Zara  Bryant

Zara Bryant

1622668980

Redeploying to Azure after making changes | Beginner's Series to: Serverless [11 of 16]

Learn how to make changes to an existing function app and redeploy the new changes to Azure using VS Code

Azure Functions documentation: https://docs.microsoft.com/en-us/azure/azure-functions/?WT.mc_id=academic-29081-cxa

#azure #serverless

What is GEEK

Buddha Community

Redeploying to Azure after making changes | Beginner's Series to: Serverless [11 of 16]
Kaia  Schmitt

Kaia Schmitt

1659817260

SDK for Connecting to AWS IoT From A Device using Embedded C

AWS IoT Device SDK for Embedded C

Overview

The AWS IoT Device SDK for Embedded C (C-SDK) is a collection of C source files under the MIT open source license that can be used in embedded applications to securely connect IoT devices to AWS IoT Core. It contains MQTT client, HTTP client, JSON Parser, AWS IoT Device Shadow, AWS IoT Jobs, and AWS IoT Device Defender libraries. This SDK is distributed in source form, and can be built into customer firmware along with application code, other libraries and an operating system (OS) of your choice. These libraries are only dependent on standard C libraries, so they can be ported to various OS's - from embedded Real Time Operating Systems (RTOS) to Linux/Mac/Windows. You can find sample usage of C-SDK libraries on POSIX systems using OpenSSL (e.g. Linux demos in this repository), and on FreeRTOS using mbedTLS (e.g. FreeRTOS demos in FreeRTOS repository).

For the latest release of C-SDK, please see the section for Releases and Documentation.

C-SDK includes libraries that are part of the FreeRTOS 202012.01 LTS release. Learn more about the FreeRTOS 202012.01 LTS libraries by clicking here.

License

The C-SDK libraries are licensed under the MIT open source license.

Features

C-SDK simplifies access to various AWS IoT services. C-SDK has been tested to work with AWS IoT Core and an open source MQTT broker to ensure interoperability. The AWS IoT Device Shadow, AWS IoT Jobs, and AWS IoT Device Defender libraries are flexible to work with any MQTT client and JSON parser. The MQTT client and JSON parser libraries are offered as choices without being tightly coupled with the rest of the SDK. C-SDK contains the following libraries:

coreMQTT

The coreMQTT library provides the ability to establish an MQTT connection with a broker over a customer-implemented transport layer, which can either be a secure channel like a TLS session (mutually authenticated or server-only authentication) or a non-secure channel like a plaintext TCP connection. This MQTT connection can be used for performing publish operations to MQTT topics and subscribing to MQTT topics. The library provides a mechanism to register customer-defined callbacks for receiving incoming PUBLISH, acknowledgement and keep-alive response events from the broker. The library has been refactored for memory optimization and is compliant with the MQTT 3.1.1 standard. It has no dependencies on any additional libraries other than the standard C library, a customer-implemented network transport interface, and optionally a customer-implemented platform time function. The refactored design embraces different use-cases, ranging from resource-constrained platforms using only QoS 0 MQTT PUBLISH messages to resource-rich platforms using QoS 2 MQTT PUBLISH over TLS connections.

See memory requirements for the latest release here.

coreHTTP

The coreHTTP library provides the ability to establish an HTTP connection with a server over a customer-implemented transport layer, which can either be a secure channel like a TLS session (mutually authenticated or server-only authentication) or a non-secure channel like a plaintext TCP connection. The HTTP connection can be used to make "GET" (include range requests), "PUT", "POST" and "HEAD" requests. The library provides a mechanism to register a customer-defined callback for receiving parsed header fields in an HTTP response. The library has been refactored for memory optimization, and is a client implementation of a subset of the HTTP/1.1 standard.

See memory requirements for the latest release here.

coreJSON

The coreJSON library is a JSON parser that strictly enforces the ECMA-404 JSON standard. It provides a function to validate a JSON document, and a function to search for a key and return its value. A search can descend into nested structures using a compound query key. A JSON document validation also checks for illegal UTF8 encodings and illegal Unicode escape sequences.

See memory requirements for the latest release here.

corePKCS11

The corePKCS11 library is an implementation of the PKCS #11 interface (API) that makes it easier to develop applications that rely on cryptographic operations. Only a subset of the PKCS #11 v2.4 standard has been implemented, with a focus on operations involving asymmetric keys, random number generation, and hashing.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryptographic tokens. The name, "PKCS #11", is used interchangeably to refer to the API itself and the standard which defines it.

The PKCS #11 API is useful for writing software without taking a dependency on any particular implementation or hardware. By writing against the PKCS #11 standard interface, code can be used interchangeably with multiple algorithms, implementations and hardware.

Generally vendors for secure cryptoprocessors such as Trusted Platform Module (TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hardware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of corePKCS11 mock is therefore to provide a PKCS #11 implementation that allows for rapid prototyping and development before switching to a cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing corePKCS11 with another implementation should require little porting effort, as the interface will not change. The system tests distributed in corePKCS11 repository can be leveraged to verify the behavior of a different implementation is similar to corePKCS11.

See memory requirements for the latest release here.

AWS IoT Device Shadow

The AWS IoT Device Shadow library enables you to store and retrieve the current state one or more shadows of every registered device. A device’s shadow is a persistent, virtual representation of your device that you can interact with from AWS IoT Core even if the device is offline. The device state is captured in its "shadow" is represented as a JSON document. The device can send commands over MQTT to get, update and delete its latest state as well as receive notifications over MQTT about changes in its state. The device’s shadow(s) are uniquely identified by the name of the corresponding "thing", a representation of a specific device or logical entity on the AWS Cloud. See Managing Devices with AWS IoT for more information on IoT "thing". This library supports named shadows, a feature of the AWS IoT Device Shadow service that allows you to create multiple shadows for a single IoT device. More details about AWS IoT Device Shadow can be found in AWS IoT documentation.

The AWS IoT Device Shadow library has no dependencies on additional libraries other than the standard C library. It also doesn’t have any platform dependencies, such as threading or synchronization. It can be used with any MQTT library and any JSON library (see demos with coreMQTT and coreJSON).

See memory requirements for the latest release here.

AWS IoT Jobs

The AWS IoT Jobs library enables you to interact with the AWS IoT Jobs service which notifies one or more connected devices of a pending “Job”. A Job can be used to manage your fleet of devices, update firmware and security certificates on your devices, or perform administrative tasks such as restarting devices and performing diagnostics. For documentation of the service, please see the AWS IoT Developer Guide. Interactions with the Jobs service use the MQTT protocol. This library provides an API to compose and recognize the MQTT topic strings used by the Jobs service.

The AWS IoT Jobs library has no dependencies on additional libraries other than the standard C library. It also doesn’t have any platform dependencies, such as threading or synchronization. It can be used with any MQTT library and any JSON library (see demos with libmosquitto and coreJSON).

See memory requirements for the latest release here.

AWS IoT Device Defender

The AWS IoT Device Defender library enables you to interact with the AWS IoT Device Defender service to continuously monitor security metrics from devices for deviations from what you have defined as appropriate behavior for each device. If something doesn’t look right, AWS IoT Device Defender sends out an alert so you can take action to remediate the issue. More details about Device Defender can be found in AWS IoT Device Defender documentation. This library supports custom metrics, a feature that helps you monitor operational health metrics that are unique to your fleet or use case. For example, you can define a new metric to monitor the memory usage or CPU usage on your devices.

The AWS IoT Device Defender library has no dependencies on additional libraries other than the standard C library. It also doesn’t have any platform dependencies, such as threading or synchronization. It can be used with any MQTT library and any JSON library (see demos with coreMQTT and coreJSON).

See memory requirements for the latest release here.

AWS IoT Over-the-air Update

The AWS IoT Over-the-air Update (OTA) library enables you to manage the notification of a newly available update, download the update, and perform cryptographic verification of the firmware update. Using the OTA library, you can logically separate firmware updates from the application running on your devices. You can also use the library to send other files (e.g. images, certificates) to one or more devices registered with AWS IoT. More details about OTA library can be found in AWS IoT Over-the-air Update documentation.

The AWS IoT Over-the-air Update library has a dependency on coreJSON for parsing of JSON job document and tinyCBOR for decoding encoded data streams, other than the standard C library. It can be used with any MQTT library, HTTP library, and operating system (e.g. Linux, FreeRTOS) (see demos with coreMQTT and coreHTTP over Linux).

See memory requirements for the latest release here.

AWS IoT Fleet Provisioning

The AWS IoT Fleet Provisioning library enables you to interact with the AWS IoT Fleet Provisioning MQTT APIs in order to provison IoT devices without preexisting device certificates. With AWS IoT Fleet Provisioning, devices can securely receive unique device certificates from AWS IoT when they connect for the first time. For an overview of all provisioning options offered by AWS IoT, see device provisioning documentation. For details about Fleet Provisioning, refer to the AWS IoT Fleet Provisioning documentation.

See memory requirements for the latest release here.

AWS SigV4

The AWS SigV4 library enables you to sign HTTP requests with Signature Version 4 Signing Process. Signature Version 4 (SigV4) is the process to add authentication information to HTTP requests to AWS services. For security, most requests to AWS must be signed with an access key. The access key consists of an access key ID and secret access key.

See memory requirements for the latest release here.

backoffAlgorithm

The backoffAlgorithm library is a utility library to calculate backoff period using an exponential backoff with jitter algorithm for retrying network operations (like failed network connection with server). This library uses the "Full Jitter" strategy for the exponential backoff with jitter algorithm. More information about the algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

Exponential backoff with jitter is typically used when retrying a failed connection or network request to the server. An exponential backoff with jitter helps to mitigate the failed network operations with servers, that are caused due to network congestion or high load on the server, by spreading out retry requests across multiple devices attempting network operations. Besides, in an environment with poor connectivity, a client can get disconnected at any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting reconnections when they are unlikely to succeed.

The backoffAlgorithm library has no dependencies on libraries other than the standard C library.

See memory requirements for the latest release here.

Sending metrics to AWS IoT

When establishing a connection with AWS IoT, users can optionally report the Operating System, Hardware Platform and MQTT client version information of their device to AWS. This information can help AWS IoT provide faster issue resolution and technical support. If users want to report this information, they can send a specially formatted string (see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual_Username>?SDK=<OS_Name>&Version=<OS_Version>&Platform=<Hardware_Platform>&MQTTLib=<MQTT_Library_name>@<MQTT_Library_version>

Where

  • is the actual username used for authentication, if username and password are used for authentication. When username and password based authentication is not used, this is an empty value.
  • is the Operating System the application is running on (e.g. Ubuntu)
  • is the version number of the Operating System (e.g. 20.10)
  • is the Hardware Platform the application is running on (e.g. RaspberryPi)
  • is the MQTT Client library being used (e.g. coreMQTT)
  • is the version of the MQTT Client library being used (e.g. 1.1.0)

Example

  • Actual_Username = “iotuser”, OS_Name = Ubuntu, OS_Version = 20.10, Hardware_Platform_Name = RaspberryPi, MQTT_Library_Name = coremqtt, MQTT_Library_version = 1.1.0. If username is not used, then “iotuser” can be removed.
/* Username string:
 * iotuser?SDK=Ubuntu&Version=20.10&Platform=RaspberryPi&MQTTLib=coremqtt@1.1.0
 */

#define OS_NAME                   "Ubuntu"
#define OS_VERSION                "20.10"
#define HARDWARE_PLATFORM_NAME    "RaspberryPi"
#define MQTT_LIB                  "coremqtt@1.1.0"

#define USERNAME_STRING           "iotuser?SDK=" OS_NAME "&Version=" OS_VERSION "&Platform=" HARDWARE_PLATFORM_NAME "&MQTTLib=" MQTT_LIB
#define USERNAME_STRING_LENGTH    ( ( uint16_t ) ( sizeof( USERNAME_STRING ) - 1 ) )

MQTTConnectInfo_t connectInfo;
connectInfo.pUserName = USERNAME_STRING;
connectInfo.userNameLength = USERNAME_STRING_LENGTH;
mqttStatus = MQTT_Connect( pMqttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS, pSessionPresent );

Versioning

C-SDK releases will now follow a date based versioning scheme with the format YYYYMM.NN, where:

  • Y represents the year.
  • M represents the month.
  • N represents the release order within the designated month (00 being the first release).

For example, a second release in June 2021 would be 202106.01. Although the SDK releases have moved to date-based versioning, each library within the SDK will still retain semantic versioning. In semantic versioning, the version number itself (X.Y.Z) indicates whether the release is a major, minor, or point release. You can use the semantic version of a library to assess the scope and impact of a new release on your application.

Releases and Documentation

All of the released versions of the C-SDK libraries are available as git tags. For example, the last release of the v3 SDK version is available at tag 3.1.2.

202108.00

API documentation of 202108.00 release

This release introduces the refactored AWS IoT Fleet Provisioning library and the new AWS SigV4 library.

Additionally, this release brings minor version updates in the AWS IoT Over-the-Air Update and corePKCS11 libraries.

202103.00

API documentation of 202103.00 release

This release includes a major update to the APIs of the AWS IoT Over-the-air Update library.

Additionally, AWS IoT Device Shadow library introduces a minor update by adding support for named shadow, a feature of the AWS IoT Device Shadow service that allows you to create multiple shadows for a single IoT device. AWS IoT Jobs library introduces a minor update by introducing macros for $next job ID and compile-time generation of topic strings. AWS IoT Device Defender library introduces a minor update that adds macros to API for custom metrics feature of AWS IoT Device Defender service.

corePKCS11 also introduces a patch update by removing the pkcs11configPAL_DESTROY_SUPPORTED config and mbedTLS platform abstraction layer of DestroyObject. Lastly, no code changes are introduced for backoffAlgorithm, coreHTTP, coreMQTT, and coreJSON; however, patch updates are made to improve documentation and CI.

