQKFTz-W_65FgX5VfQ",
"version" : {
"number" : "7.9.3",
"build_flavor" : "default",
"build_type" : "docker",
"build_hash" : "c4138e51121ef06a6404866cddc601906fe5c868",
"build_date" : "2020-10-16T10:36:16.141335Z",
"build_snapshot" : false,
"lucene_version" : "8.6.2",
"minimum_wire_compatibility_version" : "6.8.0",
"minimum_index_compatibility_version" : "6.0.0-beta1"
},
"tagline" : "You Know, for Search"
}
Access HotROD app
Send a few user requests to the demo app (HotROD) application by clicking on any of the buttons.
Run the command again a few times to see that the traces are coming into the Elasticsearch cluster.
List of all indices in your cluster
curl -u "elastic:changeme" -X GET 'http://localhost:9200/_cat/indices?v'
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open jaeger-span-2022-07-24 F_H_9owpTzy-fFoJyKL3jg 1 0 953 0 56kb 56kb
green open jaeger-service-2022-07-24 022T1BQlTlan6TnPMlKhow 1 0 13 38 9.9kb 9.9kb
View the health
curl -u "elastic:changeme" -H 'Content-Type: application/json' -XGET
http://localhost:9200/_cluster/health\?pretty
{
"cluster_name" : "jaeger-cluster",
"status" : "green",
"timed_out" : false,
"number_of_nodes" : 1,
"number_of_data_nodes" : 1,
"active_primary_shards" : 2,
"active_shards" : 2,
"relocating_shards" : 0,
"initializing_shards" : 0,
"unassigned_shards" : 0,
"delayed_unassigned_shards" : 0,
"number_of_pending_tasks" : 0,
"number_of_in_flight_fetch" : 0,
"task_max_waiting_in_queue_millis" : 0,
"active_shards_percent_as_number" : 100.0
}
In this part, we added Elasticsearch to the mix. Elasticsearch is one of the recommend storage backend for tracing.
Link: https://faun.pub/how-to-deploy-jaeger-and-elasticsearch-bf326e774cc8
#jaeger #elasticsearch #go