1611818400

This video is about the difference between the three terms Artificial Intelligence, Machine Learning & Deep Learning.

AI vs ML vs DL

Download the Course Curriculum File from here: https://drive.google.com/file/d/17i0c6SmncNuwSgr9W1MRRk3YYdEOP9Gd/view?usp=sharing

#machine-learning #deep-learning #artificial-intelligence #data-science #ai

1625843760

When installing Machine Learning Services in SQL Server by default few Python Packages are installed. In this article, we will have a look on how to get those installed python package information.

When we choose Python as Machine Learning Service during installation, the following packages are installed in SQL Server,

**revoscalepy**– This Microsoft Python package is used for remote compute contexts, streaming, parallel execution of rx functions for data import and transformation, modeling, visualization, and analysis.**microsoftml**– This is another Microsoft Python package which adds machine learning algorithms in Python.**Anaconda 4.2**– Anaconda is an opensource Python package

#machine learning #sql server #executing python in sql server #machine learning using python #machine learning with sql server #ml in sql server using python #python in sql server ml #python packages #python packages for machine learning services #sql server machine learning services

1619518440

Welcome to my Blog , In this article, you are going to learn the top 10 python tips and tricks.

…

#python #python hacks tricks #python learning tips #python programming tricks #python tips #python tips and tricks #python tips and tricks advanced #python tips and tricks for beginners #python tips tricks and techniques #python tutorial #tips and tricks in python #tips to learn python #top 30 python tips and tricks for beginners

1603753200

So far in our journey through the Machine Learning universe, we covered several big topics. We investigated some **regression** algorithms, **classification** algorithms and algorithms that can be used for both types of problems (**SVM****, ****Decision Trees** and Random Forest). Apart from that, we dipped our toes in unsupervised learning, saw how we can use this type of learning for **clustering** and learned about several clustering techniques.

We also talked about how to quantify machine learning model **performance** and how to improve it with **regularization**. In all these articles, we used Python for “from the scratch” implementations and libraries like **TensorFlow**, **Pytorch** and SciKit Learn. The word optimization popped out more than once in these articles, so in this and next article, we focus on optimization techniques which are an important part of the machine learning process.

In general, every machine learning algorithm is composed of three integral parts:

- A
**loss**function. - Optimization criteria based on the loss function, like a
**cost**function. **Optimization**technique – this process leverages training data to find a solution for optimization criteria (cost function).

As you were able to see in previous articles, some algorithms were created intuitively and didn’t have optimization criteria in mind. In fact, mathematical **explanations** of why and how these algorithms work were done later. Some of these algorithms are **Decision Trees** and **kNN**. Other algorithms, which were developed later had this thing in mind beforehand. **SVM**is one example.

During the training, we change the parameters of our machine learning model to try and **minimize** the loss function. However, the question of how do you change those parameters arises. Also, by how much should we change them during training and when. To answer all these questions we use **optimizers**. They put all different parts of the machine learning algorithm together. So far we mentioned **Gradient Decent** as an optimization technique, but we haven’t explored it in more detail. In this article, we focus on that and we cover the **grandfather** of all optimization techniques and its variation. Note that these techniques are **not** machine learning algorithms. They are solvers of **minimization** problems in which the function to minimize has a gradient in most points of its domain.

Data that we use in this article is the famous *Boston Housing Dataset* . This dataset is composed 14 features and contains information collected by the U.S Census Service concerning housing in the area of Boston Mass. It is a small **dataset** with only 506 samples.

For the purpose of this article, make sure that you have installed the following _Python _libraries:

- **NumPy **– Follow
**this guide**if you need help with installation. - **SciKit Learn **– Follow
**this guide**if you need help with installation. **Pandas**– Follow**this guide**if you need help with installation.

Once installed make sure that you have imported all the necessary modules that are used in this tutorial.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDRegressor
```

Apart from that, it would be good to be at least familiar with the basics of **linear algebra**, **calculus** and **probability**.

Note that we also use simple **Linear Regression** in all examples. Due to the fact that we explore **optimization**techniques, we picked the easiest machine learning algorithm. You can see more details about Linear regression **here**. As a quick reminder the formula for linear regression goes like this:

where *w* and *b* are parameters of the machine learning algorithm. The entire point of the training process is to set the correct values to the *w* and *b*, so we get the desired output from the machine learning model. This means that we are trying to make the value of our **error vector** as small as possible, i.e. to find a **global minimum of the cost function**.

One way of solving this problem is to use calculus. We could compute derivatives and then use them to find places where is an extrema of the cost function. However, the cost function is not a function of one or a few variables; it is a function of all parameters of a machine learning algorithm, so these calculations will quickly grow into a monster. That is why we use these optimizers.

#ai #machine learning #python #artificaial inteligance #artificial intelligence #batch gradient descent #data science #datascience #deep learning #from scratch #gradient descent #machine learning #machine learning optimizers #ml optimization #optimizers #scikit learn #software #software craft #software craftsmanship #software development #stochastic gradient descent

1611818400

This video is about the difference between the three terms Artificial Intelligence, Machine Learning & Deep Learning.

AI vs ML vs DL

Download the Course Curriculum File from here: https://drive.google.com/file/d/17i0c6SmncNuwSgr9W1MRRk3YYdEOP9Gd/view?usp=sharing

#machine-learning #deep-learning #artificial-intelligence #data-science #ai

1598403060

You got intrigued by the machine learning world and wanted to get started as soon as possible, read all the articles, watched all the videos, but still isn’t sure about where to start, welcome to the club.

Before we dive into the machine learning world, you should take a step back and think, what is stopping you from getting started? If you think about it, most of the time, we presuppose things about ourselves and assume that to be true without question.

The most normal presumption that we make about ourselves is that we need to have prior knowledge before getting started. Get a degree, complete a course, or have a good understanding of a particular subject.

The truth is that most of the time, this is a lie, the prior knowledge you think you need is most of the time not required or is so big that even experts from the field don’t fully understand it. The Seek of this prior knowledge is a trap that will make you run in circles, which leads us to the next presumption.

The perfect condition, you can’t wait for the ideal environment or situation to get started, things will never be 100% ready, try and fail, then try again. It takes a lot of time to get good at machine learning; you won’t learn all at once and especially at the beginning.

Instead of trying to acknowledge everything before getting started, do a little bit every day; you can make significant progress by creating small things every day for a considerable amount of time. The perfect condition will never exist, do it in your path, be consistent with it, and the results will come.

After you start making little progress every day, you probably will end up having a struggle with something or failing to achieve your goal at a certain point. This feeling is tough; it’s hard to see yourself not making any progress, not having any sense of gratification, and then still not give up.

Machine learning is hard, it might take you a few weeks, months or even years to see progress in a certain point but isn’t any harder than any other technical skill, it requires repetition and dedication to get where you want, you need to test it, make a mistake and learn from i

#machine-learning #artificial-intelligence #python-machine-learning #learn-machine-learning #latest-tech-stories #machine-learning-uses #ml-top-story #ai-and-ml