202012.01

API documentation of 202012.01 release

This release includes AWS IoT Over-the-air Update(Release Candidate), backoffAlgorithm, and PKCS #11 libraries. Additionally, there is a major update to the coreJSON and coreHTTP APIs. All libraries continue to undergo code quality checks (e.g. MISRA-C compliance), and Coverity static analysis. In addition, all libraries except AWS IoT Over-the-air Update and backoffAlgorithm undergo validation of memory safety with the C Bounded Model Checker (CBMC) automated reasoning tool.

202011.00

API documentation of 202011.00 release

This release includes refactored HTTP client, AWS IoT Device Defender, and AWS IoT Jobs libraries. Additionally, there is a major update to the coreJSON API. All libraries continue to undergo code quality checks (e.g. MISRA-C compliance), Coverity static analysis, and validation of memory safety with the C Bounded Model Checker (CBMC) automated reasoning tool.

202009.00

API documentation of 202009.00 release

This release includes refactored MQTT, JSON Parser, and AWS IoT Device Shadow libraries for optimized memory usage and modularity. These libraries are included in the SDK via Git submoduling. These libraries have gone through code quality checks including verification that no function has a GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA Deviations. These libraries have also undergone both static code analysis from Coverity static analysis, and validation of memory safety and data structure invariance through the CBMC automated reasoning tool.

If you are upgrading from v3.x API of the C-SDK to the 202009.00 release, please refer to Migration guide from v3.1.2 to 202009.00 and newer releases. If you are using the C-SDK v4_beta_deprecated branch, note that we will continue to maintain this branch for critical bug fixes and security patches but will not add new features to it. See the C-SDK v4_beta_deprecated branch README for additional details.

v3.1.2

Details available here.

Porting Guide for 202009.00 and newer releases

All libraries depend on the ISO C90 standard library and additionally on the stdint.h library for fixed-width integers, including uint8_t, int8_t, uint16_t, uint32_t and int32_t, and constant macros like UINT16_MAX. If your platform does not support the stdint.h library, definitions of the mentioned fixed-width integer types will be required for porting any C-SDK library to your platform.

Porting coreMQTT

Guide for porting coreMQTT library to your platform is available here.

Porting coreHTTP

Guide for porting coreHTTP library is available here.

Porting AWS IoT Device Shadow

Guide for porting AWS IoT Device Shadow library is available here.

Porting AWS IoT Device Defender

Guide for porting AWS IoT Device Defender library is available here.

Porting AWS IoT Over-the-air Update

Guide for porting OTA library to your platform is available here.

Migration guide from v3.1.2 to 202009.00 and newer releases

MQTT Migration

Migration guide for MQTT library is available here.

Shadow Migration

Migration guide for Shadow library is available here.

Jobs Migration

Migration guide for Jobs library is available here.

Branches

main branch

The main branch hosts the continuous development of the AWS IoT Embedded C SDK (C-SDK) libraries. Please be aware that the development at the tip of the main branch is continuously in progress, and may have bugs. Consider using the tagged releases of the C-SDK for production ready software.

v4_beta_deprecated branch (formerly named v4_beta)

The v4_beta_deprecated branch contains a beta version of the C-SDK libraries, which is now deprecated. This branch was earlier named as v4_beta, and was renamed to v4_beta_deprecated. The libraries in this branch will not be released. However, critical bugs will be fixed and tested. No new features will be added to this branch.

Getting Started

Cloning

This repository uses Git Submodules to bring in the C-SDK libraries (eg, MQTT ) and third-party dependencies (eg, mbedtls for POSIX platform transport layer). Note: If you download the ZIP file provided by GitHub UI, you will not get the contents of the submodules (The ZIP file is also not a valid git repository). If you download from the 202012.00 Release Page page, you will get the entire repository (including the submodules) in the ZIP file, aws-iot-device-sdk-embedded-c-202012.00.zip. To clone the latest commit to main branch using HTTPS:

git clone --recurse-submodules https://github.com/aws/aws-iot-device-sdk-embedded-C.git

Using SSH:

git clone --recurse-submodules git@github.com:aws/aws-iot-device-sdk-embedded-C.git

If you have downloaded the repo without using the --recurse-submodules argument, you need to run:

git submodule update --init --recursive

When building with CMake, submodules are also recursively cloned automatically. However, -DBUILD_CLONE_SUBMODULES=0 can be passed as a CMake flag to disable this functionality. This is useful when you'd like to build CMake while using a different commit from a submodule.

Configuring Demos

The libraries in this SDK are not dependent on any operating system. However, the demos for the libraries in this SDK are built and tested on a Linux platform. The demos build with CMake, a cross-platform build tool.

Prerequisites

  • CMake 3.2.0 or any newer version for utilizing the build system of the repository.
  • C90 compiler such as gcc
    • Due to the use of mbedtls in corePKCS11, a C99 compiler is required if building the PKCS11 demos or the CMake install target.
  • Although not a part of the ISO C90 standard, stdint.h is required for fixed-width integer types that include uint8_t, int8_t, uint16_t, uint32_t and int32_t, and constant macros like UINT16_MAX, while stdbool.h is required for boolean parameters in coreMQTT. For compilers that do not provide these header files, coreMQTT provides the files stdint.readme and stdbool.readme, which can be renamed to stdint.h and stdbool.h, respectively, to provide the required type definitions.
  • A supported operating system. The ports provided with this repo are expected to work with all recent versions of the following operating systems, although we cannot guarantee the behavior on all systems.
    • Linux system with POSIX sockets, threads, RT, and timer APIs. (We have tested on Ubuntu 18.04).

Build Dependencies

The follow table shows libraries that need to be installed in your system to run certain demos. If a dependency is not installed and cannot be built from source, demos that require that dependency will be excluded from the default all target.

DependencyVersionUsage
OpenSSL1.1.0 or laterAll TLS demos and tests with the exception of PKCS11
Mosquitto Client1.4.10 or laterAWS IoT Jobs Mosquitto demo

AWS IoT Account Setup

You need to setup an AWS account and access the AWS IoT console for running the AWS IoT Device Shadow library, AWS IoT Device Defender library, AWS IoT Jobs library, AWS IoT OTA library and coreHTTP S3 download demos. Also, the AWS account can be used for running the MQTT mutual auth demo against AWS IoT broker. Note that running the AWS IoT Device Defender, AWS IoT Jobs and AWS IoT Device Shadow library demos require the setup of a Thing resource for the device running the demo. Follow the links to:

The MQTT Mutual Authentication and AWS IoT Shadow demos include example AWS IoT policy documents to run each respective demo with AWS IoT. You may use the MQTT Mutual auth and Shadow example policies by replacing [AWS_REGION] and [AWS_ACCOUNT_ID] with the strings of your region and account identifier. While the IoT Thing name and MQTT client identifier do not need to match for the demos to run, the example policies have the Thing name and client identifier identical as per AWS IoT best practices.

It can be very helpful to also have the AWS Command Line Interface tooling installed.

Configuring mutual authentication demos of MQTT and HTTP

You can pass the following configuration settings as command line options in order to run the mutual auth demos. Make sure to run the following command in the root directory of the C-SDK:

## optionally find your-aws-iot-endpoint from the command line
aws iot describe-endpoint --endpoint-type iot:Data-ATS
cmake -S . -Bbuild
-DAWS_IOT_ENDPOINT="<your-aws-iot-endpoint>" -DCLIENT_CERT_PATH="<your-client-certificate-path>" -DCLIENT_PRIVATE_KEY_PATH="<your-client-private-key-path>" 

In order to set these configurations manually, edit demo_config.h in demos/mqtt/mqtt_demo_mutual_auth/ and demos/http/http_demo_mutual_auth/ to #define the following:

  • Set AWS_IOT_ENDPOINT to your custom endpoint. This is found on the Settings page of the AWS IoT Console and has a format of ABCDEFG1234567.iot.<aws-region>.amazonaws.com where <aws-region> can be an AWS region like us-east-2.
    • Optionally, it can also be found with the AWS CLI command aws iot describe-endpoint --endpoint-type iot:Data-ATS.
  • Set CLIENT_CERT_PATH to the path of the client certificate downloaded when setting up the device certificate in AWS IoT Account Setup.
  • Set CLIENT_PRIVATE_KEY_PATH to the path of the private key downloaded when setting up the device certificate in AWS IoT Account Setup.

It is possible to configure ROOT_CA_CERT_PATH to any PEM-encoded Root CA Certificate. However, this is optional because CMake will download and set it to AmazonRootCA1.pem when unspecified.

Configuring AWS IoT Device Defender and AWS IoT Device Shadow demos

To build the AWS IoT Device Defender and AWS IoT Device Shadow demos, you can pass the following configuration settings as command line options. Make sure to run the following command in the root directory of the C-SDK:

cmake -S . -Bbuild -DAWS_IOT_ENDPOINT="<your-aws-iot-endpoint>" -DROOT_CA_CERT_PATH="<your-path-to-amazon-root-ca>" -DCLIENT_CERT_PATH="<your-client-certificate-path>" -DCLIENT_PRIVATE_KEY_PATH="<your-client-private-key-path>" -DTHING_NAME="<your-registered-thing-name>"

An Amazon Root CA certificate can be downloaded from here.

In order to set these configurations manually, edit demo_config.h in the demo folder to #define the following:

  • Set AWS_IOT_ENDPOINT to your custom endpoint. This is found on the Settings page of the AWS IoT Console and has a format of ABCDEFG1234567.iot.us-east-2.amazonaws.com.
  • Set ROOT_CA_CERT_PATH to the path of the root CA certificate downloaded when setting up the device certificate in AWS IoT Account Setup.
  • Set CLIENT_CERT_PATH to the path of the client certificate downloaded when setting up the device certificate in AWS IoT Account Setup.
  • Set CLIENT_PRIVATE_KEY_PATH to the path of the private key downloaded when setting up the device certificate in AWS IoT Account Setup.
  • Set THING_NAME to the name of the Thing created in AWS IoT Account Setup.

Configuring the AWS IoT Fleet Provisioning demo

To build the AWS IoT Fleet Provisioning Demo, you can pass the following configuration settings as command line options. Make sure to run the following command in the root directory of the C-SDK:

cmake -S . -Bbuild -DAWS_IOT_ENDPOINT="<your-aws-iot-endpoint>" -DROOT_CA_CERT_PATH="<your-path-to-amazon-root-ca>" -DCLAIM_CERT_PATH="<your-claim-certificate-path>" -DCLAIM_PRIVATE_KEY_PATH="<your-claim-private-key-path>" -DPROVISIONING_TEMPLATE_NAME="<your-template-name>" -DDEVICE_SERIAL_NUMBER="<your-serial-number>"

An Amazon Root CA certificate can be downloaded from here.

To create a provisioning template and claim credentials, sign into your AWS account and visit here. Make sure to enable the "Use the AWS IoT registry to manage your device fleet" option. Once you have created the template and credentials, modify the claim certificate's policy to match the sample policy.

In order to set these configurations manually, edit demo_config.h in the demo folder to #define the following:

  • Set AWS_IOT_ENDPOINT to your custom endpoint. This is found on the Settings page of the AWS IoT Console and has a format of ABCDEFG1234567.iot.us-east-2.amazonaws.com.
  • Set ROOT_CA_CERT_PATH to the path of the root CA certificate downloaded when setting up the device certificate in AWS IoT Account Setup.
  • Set CLAIM_CERT_PATH to the path of the claim certificate downloaded when setting up the template and claim credentials.
  • Set CLAIM_PRIVATE_KEY_PATH to the path of the private key downloaded when setting up the template and claim credentials.
  • Set PROVISIONING_TEMPLATE_NAME to the name of the provisioning template created.
  • Set DEVICE_SERIAL_NUMBER to an arbitrary string representing a device identifier.

Configuring the S3 demos

You can pass the following configuration settings as command line options in order to run the S3 demos. Make sure to run the following command in the root directory of the C-SDK:

cmake -S . -Bbuild -DS3_PRESIGNED_GET_URL="s3-get-url" -DS3_PRESIGNED_PUT_URL="s3-put-url"

S3_PRESIGNED_PUT_URL is only needed for the S3 upload demo.

In order to set these configurations manually, edit demo_config.h in demos/http/http_demo_s3_download_multithreaded, and demos/http/http_demo_s3_upload to #define the following:

  • Set S3_PRESIGNED_GET_URL to a S3 presigned URL with GET access.
  • Set S3_PRESIGNED_PUT_URL to a S3 presigned URL with PUT access.

You can generate the presigned urls using demos/http/common/src/presigned_urls_gen.py. More info can be found here.

Configure S3 Download HTTP Demo using SigV4 Library:

Refer this demos/http/http_demo_s3_download/README.md to follow the steps needed to configure and run the S3 Download HTTP Demo using SigV4 Library that generates the authorization HTTP header needed to authenticate the HTTP requests send to S3.

Setup for AWS IoT Jobs demo

  1. The demo requires the Linux platform to contain curl and libmosquitto. On a Debian platform, these dependencies can be installed with:
    apt install curl libmosquitto-dev

If the platform does not contain the libmosquitto library, the demo will build the library from source.

libmosquitto 1.4.10 or any later version of the first major release is required to run this demo.

  1. A job that specifies the URL to download for the demo needs to be created on the AWS account for the Thing resource that will be used by the demo.
    The job can be created directly from the AWS IoT console or using the aws cli tool.

The following creates a job that specifies a Linux Kernel link for downloading.

 aws iot create-job \
        --job-id 'job_1' \
        --targets arn:aws:iot:us-west-2:<account-id>:thing/<thing-name> \
        --document '{"url":"https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.8.5.tar.xz"}'

Prerequisites for the AWS Over-The-Air Update (OTA) demos

  1. To perform a successful OTA update, you need to complete the prerequisites mentioned here.
  2. A code signing certificate is required to authenticate the update. A code signing certificate based on the SHA-256 ECDSA algorithm will work with the current demos. An example of how to generate this kind of certificate can be found here.

Scheduling an OTA Update Job

After you build and run the initial executable you will have to create another executable and schedule an OTA update job with this image.

  1. Increase the version of the application by setting macro APP_VERSION_BUILD in demos/ota/ota_demo_core_[mqtt/http]/demo_config.h to a different version than what is running.
  2. Rebuild the application using the build steps below into a different directory, say build-dir-2.
  3. Rename the demo executable to reflect the change, e.g. mv ota_demo_core_mqtt ota_demo_core_mqtt2
  4. Create an OTA job:
    1. Go to the AWS IoT Core console.
    2. Manage → Jobs → Create → Create a FreeRTOS OTA update job → Select the corresponding name for your device from the thing list.
    3. Sign a new firmware → Create a new profile → Select any SHA-ECDSA signing platform → Upload the code signing certificate(from prerequisites) and provide its path on the device.
    4. Select the image → Select the bucket you created during the prerequisite steps → Upload the binary build-dir-2/bin/ota_demo2.
    5. The path on device should be the absolute path to place the executable and the binary name: e.g. /home/ubuntu/aws-iot-device-sdk-embedded-C-staging/build-dir/bin/ota_demo_core_mqtt2.
    6. Select the IAM role created during the prerequisite steps.
    7. Create the Job.
  5. Run the initial executable again with the following command: sudo ./ota_demo_core_mqtt or sudo ./ota_demo_core_http.
  6. After the initial executable has finished running, go to the directory where the downloaded firmware image resides which is the path name used when creating an OTA job.
  7. Change the permissions of the downloaded firmware to make it executable, as it may be downloaded with read (user default) permissions only: chmod 775 ota_demo_core_mqtt2
  8. Run the downloaded firmware image with the following command: sudo ./ota_demo_core_mqtt2

Building and Running Demos

Before building the demos, ensure you have installed the prerequisite software. On Ubuntu 18.04 and 20.04, gcc, cmake, and OpenSSL can be installed with:

sudo apt install build-essential cmake libssl-dev

Build a single demo

  • Go to the root directory of the C-SDK.
  • Run cmake to generate the Makefiles: cmake -S . -Bbuild && cd build
  • Choose a demo from the list below or alternatively, run make help | grep demo:
defender_demo
http_demo_basic_tls
http_demo_mutual_auth
http_demo_plaintext
http_demo_s3_download
http_demo_s3_download_multithreaded
http_demo_s3_upload
jobs_demo_mosquitto
mqtt_demo_basic_tls
mqtt_demo_mutual_auth
mqtt_demo_plaintext
mqtt_demo_serializer
mqtt_demo_subscription_manager
ota_demo_core_http
ota_demo_core_mqtt
pkcs11_demo_management_and_rng
pkcs11_demo_mechanisms_and_digests
pkcs11_demo_objects
pkcs11_demo_sign_and_verify
shadow_demo_main
  • Replace demo_name with your desired demo then build it: make demo_name
  • Go to the build/bin directory and run any demo executables from there.

Build all configured demos

  • Go to the root directory of the C-SDK.
  • Run cmake to generate the Makefiles: cmake -S . -Bbuild && cd build
  • Run this command to build all configured demos: make
  • Go to the build/bin directory and run any demo executables from there.

Running corePKCS11 demos

The corePKCS11 demos do not require any AWS IoT resources setup, and are standalone. The demos build upon each other to introduce concepts in PKCS #11 sequentially. Below is the recommended order.

  1. pkcs11_demo_management_and_rng
  2. pkcs11_demo_mechanisms_and_digests
  3. pkcs11_demo_objects
  4. pkcs11_demo_sign_and_verify
    1. Please note that this demo requires the private and public key generated from pkcs11_demo_objects to be in the directory the demo is executed from.

Alternative option of Docker containers for running demos locally

Install Docker:

curl -fsSL https://get.docker.com -o get-docker.sh

sh get-docker.sh

Installing Mosquitto to run MQTT demos locally

The following instructions have been tested on an Ubuntu 18.04 environment with Docker and OpenSSL installed.

Download the official Docker image for Mosquitto 1.6.14. This version is deliberately chosen so that the Docker container can load certificates from the host system. Any version after 1.6.14 will drop privileges as soon as the configuration file has been read (before TLS certificates are loaded).

docker pull eclipse-mosquitto:1.6.14

If a Mosquitto broker with TLS communication needs to be run, ignore this step and proceed to the next step. A Mosquitto broker with plain text communication can be run by executing the command below.

docker run -it -p 1883:1883 --name mosquitto-plain-text eclipse-mosquitto:1.6.14

Set BROKER_ENDPOINT defined in demos/mqtt/mqtt_demo_plaintext/demo_config.h to localhost.

Ignore the remaining steps unless a Mosquitto broker with TLS communication also needs to be run.

For TLS communication with Mosquitto broker, server and CA credentials need to be created. Use OpenSSL commands to generate the credentials for the Mosquitto server.

# Generate CA key and certificate. Provide the Subject field information as appropriate for CA certificate.
openssl req -x509 -nodes -sha256 -days 365 -newkey rsa:2048 -keyout ca.key -out ca.crt
# Generate server key and certificate.# Provide the Subject field information as appropriate for Server certificate. Make sure the Common Name (CN) field is different from the root CA certificate.
openssl req -nodes -sha256 -new -keyout server.key -out server.csr # Sign with the CA cert.
openssl x509 -req -sha256 -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out server.crt -days 365

Note: Make sure to use different Common Name (CN) detail between the CA and server certificates; otherwise, SSL handshake fails with exactly same Common Name (CN) detail in both the certificates.

port 8883

cafile /mosquitto/config/ca.crt
certfile /mosquitto/config/server.crt
keyfile /mosquitto/config/server.key

# Use this option for TLS mutual authentication (where client will provide CA signed certificate)
#require_certificate true
tls_version tlsv1.2
#use_identity_as_username true

Create a mosquitto.conf file to use port 8883 (for TLS communication) and providing path to the generated credentials.

Run the docker container from the local directory containing the generated credential and mosquitto.conf files.

docker run -it -p 8883:8883 -v $(pwd):/mosquitto/config/ --name mosquitto-basic-tls eclipse-mosquitto:1.6.14

Update demos/mqtt/mqtt_demo_basic_tls/demo_config.h to the following:
Set BROKER_ENDPOINT to localhost.
Set ROOT_CA_CERT_PATH to the absolute path of the CA certificate created in step 4. for the local Mosquitto server.

Installing httpbin to run HTTP demos locally

Run httpbin through port 80:

docker pull kennethreitz/httpbin
docker run -p 80:80 kennethreitz/httpbin

SERVER_HOST defined in demos/http/http_demo_plaintext/demo_config.h can now be set to localhost.

To run http_demo_basic_tls, download ngrok in order to create an HTTPS tunnel to the httpbin server currently hosted on port 80:

./ngrok http 80 # May have to use ./ngrok.exe depending on OS or filename of the executable

ngrok will provide an https link that can be substituted in demos/http/http_demo_basic_tls/demo_config.h and has a format of https://ABCDEFG12345.ngrok.io.

Set SERVER_HOST in demos/http/http_demo_basic_tls/demo_config.h to the https link provided by ngrok, without https:// preceding it.

You must also download the Root CA certificate provided by the ngrok https link and set ROOT_CA_CERT_PATH in demos/http/http_demo_basic_tls/demo_config.h to the file path of the downloaded certificate.

Installation

The C-SDK libraries and platform abstractions can be installed to a file system through CMake. To do so, run the following command in the root directory of the C-SDK. Note that installation is not required to run any of the demos.

cmake -S . -Bbuild -DBUILD_DEMOS=0 -DBUILD_TESTS=0
cd build
sudo make install

Note that because make install will automatically build the all target, it may be useful to disable building demos and tests with -DBUILD_DEMOS=0 -DBUILD_TESTS=0 unless they have already been configured. Super-user permissions may be needed if installing to a system include or system library path.

To install only a subset of all libraries, pass -DINSTALL_LIBS to install only the libraries you need. By default, all libraries will be installed, but you may exclude any library that you don't need from this list:

-DINSTALL_LIBS="DEFENDER;SHADOW;JOBS;OTA;OTA_HTTP;OTA_MQTT;BACKOFF_ALGORITHM;HTTP;JSON;MQTT;PKCS"

By default, the install path will be in the project directory of the SDK. You can also set -DINSTALL_TO_SYSTEM=1 to install to the system path for headers and libraries in your OS (e.g. /usr/local/include & /usr/local/lib for Linux).

Upon entering make install, the location of each library will be specified first followed by the location of all installed headers:

-- Installing: /usr/local/lib/libaws_iot_defender.so
-- Installing: /usr/local/lib/libaws_iot_shadow.so
...
-- Installing: /usr/local/include/aws/defender.h
-- Installing: /usr/local/include/aws/defender_config_defaults.h
-- Installing: /usr/local/include/aws/shadow.h
-- Installing: /usr/local/include/aws/shadow_config_defaults.h

You may also set an installation path of your choice by passing the following flags through CMake. Make sure to run the following command in the root directory of the C-SDK:

cmake -S . -Bbuild -DBUILD_DEMOS=0 -DBUILD_TESTS=0 \
-DCSDK_HEADER_INSTALL_PATH="/header/path" -DCSDK_LIB_INSTALL_PATH="/lib/path"
cd build
sudo make install

POSIX platform abstractions are used together with the C-SDK libraries in the demos. By default, these abstractions are also installed but can be excluded by passing the flag: -DINSTALL_PLATFORM_ABSTRACTIONS=0.

Lastly, a custom config path for any specific library can also be specified through the following CMake flags, allowing libraries to be compiled with a config of your choice:

-DDEFENDER_CUSTOM_CONFIG_DIR="defender-config-directory"
-DSHADOW_CUSTOM_CONFIG_DIR="shadow-config-directory"
-DJOBS_CUSTOM_CONFIG_DIR="jobs-config-directory"
-DOTA_CUSTOM_CONFIG_DIR="ota-config-directory"
-DHTTP_CUSTOM_CONFIG_DIR="http-config-directory"
-DJSON_CUSTOM_CONFIG_DIR="json-config-directory"
-DMQTT_CUSTOM_CONFIG_DIR="mqtt-config-directory"
-DPKCS_CUSTOM_CONFIG_DIR="pkcs-config-directory"

Note that the file name of the header should not be included in the directory.

Generating Documentation

Note: For pre-generated documentation, please visit Releases and Documentation section.

The Doxygen references were created using Doxygen version 1.9.2. To generate the Doxygen pages, use the provided Python script at tools/doxygen/generate_docs.py. Please ensure that each of the library submodules under libraries/standard/ and libraries/aws/ are cloned before using this script.

cd <CSDK_ROOT>
git submodule update --init --recursive --checkout
python3 tools/doxygen/generate_docs.py

The generated documentation landing page is located at docs/doxygen/output/html/index.html.


Author: aws
Source code: https://github.com/aws/aws-iot-device-sdk-embedded-C
License: MIT license

#aws 

Zara  Bryant

Zara Bryant

1622668980

Redeploying to Azure after making changes | Beginner's Series to: Serverless [11 of 16]

Learn how to make changes to an existing function app and redeploy the new changes to Azure using VS Code

Azure Functions documentation: https://docs.microsoft.com/en-us/azure/azure-functions/?WT.mc_id=academic-29081-cxa

#azure #serverless

Aisu  Joesph

Aisu Joesph

1626490533

Azure Series #2: Single Server Deployment (Output)

No organization that is on the growth path or intending to have a more customer base and new entry into the market will restrict its infrastructure and design for one Database option. There are two levels of Database selection

  • a.  **The needs assessment **
  • **b. Selecting the kind of database **
  • c. Selection of Queues for communication
  • d. Selecting the technology player

Options to choose from:

  1. Transactional Databases:
    • Azure selection — Data Factory, Redis, CosmosDB, Azure SQL, Postgres SQL, MySQL, MariaDB, SQL Database, Maria DB, Managed Server
  2. Data warehousing:
    • Azure selection — CosmosDB
    • Delta Lake — Data Brick’s Lakehouse Architecture.
  3. Non-Relational Database:
  4. _- _Azure selection — CosmosDB
  5. Data Lake:
    • Azure Data Lake
    • Delta Lake — Data Bricks.
  6. Big Data and Analytics:
    • Data Bricks
    • Azure — HDInsights, Azure Synapse Analytics, Event Hubs, Data Lake Storage gen1, Azure Data Explorer Clusters, Data Factories, Azure Data Bricks, Analytics Services, Stream Analytics, Website UI, Cognitive Search, PowerBI, Queries, Reports.
  7. Machine Learning:
    • Azure — Azure Synapse Analytics, Machine Learning, Genomics accounts, Bot Services, Machine Learning Studio, Cognitive Services, Bonsai.

Key Data platform services would like to highlight

  • 1. Azure Data Factory (ADF)
  • 2. Azure Synapse Analytics
  • 3. Azure Stream Analytics
  • 4. Azure Databricks
  • 5. Azure Cognitive Services
  • 6. Azure Data Lake Storage
  • 7. Azure HDInsight
  • 8. Azure CosmosDB
  • 9. Azure SQL Database

#azure-databricks #azure #microsoft-azure-analytics #azure-data-factory #azure series

Jamison  Fisher

Jamison Fisher

1642995900

Pandas Bokeh: Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of Pandas. Importing the library adds a complementary plotting method plot_bokeh() on DataFrames and Series.

With Pandas-Bokeh, creating stunning, interactive, HTML-based visualization is as easy as calling:

df.plot_bokeh()

Pandas-Bokeh also provides native support as a Pandas Plotting backend for Pandas >= 0.25. When Pandas-Bokeh is installed, switchting the default Pandas plotting backend to Bokeh can be done via:

pd.set_option('plotting.backend', 'pandas_bokeh')

More details about the new Pandas backend can be found below.

Interactive Documentation

Please visit:

https://patrikhlobil.github.io/Pandas-Bokeh/

for an interactive version of the documentation below, where you can play with the dynamic Bokeh plots.

For more information have a look at the Examples below or at notebooks on the Github Repository of this project.

Startimage

Installation

You can install Pandas-Bokeh from PyPI via pip

pip install pandas-bokeh

or conda:

conda install -c patrikhlobil pandas-bokeh

With the current release 0.5.5, Pandas-Bokeh officially supports Python 3.6 and newer. For more details, see Release Notes.

How To Use

Classical Use

 

The Pandas-Bokeh library should be imported after Pandas, GeoPandas and/or Pyspark. After the import, one should define the plotting output, which can be:

  • pandas_bokeh.output_notebook(): Embeds the Plots in the cell outputs of the notebook. Ideal when working in Jupyter Notebooks.
  • pandas_bokeh.output_file(filename): Exports the plot to the provided filename as an HTML.

For more details about the plotting outputs, see the reference here or the Bokeh documentation.

Notebook output (see also bokeh.io.output_notebook)

import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()

File output to "Interactive Plot.html" (see also bokeh.io.output_file)

import pandas as pd
import pandas_bokeh
pandas_bokeh.output_file("Interactive Plot.html")

Pandas-Bokeh as native Pandas plotting backend

For pandas >= 0.25, a plotting backend switch is natively supported. It can be achievied by calling:

import pandas as pd
pd.set_option('plotting.backend', 'pandas_bokeh')

Now, the plotting API is accessible for a Pandas DataFrame via:

df.plot(...)

All additional functionalities of Pandas-Bokeh are then accessible at pd.plotting. So, setting the output to notebook is:

pd.plotting.output_notebook()

or calling the grid layout functionality:

pd.plotting.plot_grid(...)

Note: Backwards compatibility is kept since there will still be the df.plot_bokeh(...) methods for a DataFrame.

Plot types

Supported plottypes are at the moment:

Also, check out the complementary chapter Outputs, Formatting & Layouts about:

Lineplot

Basic Lineplot

This simple lineplot in Pandas-Bokeh already contains various interactive elements:

  • a pannable and zoomable (zoom in plotarea and zoom on axis) plot
  • by clicking on the legend elements, one can hide and show the individual lines
  • a Hovertool for the plotted lines

Consider the following simple example:

import numpy as np

np.random.seed(42)
df = pd.DataFrame({"Google": np.random.randn(1000)+0.2, 
                   "Apple": np.random.randn(1000)+0.17}, 
                   index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(kind="line")       #equivalent to df.plot_bokeh.line()

ApplevsGoogle_1

Note, that similar to the regular pandas.DataFrame.plot method, there are also additional accessors to directly access the different plotting types like:

  • df.plot_bokeh(kind="line", ...)df.plot_bokeh.line(...)
  • df.plot_bokeh(kind="bar", ...)df.plot_bokeh.bar(...)
  • df.plot_bokeh(kind="hist", ...)df.plot_bokeh.hist(...)
  • ...

Advanced Lineplot

There are various optional parameters to tune the plots, for example:

  • kind: Which kind of plot should be produced. Currently supported are: "line", "point", "scatter", "bar" and "histogram". In the near future many more will be implemented as horizontal barplot, boxplots, pie-charts, etc.
  • x: Name of the column to use for the horizontal x-axis. If the x parameter is not specified, the index is used for the x-values of the plot. Alternative, also an array of values can be passed that has the same number of elements as the DataFrame.
  • y: Name of column or list of names of columns to use for the vertical y-axis.
  • figsize: Choose width & height of the plot
  • title: Sets title of the plot
  • xlim/ylim: Set visibler range of plot for x- and y-axis (also works for datetime x-axis)
  • xlabel/ylabel: Set x- and y-labels
  • logx/logy: Set log-scale on x-/y-axis
  • xticks/yticks: Explicitly set the ticks on the axes
  • color: Defines a single color for a plot.
  • colormap: Can be used to specify multiple colors to plot. Can be either a list of colors or the name of a Bokeh color palette
  • hovertool: If True a Hovertool is active, else if False no Hovertool is drawn.
  • hovertool_string: If specified, this string will be used for the hovertool (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation and here)
  • toolbar_location: Specify the position of the toolbar location (None, "above", "below", "left" or "right"). Default: "right"
  • zooming: Enables/Disables zooming. Default: True
  • panning: Enables/Disables panning. Default: True
  • fontsize_label/fontsize_ticks/fontsize_title/fontsize_legend: Set fontsize of labels, ticks, title or legend (int or string of form "15pt")
  • rangetool Enables a range tool scroller. Default False
  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.line

Try them out to get a feeling for the effects. Let us consider now:

df.plot_bokeh.line(
    figsize=(800, 450),
    y="Apple",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    toolbar_location=None,
    colormap=["red", "blue"],
    hovertool_string=r"""<img
                        src='https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png' 
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img> Apple 
                        
                        <h4> Stock Price: </h4> @{Apple}""",
    panning=False,
    zooming=False)

ApplevsGoogle_2

Lineplot with data points

For lineplots, as for many other plot-kinds, there are some special keyword arguments that only work for this plotting type. For lineplots, these are:

  • plot_data_points: Plot also the data points on the lines
  • plot_data_points_size: Determines the size of the data points
  • marker: Defines the point type (Default: "circle"). Possible values are: 'circle', 'square', 'triangle', 'asterisk', 'circle_x', 'square_x', 'inverted_triangle', 'x', 'circle_cross', 'square_cross', 'diamond', 'cross'
  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.line

Let us use this information to have another version of the same plot:

df.plot_bokeh.line(
    figsize=(800, 450),
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(100, 200),
    xlim=("2001-01-01", "2001-02-01"),
    colormap=["red", "blue"],
    plot_data_points=True,
    plot_data_points_size=10,
    marker="asterisk")

ApplevsGoogle_3

Lineplot with rangetool

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()

df.plot_bokeh(rangetool=True)

rangetool

Pointplot

If you just wish to draw the date points for curves, the pointplot option is the right choice. It also accepts the kwargs of bokeh.plotting.figure.scatter like marker or size:

import numpy as np

x = np.arange(-3, 3, 0.1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.point(
    x="x",
    xticks=range(-3, 4),
    size=5,
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    marker="x")

Pointplot

Stepplot

With a similar API as the line- & pointplots, one can generate a stepplot. Additional keyword arguments for this plot type are passes to bokeh.plotting.figure.step, e.g. mode (before, after, center), see the following example

import numpy as np

x = np.arange(-3, 3, 1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.step(
    x="x",
    xticks=range(-1, 1),
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    figsize=(800,300),
    fontsize_title=30,
    fontsize_label=25,
    fontsize_ticks=15,
    fontsize_legend=5,
    )

df.plot_bokeh.step(
    x="x",
    xticks=range(-1, 1),
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    mode="after",
    figsize=(800,300)
    )

Stepplot

Note that the step-plot API of Bokeh does so far not support a hovertool functionality.

Scatterplot

A basic scatterplot can be created using the kind="scatter" option. For scatterplots, the x and y parameters have to be specified and the following optional keyword argument is allowed:

category: Determines the category column to use for coloring the scatter points

kwargs**: Optional keyword arguments of bokeh.plotting.figure.scatter

Note, that the pandas.DataFrame.plot_bokeh() method return per default a Bokeh figure, which can be embedded in Dashboard layouts with other figures and Bokeh objects (for more details about (sub)plot layouts and embedding the resulting Bokeh plots as HTML click here).

In the example below, we use the building grid layout support of Pandas-Bokeh to display both the DataFrame (using a Bokeh DataTable) and the resulting scatterplot:

# Load Iris Dataset:
df = pd.read_csv(
    r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/iris/iris.csv"
)
df = df.sample(frac=1)

# Create Bokeh-Table with DataFrame:
from bokeh.models.widgets import DataTable, TableColumn
from bokeh.models import ColumnDataSource

data_table = DataTable(
    columns=[TableColumn(field=Ci, title=Ci) for Ci in df.columns],
    source=ColumnDataSource(df),
    height=300,
)

# Create Scatterplot:
p_scatter = df.plot_bokeh.scatter(
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization",
    show_figure=False,
)

# Combine Table and Scatterplot via grid layout:
pandas_bokeh.plot_grid([[data_table, p_scatter]], plot_width=400, plot_height=350)

 

Scatterplot

A possible optional keyword parameters that can be passed to bokeh.plotting.figure.scatter is size. Below, we use the sepal length of the Iris data as reference for the size:

#Change one value to clearly see the effect of the size keyword
df.loc[13, "sepal length (cm)"] = 15

#Make scatterplot:
p_scatter = df.plot_bokeh.scatter(
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization with Size Keyword",
    size="sepal length (cm)")

Scatterplot2

In this example you can see, that the additional dimension sepal length cannot be used to clearly differentiate between the virginica and versicolor species.

Barplot

The barplot API has no special keyword arguments, but accepts optional kwargs of bokeh.plotting.figure.vbar like alpha. It uses per default the index for the bar categories (however, also columns can be used as x-axis category using the x argument).

data = {
    'fruits':
    ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
    '2015': [2, 1, 4, 3, 2, 4],
    '2016': [5, 3, 3, 2, 4, 6],
    '2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")

p_bar = df.plot_bokeh.bar(
    ylabel="Price per Unit [€]", 
    title="Fruit prices per Year", 
    alpha=0.6)

Barplot

Using the stacked keyword argument you also maked stacked barplots:

p_stacked_bar = df.plot_bokeh.bar(
    ylabel="Price per Unit [€]",
    title="Fruit prices per Year",
    stacked=True,
    alpha=0.6)

Barplot2

Also horizontal versions of the above barplot are supported with the keyword kind="barh" or the accessor plot_bokeh.barh. You can still specify a column of the DataFrame as the bar category via the x argument if you do not wish to use the index.

#Reset index, such that "fruits" is now a column of the DataFrame:
df.reset_index(inplace=True)

#Create horizontal bar (via kind keyword):
p_hbar = df.plot_bokeh(
    kind="barh",
    x="fruits",
    xlabel="Price per Unit [€]",
    title="Fruit prices per Year",
    alpha=0.6,
    legend = "bottom_right",
    show_figure=False)

#Create stacked horizontal bar (via barh accessor):
p_stacked_hbar = df.plot_bokeh.barh(
    x="fruits",
    stacked=True,
    xlabel="Price per Unit [€]",
    title="Fruit prices per Year",
    alpha=0.6,
    legend = "bottom_right",
    show_figure=False)

#Plot all barplot examples in a grid:
pandas_bokeh.plot_grid([[p_bar, p_stacked_bar],
                        [p_hbar, p_stacked_hbar]], 
                       plot_width=450)

Barplot3

Histogram

For drawing histograms (kind="hist"), Pandas-Bokeh has a lot of customization features. Optional keyword arguments for histogram plots are:

  • bins: Determines bins to use for the histogram. If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. If bins is a string, it defines the method used to calculate the optimal bin width, as defined by histogram_bin_edges.
  • histogram_type: Either "sidebyside", "topontop" or "stacked". Default: "topontop"
  • stacked: Boolean that overrides the histogram_type as "stacked" if given. Default: False
  • kwargs**: Optional keyword arguments of bokeh.plotting.figure.quad

Below examples of the different histogram types:

import numpy as np

df_hist = pd.DataFrame({
    'a': np.random.randn(1000) + 1,
    'b': np.random.randn(1000),
    'c': np.random.randn(1000) - 1
    },
    columns=['a', 'b', 'c'])

#Top-on-Top Histogram (Default):
df_hist.plot_bokeh.hist(
    bins=np.linspace(-5, 5, 41),
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Top-on-Top)",
    line_color="black")

#Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
#kind="hist":
df_hist.plot_bokeh(
    kind="hist",
    bins=np.linspace(-5, 5, 41),
    histogram_type="sidebyside",
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Side-by-Side)",
    line_color="black")

#Stacked histogram:
df_hist.plot_bokeh.hist(
    bins=np.linspace(-5, 5, 41),
    histogram_type="stacked",
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Stacked)",
    line_color="black")

Histogram

Further, advanced keyword arguments for histograms are:

  • weights: A column of the DataFrame that is used as weight for the histogramm aggregation (see also numpy.histogram)
  • normed: If True, histogram values are normed to 1 (sum of histogram values=1). It is also possible to pass an integer, e.g. normed=100 would result in a histogram with percentage y-axis (sum of histogram values=100). Default: False
  • cumulative: If True, a cumulative histogram is shown. Default: False
  • show_average: If True, the average of the histogram is also shown. Default: False

Their usage is shown in these examples:

p_hist = df_hist.plot_bokeh.hist(
    y=["a", "b"],
    bins=np.arange(-4, 6.5, 0.5),
    normed=100,
    vertical_xlabel=True,
    ylabel="Share[%]",
    title="Normal distributions (normed)",
    show_average=True,
    xlim=(-4, 6),
    ylim=(0, 30),
    show_figure=False)

p_hist_cum = df_hist.plot_bokeh.hist(
    y=["a", "b"],
    bins=np.arange(-4, 6.5, 0.5),
    normed=100,
    cumulative=True,
    vertical_xlabel=True,
    ylabel="Share[%]",
    title="Normal distributions (normed & cumulative)",
    show_figure=False)

pandas_bokeh.plot_grid([[p_hist, p_hist_cum]], plot_width=450, plot_height=300)

Histogram2

Areaplot

Areaplot (kind="area") can be either drawn on top of each other or stacked. The important parameters are:

stacked: If True, the areaplots are stacked. If False, plots are drawn on top of each other. Default: False

kwargs**: Optional keyword arguments of bokeh.plotting.figure.patch

Let us consider the energy consumption split by source that can be downloaded as DataFrame via:

df_energy = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/energy/energy.csv", 
parse_dates=["Year"])
df_energy.head()
YearOilGasCoalNuclear EnergyHydroelectricityOther Renewable
1970-01-012291.5826.71467.317.7265.85.8
1971-01-012427.7884.81459.224.9276.46.3
1972-01-012613.9933.71475.734.1288.96.8
1973-01-012818.1978.01519.645.9292.57.3
1974-01-012777.31001.91520.959.6321.17.7

Creating the Areaplot can be achieved via:

df_energy.plot_bokeh.area(
    x="Year",
    stacked=True,
    legend="top_left",
    colormap=["brown", "orange", "black", "grey", "blue", "green"],
    title="Worldwide energy consumption split by energy source",
    ylabel="Million tonnes oil equivalent",
    ylim=(0, 16000))

areaplot

Note that the energy consumption of fossile energy is still increasing and renewable energy sources are still small in comparison 😢!!! However, when we norm the plot using the normed keyword, there is a clear trend towards renewable energies in the last decade:

df_energy.plot_bokeh.area(
    x="Year",
    stacked=True,
    normed=100,
    legend="bottom_left",
    colormap=["brown", "orange", "black", "grey", "blue", "green"],
    title="Worldwide energy consumption split by energy source",
    ylabel="Million tonnes oil equivalent")

areaplot2

Pieplot

For Pieplots, let us consider a dataset showing the results of all Bundestags elections in Germany since 2002:

df_pie = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/Bundestagswahl/Bundestagswahl.csv")
df_pie
Partei20022005200920132017
CDU/CSU38.535.233.841.532.9
SPD38.534.223.025.720.5
FDP7.49.814.64.810.7
Grünen8.68.110.78.48.9
Linke/PDS4.08.711.98.69.2
AfD0.00.00.00.012.6
Sonstige3.04.06.011.05.0

We can create a Pieplot of the last election in 2017 by specifying the "Partei" (german for party) column as the x column and the "2017" column as the y column for values:

df_pie.plot_bokeh.pie(
    x="Partei",
    y="2017",
    colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
    title="Results of German Bundestag Election 2017",
    )

pieplot

When you pass several columns to the y parameter (not providing the y-parameter assumes you plot all columns), multiple nested pieplots will be shown in one plot:

df_pie.plot_bokeh.pie(
    x="Partei",
    colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
    title="Results of German Bundestag Elections [2002-2017]",
    line_color="grey")

pieplot2

Mapplot

The mapplot method of Pandas-Bokeh allows for plotting geographic points stored in a Pandas DataFrame on an interactive map. For more advanced Geoplots for line and polygon shapes have a look at the Geoplots examples for the GeoPandas API of Pandas-Bokeh.

For mapplots, only (latitude, longitude) pairs in geographic projection (WGS84) can be plotted on a map. The basic API has the following 2 base parameters:

  • x: name of the longitude column of the DataFrame
  • y: name of the latitude column of the DataFrame

The other optional keyword arguments are discussed in the section about the GeoPandas API, e.g. category for coloring the points.

Below an example of plotting all cities for more than 1 million inhabitants:

df_mapplot = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/populated_places.csv")
df_mapplot.head()
namepop_maxlatitudelongitudesize
Mesa108539433.423915-111.7360841.085394
Sharjah110302725.37138355.4064781.103027
Changwon108149935.219102128.5835621.081499
Sheffield129290053.366677-1.4999971.292900
Abbottabad118364734.14950373.1995011.183647
df_mapplot["size"] = df_mapplot["pop_max"] / 1000000
df_mapplot.plot_bokeh.map(
    x="longitude",
    y="latitude",
    hovertool_string="""<h2> @{name} </h2> 
    
                        <h3> Population: @{pop_max} </h3>""",
    tile_provider="STAMEN_TERRAIN_RETINA",
    size="size", 
    figsize=(900, 600),
    title="World cities with more than 1.000.000 inhabitants")

 

Mapplot

Geoplots

Pandas-Bokeh also allows for interactive plotting of Maps using GeoPandas by providing a geopandas.GeoDataFrame.plot_bokeh() method. It allows to plot the following geodata on a map :

  • Points/MultiPoints
  • Lines/MultiLines
  • Polygons/MultiPolygons

Note: t is not possible to mix up the objects types, i.e. a GeoDataFrame with Points and Lines is for example not allowed.

Les us start with a simple example using the "World Borders Dataset" . Let us first import all neccessary libraries and read the shapefile:

import geopandas as gpd
import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()

#Read in GeoJSON from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states.head()
STATE_NAMEREGIONPOPESTIMATE2010POPESTIMATE2011POPESTIMATE2012POPESTIMATE2013POPESTIMATE2014POPESTIMATE2015POPESTIMATE2016POPESTIMATE2017geometry
Hawaii413638171378323139277214080381417710142632014286831427538(POLYGON ((-160.0738033454681 22.0041773479577...
Washington467413866819155689089969634107046931715281872809347405743(POLYGON ((-122.4020153103835 48.2252163723779...
Montana4990507996866100352210119211019931102831710386561050493POLYGON ((-111.4754253002074 44.70216236909688...
Maine113275681327968132810113279751328903132778713302321335907(POLYGON ((-69.77727626137293 44.0741483685119...
North Dakota2674518684830701380722908738658754859755548755393POLYGON ((-98.73043728833767 45.93827137024809...

Plotting the data on a map is as simple as calling:

df_states.plot_bokeh(simplify_shapes=10000)

US_States_1

We also passed the optional parameter simplify_shapes (~meter) to improve plotting performance (for a reference see shapely.object.simplify). The above geolayer thus has an accuracy of about 10km.

Many keyword arguments like xlabel, ylabel, xlim, ylim, title, colormap, hovertool, zooming, panning, ... for costumizing the plot are also available for the geoplotting API and can be uses as in the examples shown above. There are however also many other options especially for plotting geodata:

  • geometry_column: Specify the column that stores the geometry-information (default: "geometry")
  • hovertool_columns: Specify column names, for which values should be shown in hovertool
  • hovertool_string: If specified, this string will be used for the hovertool (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation)
  • colormap_uselog: If set True, the colormapper is using a logscale. Default: False
  • colormap_range: Specify the value range of the colormapper via (min, max) tuple
  • tile_provider: Define build-in tile provider for background maps. Possible values: None, 'CARTODBPOSITRON', 'CARTODBPOSITRON_RETINA', 'STAMEN_TERRAIN', 'STAMEN_TERRAIN_RETINA', 'STAMEN_TONER', 'STAMEN_TONER_BACKGROUND', 'STAMEN_TONER_LABELS'. Default: CARTODBPOSITRON_RETINA
  • tile_provider_url: An arbitraty tile_provider_url of the form '/{Z}/{X}/{Y}*.png' can be passed to be used as background map.
  • tile_attribution: String (also HTML accepted) for showing attribution for tile source in the lower right corner
  • tile_alpha: Sets the alpha value of the background tile between [0, 1]. Default: 1

One of the most common usage of map plots are choropleth maps, where the color of a the objects is determined by the property of the object itself. There are 3 ways of drawing choropleth maps using Pandas-Bokeh, which are described below.

Categories

This is the simplest way. Just provide the category keyword for the selection of the property column:

  • category: Specifies the column of the GeoDataFrame that should be used to draw a choropleth map
  • show_colorbar: Whether or not to show a colorbar for categorical plots. Default: True

Let us now draw the regions as a choropleth plot using the category keyword (at the moment, only numerical columns are supported for choropleth plots):

df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    category="REGION",
    show_colorbar=False,
    colormap=["blue", "yellow", "green", "red"],
    hovertool_columns=["STATE_NAME", "REGION"],
    tile_provider="STAMEN_TERRAIN_RETINA")

When hovering over the states, the state-name and the region are shown as specified in the hovertool_columns argument.

US_States_2

Dropdown

By passing a list of column names of the GeoDataFrame as the dropdown keyword argument, a dropdown menu is shown above the map. This dropdown menu can be used to select the choropleth layer by the user. :

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    dropdown=["POPESTIMATE2010", "POPESTIMATE2017"],
    colormap="Viridis",
    hovertool_string="""
                        <img
                        src="https://www.states101.com/img/flags/gif/small/@STATE_NAME_SMALL.gif" 
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img>
                
                        <h2>  @STATE_NAME </h2>
                        <h3> 2010: @POPESTIMATE2010 </h3>
                        <h3> 2017: @POPESTIMATE2017 </h3>""",
    tile_provider_url=r"http://c.tile.stamen.com/watercolor/{Z}/{X}/{Y}.jpg",
    tile_attribution='Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.'
    )

US_States_3

Using hovertool_string, one can pass a string that can contain arbitrary HTML elements (including divs, images, ...) that is shown when hovering over the geographies (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation).

Here, we also used an OSM tile server with watercolor style via tile_provider_url and added the attribution via tile_attribution.

Sliders

Another option for interactive choropleth maps is the slider implementation of Pandas-Bokeh. The possible keyword arguments are here:

  • slider: By passing a list of column names of the GeoDataFrame, a slider can be used to . This dropdown menu can be used to select the choropleth layer by the user.
  • slider_range: Pass a range (or numpy.arange) of numbers object to relate the sliders values with the slider columns. By passing range(0,10), the slider will have values [0, 1, 2, ..., 9], when passing numpy.arange(3,5,0.5), the slider will have values [3, 3.5, 4, 4.5]. Default: range(0, len(slider))
  • slider_name: Specifies the title of the slider. Default is an empty string.

This can be used to display the change in population relative to the year 2010:

#Calculate change of population relative to 2010:
for i in range(8):
    df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100

#Specify slider columns:
slider_columns = ["Delta_Population_201%d"%i for i in range(8)]

#Specify slider-range (Maps "Delta_Population_2010" -> 2010, 
#                           "Delta_Population_2011" -> 2011, ...):
slider_range = range(2010, 2018)

#Make slider plot:
df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    slider=slider_columns,
    slider_range=slider_range,
    slider_name="Year", 
    colormap="Inferno",
    hovertool_columns=["STATE_NAME"] + slider_columns,
    title="Change of Population [%]")

US_States_4

Plot multiple geolayers

If you wish to display multiple geolayers, you can pass the Bokeh figure of a Pandas-Bokeh plot via the figure keyword to the next plot_bokeh() call:

import geopandas as gpd
import pandas_bokeh
pandas_bokeh.output_notebook()

# Read in GeoJSONs from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_cities = gpd.read_file(
    r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson"
)
df_cities["size"] = df_cities.pop_max / 400000

#Plot shapes of US states (pass figure options to this initial plot):
figure = df_states.plot_bokeh(
    figsize=(800, 450),
    simplify_shapes=10000,
    show_figure=False,
    xlim=[-170, -80],
    ylim=[10, 70],
    category="REGION",
    colormap="Dark2",
    legend="States",
    show_colorbar=False,
)

#Plot cities as points on top of the US states layer by passing the figure:
df_cities.plot_bokeh(
    figure=figure,         # <== pass figure here!
    category="pop_max",
    colormap="Viridis",
    colormap_uselog=True,
    size="size",
    hovertool_string="""<h1>@name</h1>
                        <h3>Population: @pop_max </h3>""",
    marker="inverted_triangle",
    legend="Cities",
)

Multiple Geolayers

Point & Line plots:

Below, you can see an example that use Pandas-Bokeh to plot point data on a map. The plot shows all cities with a population larger than 1.000.000. For point plots, you can select the marker as keyword argument (since it is passed to bokeh.plotting.figure.scatter). Here an overview of all available marker types:

gdf = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson")
gdf["size"] = gdf.pop_max / 400000

gdf.plot_bokeh(
    category="pop_max",
    colormap="Viridis",
    colormap_uselog=True,
    size="size",
    hovertool_string="""<h1>@name</h1>
                        <h3>Population: @pop_max </h3>""",
    xlim=[-15, 35],
    ylim=[30,60],
    marker="inverted_triangle");

Pointmap

In a similar way, also GeoDataFrames with (multi)line shapes can be drawn using Pandas-Bokeh.

Colorbar formatting:

If you want to display the numerical labels on your colorbar with an alternative to the scientific format, you can pass in a one of the bokeh number string formats or an instance of one of the bokeh.models.formatters to the colorbar_tick_format argument in the geoplot

An example of using the string format argument:

df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

# pass in a string format to colorbar_tick_format to display the ticks as 10m rather than 1e7
df_states.plot_bokeh(
    figsize=(900, 600),
    category="POPESTIMATE2017",
    simplify_shapes=5000,    
    colormap="Inferno",
    colormap_uselog=True,
    colorbar_tick_format="0.0a")

colorbar_tick_format with string argument

An example of using the bokeh PrintfTickFormatter:

df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

for i in range(8):
    df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100

# pass in a PrintfTickFormatter instance colorbar_tick_format to display the ticks with 2 decimal places  
df_states.plot_bokeh(
    figsize=(900, 600),
    category="Delta_Population_2017",
    simplify_shapes=5000,    
    colormap="Inferno",
    colorbar_tick_format=PrintfTickFormatter(format="%4.2f"))

colorbar_tick_format with bokeh.models.formatter_instance

Outputs, Formatting & Layouts

 

Output options

The pandas.DataFrame.plot_bokeh API has the following additional keyword arguments:

  • show_figure: If True, the resulting figure is shown (either in the notebook or exported and shown as HTML file, see Basics. If False, None is returned. Default: True
  • return_html: If True, the method call returns an HTML string that contains all Bokeh CSS&JS resources and the figure embedded in a div. This HTML representation of the plot can be used for embedding the plot in an HTML document. Default: False

If you have a Bokeh figure or layout, you can also use the pandas_bokeh.embedded_html function to generate an embeddable HTML representation of the plot. This can be included into any valid HTML (note that this is not possible directly with the HTML generated by the pandas_bokeh.output_file output option, because it includes an HTML header). Let us consider the following simple example:

#Import Pandas and Pandas-Bokeh (if you do not specify an output option, the standard is
#output_file):
import pandas as pd
import pandas_bokeh

#Create DataFrame to Plot:
import numpy as np
x = np.arange(-10, 10, 0.1)
sin = np.sin(x)
cos = np.cos(x)
tan = np.tan(x)
df = pd.DataFrame({"x": x, "sin(x)": sin, "cos(x)": cos, "tan(x)": tan})

#Make Bokeh plot from DataFrame using Pandas-Bokeh. Do not show the plot, but export
#it to an embeddable HTML string:
html_plot = df.plot_bokeh(
    kind="line",
    x="x",
    y=["sin(x)", "cos(x)", "tan(x)"],
    xticks=range(-20, 20),
    title="Trigonometric functions",
    show_figure=False,
    return_html=True,
    ylim=(-1.5, 1.5))

#Write some HTML and embed the HTML plot below it. For production use, please use
#Templates and the awesome Jinja library.
html = r"""
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
  src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

<h1> Trigonometric functions </h1>

<p> The basic trigonometric functions are:</p>

<p>$ sin(x) $</p>
<p>$ cos(x) $</p>
<p>$ tan(x) = \frac{sin(x)}{cos(x)}$</p>

<p>Below is a plot that shows them</p>

""" + html_plot

#Export the HTML string to an external HTML file and show it:
with open("test.html" , "w") as f:
    f.write(html)
    
import webbrowser
webbrowser.open("test.html")

This code will open up a webbrowser and show the following page. As you can see, the interactive Bokeh plot is embedded nicely into the HTML layout. The return_html option is ideal for the use in a templating engine like Jinja.

Embedded HTML

Auto Scaling Plots

For single plots that have a number of x axis values or for larger monitors, you can auto scale the figure to the width of the entire jupyter cell by setting the sizing_mode parameter.

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

df.plot_bokeh(kind="bar", figsize=(500, 200), sizing_mode="scale_width")

Scaled Plot

The figsize parameter can be used to change the height and width as well as act as a scaling multiplier against the axis that is not being scaled.

 

Number formats

To change the formats of numbers in the hovertool, use the number_format keyword argument. For a documentation about the format to pass, have a look at the Bokeh documentation.Let us consider some examples for the number 3.141592653589793:

FormatOutput
03
0.0003.141
0.00 $3.14 $

This number format will be applied to all numeric columns of the hovertool. If you want to make a very custom or complicated hovertool, you should probably use the hovertool_string keyword argument, see e.g. this example. Below, we use the number_format parameter to specify the "Stock Price" format to 2 decimal digits and an additional $ sign.

import numpy as np

#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
    "Google": np.random.randn(1000) + 0.2,
    "Apple": np.random.randn(1000) + 0.17
},
                  index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(
    kind="line",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    colormap=["red", "blue"],
    number_format="1.00 $")

Number format

Suppress scientific notation for axes

If you want to suppress the scientific notation for axes, you can use the disable_scientific_axes parameter, which accepts one of "x", "y", "xy":

df = pd.DataFrame({"Animal": ["Mouse", "Rabbit", "Dog", "Tiger", "Elefant", "Wale"],
                   "Weight [g]": [19, 3000, 40000, 200000, 6000000, 50000000]})
p_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", show_figure=False)
p_non_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", disable_scientific_axes="y", show_figure=False,)
pandas_bokeh.plot_grid([[p_scientific, p_non_scientific]], plot_width = 450)

Number format

 

Dashboard Layouts

As shown in the Scatterplot Example, combining plots with plots or other HTML elements is straighforward in Pandas-Bokeh due to the layout capabilities of Bokeh. The easiest way to generate a dashboard layout is using the pandas_bokeh.plot_grid method (which is an extension of bokeh.layouts.gridplot):

import pandas as pd
import numpy as np
import pandas_bokeh
pandas_bokeh.output_notebook()

#Barplot:
data = {
    'fruits':
    ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
    '2015': [2, 1, 4, 3, 2, 4],
    '2016': [5, 3, 3, 2, 4, 6],
    '2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")
p_bar = df.plot_bokeh(
    kind="bar",
    ylabel="Price per Unit [€]",
    title="Fruit prices per Year",
    show_figure=False)

#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
    "Google": np.random.randn(1000) + 0.2,
    "Apple": np.random.randn(1000) + 0.17
},
                  index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
p_line = df.plot_bokeh(
    kind="line",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    colormap=["red", "blue"],
    show_figure=False)

#Scatterplot:
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris["data"])
df.columns = iris["feature_names"]
df["species"] = iris["target"]
df["species"] = df["species"].map(dict(zip(range(3), iris["target_names"])))
p_scatter = df.plot_bokeh(
    kind="scatter",
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization",
    show_figure=False)

#Histogram:
df_hist = pd.DataFrame({
    'a': np.random.randn(1000) + 1,
    'b': np.random.randn(1000),
    'c': np.random.randn(1000) - 1
},
                       columns=['a', 'b', 'c'])

p_hist = df_hist.plot_bokeh(
    kind="hist",
    bins=np.arange(-6, 6.5, 0.5),
    vertical_xlabel=True,
    normed=100,
    hovertool=False,
    title="Normal distributions",
    show_figure=False)

#Make Dashboard with Grid Layout:
pandas_bokeh.plot_grid([[p_line, p_bar], 
                        [p_scatter, p_hist]], plot_width=450)

Dashboard Layout

Using a combination of row and column elements (see also Bokeh Layouts) allow for a very easy general arrangement of elements. An alternative layout to the one above is:

p_line.plot_width = 900
p_hist.plot_width = 900

layout = pandas_bokeh.column(p_line,
                pandas_bokeh.row(p_scatter, p_bar),
                p_hist)

pandas_bokeh.show(layout)

Alternative Dashboard Layout

Release Notes

Release Notes can be found here.

Contributing to Pandas-Bokeh

If you wish to contribute to the development of Pandas-Bokeh you can follow the instructions on the CONTRIBUTING.md.

Download Details:
Author: PatrikHlobil
Source Code: https://github.com/PatrikHlobil/Pandas-Bokeh
License: MIT License

#pandas  #python #bokeh #Ploty

Elian  Harber

Elian Harber

1641430440

Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of Pandas. Importing the library adds a complementary plotting method plot_bokeh() on DataFrames and Series.

With Pandas-Bokeh, creating stunning, interactive, HTML-based visualization is as easy as calling:

df.plot_bokeh()

Pandas-Bokeh also provides native support as a Pandas Plotting backend for Pandas >= 0.25. When Pandas-Bokeh is installed, switchting the default Pandas plotting backend to Bokeh can be done via:

pd.set_option('plotting.backend', 'pandas_bokeh')

More details about the new Pandas backend can be found below.


Interactive Documentation

Please visit:

https://patrikhlobil.github.io/Pandas-Bokeh/

for an interactive version of the documentation below, where you can play with the dynamic Bokeh plots.


For more information have a look at the Examples below or at notebooks on the Github Repository of this project.

Startimage


 

Installation

You can install Pandas-Bokeh from PyPI via pip

pip install pandas-bokeh

or conda:

conda install -c patrikhlobil pandas-bokeh

With the current release 0.5.5, Pandas-Bokeh officially supports Python 3.6 and newer. For more details, see Release Notes.

How To Use

Classical Use

The Pandas-Bokeh library should be imported after Pandas, GeoPandas and/or Pyspark. After the import, one should define the plotting output, which can be:

pandas_bokeh.output_notebook(): Embeds the Plots in the cell outputs of the notebook. Ideal when working in Jupyter Notebooks.

pandas_bokeh.output_file(filename): Exports the plot to the provided filename as an HTML.

For more details about the plotting outputs, see the reference here or the Bokeh documentation.

Notebook output (see also bokeh.io.output_notebook)

import pandas as pd import pandas_bokeh pandas_bokeh.output_notebook()

File output to "Interactive Plot.html" (see also bokeh.io.output_file)

import pandas as pd import pandas_bokeh pandas_bokeh.output_file("Interactive Plot.html")

Pandas-Bokeh as native Pandas plotting backend

For pandas >= 0.25, a plotting backend switch is natively supported. It can be achievied by calling:

import pandas as pd
pd.set_option('plotting.backend', 'pandas_bokeh')

Now, the plotting API is accessible for a Pandas DataFrame via:

df.plot(...)

All additional functionalities of Pandas-Bokeh are then accessible at pd.plotting. So, setting the output to notebook is:

pd.plotting.output_notebook()

or calling the grid layout functionality:

pd.plotting.plot_grid(...)

Note: Backwards compatibility is kept since there will still be the df.plot_bokeh(...) methods for a DataFrame.


Plot types

Supported plottypes are at the moment:

Also, check out the complementary chapter Outputs, Formatting & Layouts about:


Lineplot

Basic Lineplot

This simple lineplot in Pandas-Bokeh already contains various interactive elements:

  • a pannable and zoomable (zoom in plotarea and zoom on axis) plot
  • by clicking on the legend elements, one can hide and show the individual lines
  • a Hovertool for the plotted lines

Consider the following simple example:

import numpy as np

np.random.seed(42)
df = pd.DataFrame({"Google": np.random.randn(1000)+0.2, 
                   "Apple": np.random.randn(1000)+0.17}, 
                   index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(kind="line")       #equivalent to df.plot_bokeh.line()

ApplevsGoogle_1

Note, that similar to the regular pandas.DataFrame.plot method, there are also additional accessors to directly access the different plotting types like:

  • df.plot_bokeh(kind="line", ...)df.plot_bokeh.line(...)
  • df.plot_bokeh(kind="bar", ...)df.plot_bokeh.bar(...)
  • df.plot_bokeh(kind="hist", ...)df.plot_bokeh.hist(...)
  • ...

Advanced Lineplot

There are various optional parameters to tune the plots, for example:

kind: Which kind of plot should be produced. Currently supported are: "line", "point", "scatter", "bar" and "histogram". In the near future many more will be implemented as horizontal barplot, boxplots, pie-charts, etc.

x: Name of the column to use for the horizontal x-axis. If the x parameter is not specified, the index is used for the x-values of the plot. Alternative, also an array of values can be passed that has the same number of elements as the DataFrame.

y: Name of column or list of names of columns to use for the vertical y-axis.

figsize: Choose width & height of the plot

title: Sets title of the plot

xlim/ylim: Set visibler range of plot for x- and y-axis (also works for datetime x-axis)

xlabel/ylabel: Set x- and y-labels

logx/logy: Set log-scale on x-/y-axis

xticks/yticks: Explicitly set the ticks on the axes

color: Defines a single color for a plot.

colormap: Can be used to specify multiple colors to plot. Can be either a list of colors or the name of a Bokeh color palette

hovertool: If True a Hovertool is active, else if False no Hovertool is drawn.

hovertool_string: If specified, this string will be used for the hovertool (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation and here)

toolbar_location: Specify the position of the toolbar location (None, "above", "below", "left" or "right"). Default: "right"

zooming: Enables/Disables zooming. Default: True

panning: Enables/Disables panning. Default: True

fontsize_label/fontsize_ticks/fontsize_title/fontsize_legend: Set fontsize of labels, ticks, title or legend (int or string of form "15pt")

rangetool Enables a range tool scroller. Default False

kwargs**: Optional keyword arguments of bokeh.plotting.figure.line

Try them out to get a feeling for the effects. Let us consider now:

df.plot_bokeh.line(
    figsize=(800, 450),
    y="Apple",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    toolbar_location=None,
    colormap=["red", "blue"],
    hovertool_string=r"""<img
                        src='https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png' 
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img> Apple 
                        
                        <h4> Stock Price: </h4> @{Apple}""",
    panning=False,
    zooming=False)

ApplevsGoogle_2

Lineplot with data points

For lineplots, as for many other plot-kinds, there are some special keyword arguments that only work for this plotting type. For lineplots, these are:

plot_data_points: Plot also the data points on the lines

plot_data_points_size: Determines the size of the data points

marker: Defines the point type (Default: "circle"). Possible values are: 'circle', 'square', 'triangle', 'asterisk', 'circle_x', 'square_x', 'inverted_triangle', 'x', 'circle_cross', 'square_cross', 'diamond', 'cross'

kwargs**: Optional keyword arguments of bokeh.plotting.figure.line```

Let us use this information to have another version of the same plot:

df.plot_bokeh.line(
    figsize=(800, 450),
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(100, 200),
    xlim=("2001-01-01", "2001-02-01"),
    colormap=["red", "blue"],
    plot_data_points=True,
    plot_data_points_size=10,
    marker="asterisk")

ApplevsGoogle_3

Lineplot with rangetool

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()

df.plot_bokeh(rangetool=True)

rangetool

Pointplot

If you just wish to draw the date points for curves, the pointplot option is the right choice. It also accepts the kwargs of bokeh.plotting.figure.scatter like marker or size:

import numpy as np

x = np.arange(-3, 3, 0.1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.point(
    x="x",
    xticks=range(-3, 4),
    size=5,
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    marker="x")

Pointplot

Stepplot

With a similar API as the line- & pointplots, one can generate a stepplot. Additional keyword arguments for this plot type are passes to bokeh.plotting.figure.step, e.g. mode (before, after, center), see the following example

import numpy as np

x = np.arange(-3, 3, 1)
y2 = x**2
y3 = x**3
df = pd.DataFrame({"x": x, "Parabula": y2, "Cube": y3})
df.plot_bokeh.step(
    x="x",
    xticks=range(-1, 1),
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    figsize=(800,300),
    fontsize_title=30,
    fontsize_label=25,
    fontsize_ticks=15,
    fontsize_legend=5,
    )

df.plot_bokeh.step(
    x="x",
    xticks=range(-1, 1),
    colormap=["#009933", "#ff3399"],
    title="Pointplot (Parabula vs. Cube)",
    mode="after",
    figsize=(800,300)
    )

Stepplot

Note that the step-plot API of Bokeh does so far not support a hovertool functionality.

Scatterplot

A basic scatterplot can be created using the kind="scatter" option. For scatterplots, the x and y parameters have to be specified and the following optional keyword argument is allowed:

category: Determines the category column to use for coloring the scatter points

kwargs**: Optional keyword arguments of bokeh.plotting.figure.scatter

Note, that the pandas.DataFrame.plot_bokeh() method return per default a Bokeh figure, which can be embedded in Dashboard layouts with other figures and Bokeh objects (for more details about (sub)plot layouts and embedding the resulting Bokeh plots as HTML click here).

In the example below, we use the building grid layout support of Pandas-Bokeh to display both the DataFrame (using a Bokeh DataTable) and the resulting scatterplot:

# Load Iris Dataset:
df = pd.read_csv(
    r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/iris/iris.csv"
)
df = df.sample(frac=1)

# Create Bokeh-Table with DataFrame:
from bokeh.models.widgets import DataTable, TableColumn
from bokeh.models import ColumnDataSource

data_table = DataTable(
    columns=[TableColumn(field=Ci, title=Ci) for Ci in df.columns],
    source=ColumnDataSource(df),
    height=300,
)

# Create Scatterplot:
p_scatter = df.plot_bokeh.scatter(
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization",
    show_figure=False,
)

# Combine Table and Scatterplot via grid layout:
pandas_bokeh.plot_grid([[data_table, p_scatter]], plot_width=400, plot_height=350)

 

Scatterplot

A possible optional keyword parameters that can be passed to bokeh.plotting.figure.scatter is size. Below, we use the sepal length of the Iris data as reference for the size:

#Change one value to clearly see the effect of the size keyword
df.loc[13, "sepal length (cm)"] = 15

#Make scatterplot:
p_scatter = df.plot_bokeh.scatter(
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization with Size Keyword",
    size="sepal length (cm)")

Scatterplot2

In this example you can see, that the additional dimension sepal length cannot be used to clearly differentiate between the virginica and versicolor species.

Barplot

The barplot API has no special keyword arguments, but accepts optional kwargs of bokeh.plotting.figure.vbar like alpha. It uses per default the index for the bar categories (however, also columns can be used as x-axis category using the x argument).

data = {
    'fruits':
    ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
    '2015': [2, 1, 4, 3, 2, 4],
    '2016': [5, 3, 3, 2, 4, 6],
    '2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")

p_bar = df.plot_bokeh.bar(
    ylabel="Price per Unit [€]", 
    title="Fruit prices per Year", 
    alpha=0.6)

Barplot

Using the stacked keyword argument you also maked stacked barplots:

p_stacked_bar = df.plot_bokeh.bar(
    ylabel="Price per Unit [€]",
    title="Fruit prices per Year",
    stacked=True,
    alpha=0.6)

Barplot2

Also horizontal versions of the above barplot are supported with the keyword kind="barh" or the accessor plot_bokeh.barh. You can still specify a column of the DataFrame as the bar category via the x argument if you do not wish to use the index.

#Reset index, such that "fruits" is now a column of the DataFrame:
df.reset_index(inplace=True)

#Create horizontal bar (via kind keyword):
p_hbar = df.plot_bokeh(
    kind="barh",
    x="fruits",
    xlabel="Price per Unit [€]",
    title="Fruit prices per Year",
    alpha=0.6,
    legend = "bottom_right",
    show_figure=False)

#Create stacked horizontal bar (via barh accessor):
p_stacked_hbar = df.plot_bokeh.barh(
    x="fruits",
    stacked=True,
    xlabel="Price per Unit [€]",
    title="Fruit prices per Year",
    alpha=0.6,
    legend = "bottom_right",
    show_figure=False)

#Plot all barplot examples in a grid:
pandas_bokeh.plot_grid([[p_bar, p_stacked_bar],
                        [p_hbar, p_stacked_hbar]], 
                       plot_width=450)

Barplot3

Histogram

For drawing histograms (kind="hist"), Pandas-Bokeh has a lot of customization features. Optional keyword arguments for histogram plots are:

bins: Determines bins to use for the histogram. If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. If bins is a string, it defines the method used to calculate the optimal bin width, as defined by histogram_bin_edges.

histogram_type: Either "sidebyside", "topontop" or "stacked". Default: "topontop"

stacked: Boolean that overrides the histogram_type as "stacked" if given. Default: False

kwargs**: Optional keyword arguments of bokeh.plotting.figure.quad

Below examples of the different histogram types:

import numpy as np

df_hist = pd.DataFrame({
    'a': np.random.randn(1000) + 1,
    'b': np.random.randn(1000),
    'c': np.random.randn(1000) - 1
    },
    columns=['a', 'b', 'c'])

#Top-on-Top Histogram (Default):
df_hist.plot_bokeh.hist(
    bins=np.linspace(-5, 5, 41),
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Top-on-Top)",
    line_color="black")

#Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
#kind="hist":
df_hist.plot_bokeh(
    kind="hist",
    bins=np.linspace(-5, 5, 41),
    histogram_type="sidebyside",
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Side-by-Side)",
    line_color="black")

#Stacked histogram:
df_hist.plot_bokeh.hist(
    bins=np.linspace(-5, 5, 41),
    histogram_type="stacked",
    vertical_xlabel=True,
    hovertool=False,
    title="Normal distributions (Stacked)",
    line_color="black")

Histogram

Further, advanced keyword arguments for histograms are:

  • weights: A column of the DataFrame that is used as weight for the histogramm aggregation (see also numpy.histogram)
  • normed: If True, histogram values are normed to 1 (sum of histogram values=1). It is also possible to pass an integer, e.g. normed=100 would result in a histogram with percentage y-axis (sum of histogram values=100). Default: False
  • cumulative: If True, a cumulative histogram is shown. Default: False
  • show_average: If True, the average of the histogram is also shown. Default: False

Their usage is shown in these examples:

p_hist = df_hist.plot_bokeh.hist(
    y=["a", "b"],
    bins=np.arange(-4, 6.5, 0.5),
    normed=100,
    vertical_xlabel=True,
    ylabel="Share[%]",
    title="Normal distributions (normed)",
    show_average=True,
    xlim=(-4, 6),
    ylim=(0, 30),
    show_figure=False)

p_hist_cum = df_hist.plot_bokeh.hist(
    y=["a", "b"],
    bins=np.arange(-4, 6.5, 0.5),
    normed=100,
    cumulative=True,
    vertical_xlabel=True,
    ylabel="Share[%]",
    title="Normal distributions (normed & cumulative)",
    show_figure=False)

pandas_bokeh.plot_grid([[p_hist, p_hist_cum]], plot_width=450, plot_height=300)

Histogram2


 

Areaplot

Areaplot (kind="area") can be either drawn on top of each other or stacked. The important parameters are:

stacked: If True, the areaplots are stacked. If False, plots are drawn on top of each other. Default: False

kwargs**: Optional keyword arguments of bokeh.plotting.figure.patch


Let us consider the energy consumption split by source that can be downloaded as DataFrame via:

df_energy = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/energy/energy.csv", 
parse_dates=["Year"])
df_energy.head()
YearOilGasCoalNuclear EnergyHydroelectricityOther Renewable
1970-01-012291.5826.71467.317.7265.85.8
1971-01-012427.7884.81459.224.9276.46.3
1972-01-012613.9933.71475.734.1288.96.8
1973-01-012818.1978.01519.645.9292.57.3
1974-01-012777.31001.91520.959.6321.17.7


Creating the Areaplot can be achieved via:

df_energy.plot_bokeh.area(
    x="Year",
    stacked=True,
    legend="top_left",
    colormap=["brown", "orange", "black", "grey", "blue", "green"],
    title="Worldwide energy consumption split by energy source",
    ylabel="Million tonnes oil equivalent",
    ylim=(0, 16000))

areaplot

Note that the energy consumption of fossile energy is still increasing and renewable energy sources are still small in comparison 😢!!! However, when we norm the plot using the normed keyword, there is a clear trend towards renewable energies in the last decade:

df_energy.plot_bokeh.area(
    x="Year",
    stacked=True,
    normed=100,
    legend="bottom_left",
    colormap=["brown", "orange", "black", "grey", "blue", "green"],
    title="Worldwide energy consumption split by energy source",
    ylabel="Million tonnes oil equivalent")

areaplot2

Pieplot

For Pieplots, let us consider a dataset showing the results of all Bundestags elections in Germany since 2002:

df_pie = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/Bundestagswahl/Bundestagswahl.csv")
df_pie
Partei20022005200920132017
CDU/CSU38.535.233.841.532.9
SPD38.534.223.025.720.5
FDP7.49.814.64.810.7
Grünen8.68.110.78.48.9
Linke/PDS4.08.711.98.69.2
AfD0.00.00.00.012.6
Sonstige3.04.06.011.05.0

We can create a Pieplot of the last election in 2017 by specifying the "Partei" (german for party) column as the x column and the "2017" column as the y column for values:

df_pie.plot_bokeh.pie(
    x="Partei",
    y="2017",
    colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
    title="Results of German Bundestag Election 2017",
    )

pieplot

When you pass several columns to the y parameter (not providing the y-parameter assumes you plot all columns), multiple nested pieplots will be shown in one plot:

df_pie.plot_bokeh.pie(
    x="Partei",
    colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
    title="Results of German Bundestag Elections [2002-2017]",
    line_color="grey")

pieplot2

Mapplot

The mapplot method of Pandas-Bokeh allows for plotting geographic points stored in a Pandas DataFrame on an interactive map. For more advanced Geoplots for line and polygon shapes have a look at the Geoplots examples for the GeoPandas API of Pandas-Bokeh.

For mapplots, only (latitude, longitude) pairs in geographic projection (WGS84) can be plotted on a map. The basic API has the following 2 base parameters:

  • x: name of the longitude column of the DataFrame
  • y: name of the latitude column of the DataFrame

The other optional keyword arguments are discussed in the section about the GeoPandas API, e.g. category for coloring the points.

Below an example of plotting all cities for more than 1 million inhabitants:

df_mapplot = pd.read_csv(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/populated_places.csv")
df_mapplot.head()
namepop_maxlatitudelongitudesize
Mesa108539433.423915-111.7360841.085394
Sharjah110302725.37138355.4064781.103027
Changwon108149935.219102128.5835621.081499
Sheffield129290053.366677-1.4999971.292900
Abbottabad118364734.14950373.1995011.183647
df_mapplot["size"] = df_mapplot["pop_max"] / 1000000
df_mapplot.plot_bokeh.map(
    x="longitude",
    y="latitude",
    hovertool_string="""<h2> @{name} </h2> 
    
                        <h3> Population: @{pop_max} </h3>""",
    tile_provider="STAMEN_TERRAIN_RETINA",
    size="size", 
    figsize=(900, 600),
    title="World cities with more than 1.000.000 inhabitants")

 

Mapplot

Geoplots

Pandas-Bokeh also allows for interactive plotting of Maps using GeoPandas by providing a geopandas.GeoDataFrame.plot_bokeh() method. It allows to plot the following geodata on a map :

  • Points/MultiPoints
  • Lines/MultiLines
  • Polygons/MultiPolygons

Note: t is not possible to mix up the objects types, i.e. a GeoDataFrame with Points and Lines is for example not allowed.

Les us start with a simple example using the "World Borders Dataset" . Let us first import all neccessary libraries and read the shapefile:

import geopandas as gpd
import pandas as pd
import pandas_bokeh
pandas_bokeh.output_notebook()

#Read in GeoJSON from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_states.head()
STATE_NAMEREGIONPOPESTIMATE2010POPESTIMATE2011POPESTIMATE2012POPESTIMATE2013POPESTIMATE2014POPESTIMATE2015POPESTIMATE2016POPESTIMATE2017geometry
Hawaii413638171378323139277214080381417710142632014286831427538(POLYGON ((-160.0738033454681 22.0041773479577...
Washington467413866819155689089969634107046931715281872809347405743(POLYGON ((-122.4020153103835 48.2252163723779...
Montana4990507996866100352210119211019931102831710386561050493POLYGON ((-111.4754253002074 44.70216236909688...
Maine113275681327968132810113279751328903132778713302321335907(POLYGON ((-69.77727626137293 44.0741483685119...
North Dakota2674518684830701380722908738658754859755548755393POLYGON ((-98.73043728833767 45.93827137024809...

Plotting the data on a map is as simple as calling:

df_states.plot_bokeh(simplify_shapes=10000)

US_States_1

We also passed the optional parameter simplify_shapes (~meter) to improve plotting performance (for a reference see shapely.object.simplify). The above geolayer thus has an accuracy of about 10km.

Many keyword arguments like xlabel, ylabel, xlim, ylim, title, colormap, hovertool, zooming, panning, ... for costumizing the plot are also available for the geoplotting API and can be uses as in the examples shown above. There are however also many other options especially for plotting geodata:

  • geometry_column: Specify the column that stores the geometry-information (default: "geometry")
  • hovertool_columns: Specify column names, for which values should be shown in hovertool
  • hovertool_string: If specified, this string will be used for the hovertool (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation)
  • colormap_uselog: If set True, the colormapper is using a logscale. Default: False
  • colormap_range: Specify the value range of the colormapper via (min, max) tuple
  • tile_provider: Define build-in tile provider for background maps. Possible values: None, 'CARTODBPOSITRON', 'CARTODBPOSITRON_RETINA', 'STAMEN_TERRAIN', 'STAMEN_TERRAIN_RETINA', 'STAMEN_TONER', 'STAMEN_TONER_BACKGROUND', 'STAMEN_TONER_LABELS'. Default: CARTODBPOSITRON_RETINA
  • tile_provider_url: An arbitraty tile_provider_url of the form '/{Z}/{X}/{Y}*.png' can be passed to be used as background map.
  • tile_attribution: String (also HTML accepted) for showing attribution for tile source in the lower right corner
  • tile_alpha: Sets the alpha value of the background tile between [0, 1]. Default: 1

One of the most common usage of map plots are choropleth maps, where the color of a the objects is determined by the property of the object itself. There are 3 ways of drawing choropleth maps using Pandas-Bokeh, which are described below.

Categories

This is the simplest way. Just provide the category keyword for the selection of the property column:

  • category: Specifies the column of the GeoDataFrame that should be used to draw a choropleth map
  • show_colorbar: Whether or not to show a colorbar for categorical plots. Default: True

Let us now draw the regions as a choropleth plot using the category keyword (at the moment, only numerical columns are supported for choropleth plots):

df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    category="REGION",
    show_colorbar=False,
    colormap=["blue", "yellow", "green", "red"],
    hovertool_columns=["STATE_NAME", "REGION"],
    tile_provider="STAMEN_TERRAIN_RETINA")

When hovering over the states, the state-name and the region are shown as specified in the hovertool_columns argument.

US_States_2

 

Dropdown

By passing a list of column names of the GeoDataFrame as the dropdown keyword argument, a dropdown menu is shown above the map. This dropdown menu can be used to select the choropleth layer by the user. :

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    dropdown=["POPESTIMATE2010", "POPESTIMATE2017"],
    colormap="Viridis",
    hovertool_string="""
                        <img
                        src="https://www.states101.com/img/flags/gif/small/@STATE_NAME_SMALL.gif" 
                        height="42" alt="@imgs" width="42"
                        style="float: left; margin: 0px 15px 15px 0px;"
                        border="2"></img>
                
                        <h2>  @STATE_NAME </h2>
                        <h3> 2010: @POPESTIMATE2010 </h3>
                        <h3> 2017: @POPESTIMATE2017 </h3>""",
    tile_provider_url=r"http://c.tile.stamen.com/watercolor/{Z}/{X}/{Y}.jpg",
    tile_attribution='Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.'
    )

US_States_3

Using hovertool_string, one can pass a string that can contain arbitrary HTML elements (including divs, images, ...) that is shown when hovering over the geographies (@{column} will be replaced by the value of the column for the element the mouse hovers over, see also Bokeh documentation).

Here, we also used an OSM tile server with watercolor style via tile_provider_url and added the attribution via tile_attribution.

Sliders

Another option for interactive choropleth maps is the slider implementation of Pandas-Bokeh. The possible keyword arguments are here:

  • slider: By passing a list of column names of the GeoDataFrame, a slider can be used to . This dropdown menu can be used to select the choropleth layer by the user.
  • slider_range: Pass a range (or numpy.arange) of numbers object to relate the sliders values with the slider columns. By passing range(0,10), the slider will have values [0, 1, 2, ..., 9], when passing numpy.arange(3,5,0.5), the slider will have values [3, 3.5, 4, 4.5]. Default: range(0, len(slider))
  • slider_name: Specifies the title of the slider. Default is an empty string.

This can be used to display the change in population relative to the year 2010:


#Calculate change of population relative to 2010:
for i in range(8):
    df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100

#Specify slider columns:
slider_columns = ["Delta_Population_201%d"%i for i in range(8)]

#Specify slider-range (Maps "Delta_Population_2010" -> 2010, 
#                           "Delta_Population_2011" -> 2011, ...):
slider_range = range(2010, 2018)

#Make slider plot:
df_states.plot_bokeh(
    figsize=(900, 600),
    simplify_shapes=5000,
    slider=slider_columns,
    slider_range=slider_range,
    slider_name="Year", 
    colormap="Inferno",
    hovertool_columns=["STATE_NAME"] + slider_columns,
    title="Change of Population [%]")

US_States_4



 

Plot multiple geolayers

If you wish to display multiple geolayers, you can pass the Bokeh figure of a Pandas-Bokeh plot via the figure keyword to the next plot_bokeh() call:

import geopandas as gpd
import pandas_bokeh
pandas_bokeh.output_notebook()

# Read in GeoJSONs from URL:
df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")
df_cities = gpd.read_file(
    r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson"
)
df_cities["size"] = df_cities.pop_max / 400000

#Plot shapes of US states (pass figure options to this initial plot):
figure = df_states.plot_bokeh(
    figsize=(800, 450),
    simplify_shapes=10000,
    show_figure=False,
    xlim=[-170, -80],
    ylim=[10, 70],
    category="REGION",
    colormap="Dark2",
    legend="States",
    show_colorbar=False,
)

#Plot cities as points on top of the US states layer by passing the figure:
df_cities.plot_bokeh(
    figure=figure,         # <== pass figure here!
    category="pop_max",
    colormap="Viridis",
    colormap_uselog=True,
    size="size",
    hovertool_string="""<h1>@name</h1>
                        <h3>Population: @pop_max </h3>""",
    marker="inverted_triangle",
    legend="Cities",
)

Multiple Geolayers


Point & Line plots:

Below, you can see an example that use Pandas-Bokeh to plot point data on a map. The plot shows all cities with a population larger than 1.000.000. For point plots, you can select the marker as keyword argument (since it is passed to bokeh.plotting.figure.scatter). Here an overview of all available marker types:

gdf = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/populated%20places/ne_10m_populated_places_simple_bigcities.geojson")
gdf["size"] = gdf.pop_max / 400000

gdf.plot_bokeh(
    category="pop_max",
    colormap="Viridis",
    colormap_uselog=True,
    size="size",
    hovertool_string="""<h1>@name</h1>
                        <h3>Population: @pop_max </h3>""",
    xlim=[-15, 35],
    ylim=[30,60],
    marker="inverted_triangle");

Pointmap

In a similar way, also GeoDataFrames with (multi)line shapes can be drawn using Pandas-Bokeh.


 


Colorbar formatting:

If you want to display the numerical labels on your colorbar with an alternative to the scientific format, you can pass in a one of the bokeh number string formats or an instance of one of the bokeh.models.formatters to the colorbar_tick_format argument in the geoplot

An example of using the string format argument:

df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

# pass in a string format to colorbar_tick_format to display the ticks as 10m rather than 1e7
df_states.plot_bokeh(
    figsize=(900, 600),
    category="POPESTIMATE2017",
    simplify_shapes=5000,    
    colormap="Inferno",
    colormap_uselog=True,
    colorbar_tick_format="0.0a")

colorbar_tick_format with string argument

An example of using the bokeh PrintfTickFormatter:

df_states = gpd.read_file(r"https://raw.githubusercontent.com/PatrikHlobil/Pandas-Bokeh/master/docs/Testdata/states/states.geojson")

df_states["STATE_NAME_SMALL"] = df_states["STATE_NAME"].str.lower()

for i in range(8):
    df_states["Delta_Population_201%d"%i] = ((df_states["POPESTIMATE201%d"%i] / df_states["POPESTIMATE2010"]) -1 ) * 100

# pass in a PrintfTickFormatter instance colorbar_tick_format to display the ticks with 2 decimal places  
df_states.plot_bokeh(
    figsize=(900, 600),
    category="Delta_Population_2017",
    simplify_shapes=5000,    
    colormap="Inferno",
    colorbar_tick_format=PrintfTickFormatter(format="%4.2f"))

colorbar_tick_format with bokeh.models.formatter_instance


Outputs, Formatting & Layouts

Output options

The pandas.DataFrame.plot_bokeh API has the following additional keyword arguments:

  • show_figure: If True, the resulting figure is shown (either in the notebook or exported and shown as HTML file, see Basics. If False, None is returned. Default: True
  • return_html: If True, the method call returns an HTML string that contains all Bokeh CSS&JS resources and the figure embedded in a div. This HTML representation of the plot can be used for embedding the plot in an HTML document. Default: False

If you have a Bokeh figure or layout, you can also use the pandas_bokeh.embedded_html function to generate an embeddable HTML representation of the plot. This can be included into any valid HTML (note that this is not possible directly with the HTML generated by the pandas_bokeh.output_file output option, because it includes an HTML header). Let us consider the following simple example:

#Import Pandas and Pandas-Bokeh (if you do not specify an output option, the standard is
#output_file):
import pandas as pd
import pandas_bokeh

#Create DataFrame to Plot:
import numpy as np
x = np.arange(-10, 10, 0.1)
sin = np.sin(x)
cos = np.cos(x)
tan = np.tan(x)
df = pd.DataFrame({"x": x, "sin(x)": sin, "cos(x)": cos, "tan(x)": tan})

#Make Bokeh plot from DataFrame using Pandas-Bokeh. Do not show the plot, but export
#it to an embeddable HTML string:
html_plot = df.plot_bokeh(
    kind="line",
    x="x",
    y=["sin(x)", "cos(x)", "tan(x)"],
    xticks=range(-20, 20),
    title="Trigonometric functions",
    show_figure=False,
    return_html=True,
    ylim=(-1.5, 1.5))

#Write some HTML and embed the HTML plot below it. For production use, please use
#Templates and the awesome Jinja library.
html = r"""
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
  src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

<h1> Trigonometric functions </h1>

<p> The basic trigonometric functions are:</p>

<p>$ sin(x) $</p>
<p>$ cos(x) $</p>
<p>$ tan(x) = \frac{sin(x)}{cos(x)}$</p>

<p>Below is a plot that shows them</p>

""" + html_plot

#Export the HTML string to an external HTML file and show it:
with open("test.html" , "w") as f:
    f.write(html)
    
import webbrowser
webbrowser.open("test.html")

This code will open up a webbrowser and show the following page. As you can see, the interactive Bokeh plot is embedded nicely into the HTML layout. The return_html option is ideal for the use in a templating engine like Jinja.

Embedded HTML

Auto Scaling Plots

For single plots that have a number of x axis values or for larger monitors, you can auto scale the figure to the width of the entire jupyter cell by setting the sizing_mode parameter.

df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) df.plot_bokeh(kind="bar", figsize=(500, 200), sizing_mode="scale_width")

Scaled Plot

The figsize parameter can be used to change the height and width as well as act as a scaling multiplier against the axis that is not being scaled.

 

Number formats

To change the formats of numbers in the hovertool, use the number_format keyword argument. For a documentation about the format to pass, have a look at the Bokeh documentation.Let us consider some examples for the number 3.141592653589793:

FormatOutput
03
0.0003.141
0.00 $3.14 $

This number format will be applied to all numeric columns of the hovertool. If you want to make a very custom or complicated hovertool, you should probably use the hovertool_string keyword argument, see e.g. this example. Below, we use the number_format parameter to specify the "Stock Price" format to 2 decimal digits and an additional $ sign.

import numpy as np

#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
    "Google": np.random.randn(1000) + 0.2,
    "Apple": np.random.randn(1000) + 0.17
},
                  index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
df.plot_bokeh(
    kind="line",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    colormap=["red", "blue"],
    number_format="1.00 $")

Number format

Suppress scientific notation for axes

If you want to suppress the scientific notation for axes, you can use the disable_scientific_axes parameter, which accepts one of "x", "y", "xy":

df = pd.DataFrame({"Animal": ["Mouse", "Rabbit", "Dog", "Tiger", "Elefant", "Wale"],
                   "Weight [g]": [19, 3000, 40000, 200000, 6000000, 50000000]})
p_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", show_figure=False)
p_non_scientific = df.plot_bokeh(x="Animal", y="Weight [g]", disable_scientific_axes="y", show_figure=False,)
pandas_bokeh.plot_grid([[p_scientific, p_non_scientific]], plot_width = 450)

Number format

 

Dashboard Layouts

As shown in the Scatterplot Example, combining plots with plots or other HTML elements is straighforward in Pandas-Bokeh due to the layout capabilities of Bokeh. The easiest way to generate a dashboard layout is using the pandas_bokeh.plot_grid method (which is an extension of bokeh.layouts.gridplot):

import pandas as pd
import numpy as np
import pandas_bokeh
pandas_bokeh.output_notebook()

#Barplot:
data = {
    'fruits':
    ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'],
    '2015': [2, 1, 4, 3, 2, 4],
    '2016': [5, 3, 3, 2, 4, 6],
    '2017': [3, 2, 4, 4, 5, 3]
}
df = pd.DataFrame(data).set_index("fruits")
p_bar = df.plot_bokeh(
    kind="bar",
    ylabel="Price per Unit [€]",
    title="Fruit prices per Year",
    show_figure=False)

#Lineplot:
np.random.seed(42)
df = pd.DataFrame({
    "Google": np.random.randn(1000) + 0.2,
    "Apple": np.random.randn(1000) + 0.17
},
                  index=pd.date_range('1/1/2000', periods=1000))
df = df.cumsum()
df = df + 50
p_line = df.plot_bokeh(
    kind="line",
    title="Apple vs Google",
    xlabel="Date",
    ylabel="Stock price [$]",
    yticks=[0, 100, 200, 300, 400],
    ylim=(0, 400),
    colormap=["red", "blue"],
    show_figure=False)

#Scatterplot:
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris["data"])
df.columns = iris["feature_names"]
df["species"] = iris["target"]
df["species"] = df["species"].map(dict(zip(range(3), iris["target_names"])))
p_scatter = df.plot_bokeh(
    kind="scatter",
    x="petal length (cm)",
    y="sepal width (cm)",
    category="species",
    title="Iris DataSet Visualization",
    show_figure=False)

#Histogram:
df_hist = pd.DataFrame({
    'a': np.random.randn(1000) + 1,
    'b': np.random.randn(1000),
    'c': np.random.randn(1000) - 1
},
                       columns=['a', 'b', 'c'])

p_hist = df_hist.plot_bokeh(
    kind="hist",
    bins=np.arange(-6, 6.5, 0.5),
    vertical_xlabel=True,
    normed=100,
    hovertool=False,
    title="Normal distributions",
    show_figure=False)

#Make Dashboard with Grid Layout:
pandas_bokeh.plot_grid([[p_line, p_bar], 
                        [p_scatter, p_hist]], plot_width=450)

Dashboard Layout

Using a combination of row and column elements (see also Bokeh Layouts) allow for a very easy general arrangement of elements. An alternative layout to the one above is:

p_line.plot_width = 900
p_hist.plot_width = 900

layout = pandas_bokeh.column(p_line,
                pandas_bokeh.row(p_scatter, p_bar),
                p_hist)

pandas_bokeh.show(layout)

Alternative Dashboard Layout


 



 

 

Release Notes

Release Notes can be found here.

Contributing to Pandas-Bokeh

If you wish to contribute to the development of Pandas-Bokeh you can follow the instructions on the CONTRIBUTING.md.

 

Author: PatrikHlobil
Source Code: https://github.com/PatrikHlobil/Pandas-Bokeh 
License: MIT License

#machine-learning  #datavisualizations #python