Lina  Biyinzika

Lina Biyinzika

1624970880

Reptile: OpenAI’s Latest Meta-Learning Algorithm

As more data, better algorithms, and higher computing power continue to shape the future of artificial intelligence (AI), reliable machine learning models have become paramount to optimise outcomes. OpenAI’s meta-learning algorithm, Reptile, is one such model designed to perform a wide array of tasks.

For those unaware, meta-learning refers to the idea of ‘learning to learn by solving multiple tasks, like how humans learn. Using meta-learning, you can design models that can learn new skills or adapt to new environments rapidly with a few training examples.

In the recent past, the meta-learning algorithm has had a fair bit of success as it can learn with limited quantities of data. Unlike other learning models like reinforcement learning, which uses reward mechanisms for each action, meta-learning can generalise to different scenarios by separating a specified task into two functions.

The first function often gives a quick response within a specific task, while the second function includes the extraction of information learned from previous tasks. It is similar to how humans behave, where they often gain knowledge from previous unrelated tasks or experiences.

Typically, there are three common approaches to meta-learning.

  1. Metric-based: Learn an efficient distance metric
  2. Model-based: Use (recurrent) network with external or internal memory
  3. Optimisation-based: Optimise the model parameters explicitly for fast learning

For instance, the above image depicts the model-agnostic meta-learning algorithm (MAML) developed by researchers at the University of California, Berkeley, in partnership with OpenAI. The MAML optimises for a representation θ that can quickly adapt to new tasks.

On the other hand, Reptile utilises a stochastic gradient descent (SGD) to initialise the model’s parameters instead of performing several computations that are often resource-consuming. In other words, it also reduces the dependency of higher computational hardware requirements, if implemented in a machine learning project.

#developers corner #how reptile works #meta learning algorithm #meta-learning algorithm #algorithm

What is GEEK

Buddha Community

Reptile: OpenAI’s Latest Meta-Learning Algorithm
Lina  Biyinzika

Lina Biyinzika

1624970880

Reptile: OpenAI’s Latest Meta-Learning Algorithm

As more data, better algorithms, and higher computing power continue to shape the future of artificial intelligence (AI), reliable machine learning models have become paramount to optimise outcomes. OpenAI’s meta-learning algorithm, Reptile, is one such model designed to perform a wide array of tasks.

For those unaware, meta-learning refers to the idea of ‘learning to learn by solving multiple tasks, like how humans learn. Using meta-learning, you can design models that can learn new skills or adapt to new environments rapidly with a few training examples.

In the recent past, the meta-learning algorithm has had a fair bit of success as it can learn with limited quantities of data. Unlike other learning models like reinforcement learning, which uses reward mechanisms for each action, meta-learning can generalise to different scenarios by separating a specified task into two functions.

The first function often gives a quick response within a specific task, while the second function includes the extraction of information learned from previous tasks. It is similar to how humans behave, where they often gain knowledge from previous unrelated tasks or experiences.

Typically, there are three common approaches to meta-learning.

  1. Metric-based: Learn an efficient distance metric
  2. Model-based: Use (recurrent) network with external or internal memory
  3. Optimisation-based: Optimise the model parameters explicitly for fast learning

For instance, the above image depicts the model-agnostic meta-learning algorithm (MAML) developed by researchers at the University of California, Berkeley, in partnership with OpenAI. The MAML optimises for a representation θ that can quickly adapt to new tasks.

On the other hand, Reptile utilises a stochastic gradient descent (SGD) to initialise the model’s parameters instead of performing several computations that are often resource-consuming. In other words, it also reduces the dependency of higher computational hardware requirements, if implemented in a machine learning project.

#developers corner #how reptile works #meta learning algorithm #meta-learning algorithm #algorithm

Michael  Hamill

Michael Hamill

1617349920

Workshop Alert! Hands-on Meta-Learning

The Association of Data Scientists (AdaSci), the premier global professional body of data science and ML practitioners, has announced a hands-on workshop on meta-learning on March 13, Saturday.

The unavailability of large datasets has turned out to be a huge problem in solving critical challenges with machine learning and artificial intelligence. As a matter of fact, deep learning’s progress often gets impeded due to the unavailability of adequate labelled data.

In many cases, it becomes challenging to collect a sufficiently large number of labelled data, which inspired many research efforts on exploring ways to train robust models for various learning tasks beyond labelled data. Further, to train complex deep learning algorithms and models need high computational power.

In this workshop, the attendees get to learn about meta-learning — a subfield of machine learning where deep learning models are trained with fewer data efficiently. Known as ‘learning how to learn,’ meta-learning is an exciting trend in machine learning.

#featured #meta-learning applications #meta-learning workshop #meta-learning-algorithms #workshop on meta-learning

Mike  Kozey

Mike Kozey

1656151740

Test_cov_console: Flutter Console Coverage Test

Flutter Console Coverage Test

This small dart tools is used to generate Flutter Coverage Test report to console

How to install

Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):

dev_dependencies:
  test_cov_console: ^0.2.2

How to run

run the following command to make sure all flutter library is up-to-date

flutter pub get
Running "flutter pub get" in coverage...                            0.5s

run the following command to generate lcov.info on coverage directory

flutter test --coverage
00:02 +1: All tests passed!

run the tool to generate report from lcov.info

flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File                                         |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
 print_cov_constants.dart                    |    0.00 |    0.00 |    0.00 |    no unit testing|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|

Optional parameter

If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE>                      The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...>    A list of contains string for files without unit testing
                                       to be excluded from report
-l, --line                             It will print Lines & Uncovered Lines only
                                       Branch & Functions coverage percentage will not be printed
-i, --ignore                           It will not print any file without unit testing
-m, --multi                            Report from multiple lcov.info files
-c, --csv                              Output to CSV file
-o, --output=<CSV-FILE>                Full path of output CSV file
                                       If not given, "coverage/test_cov_console.csv" will be used
-t, --total                            Print only the total coverage
                                       Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM>                   Print only the whether total coverage is passed MINIMUM value or not
                                       If the value >= MINIMUM, it will print PASSED, otherwise FAILED
                                       Note: it will ignore all other option (if any), except -m
-h, --help                             Show this help

example run the tool with parameters

flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File                                         |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|

report for multiple lcov.info files (-m, --multi)

It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File                                         |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a -                            |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b -                            |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/                                     |         |         |         |                   |
 print_cov.dart                              |  100.00 |  100.00 |   88.37 |...,149,205,206,207|
lib/                                         |         |         |         |                   |
 test_cov_console.dart                       |    0.00 |    0.00 |    0.00 |    no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
 All files with unit testing                 |  100.00 |  100.00 |   88.37 |                   |
---------------------------------------------|---------|---------|---------|-------------------|

Output to CSV file (-c, --csv, -o, --output)

flutter pub run test_cov_console -c --output=coverage/test_coverage.csv

#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""

Installing

Use this package as an executable

Install it

You can install the package from the command line:

dart pub global activate test_cov_console

Use it

The package has the following executables:

$ test_cov_console

Use this package as a library

Depend on it

Run this command:

With Dart:

 $ dart pub add test_cov_console

With Flutter:

 $ flutter pub add test_cov_console

This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get):

dependencies:
  test_cov_console: ^0.2.2

Alternatively, your editor might support dart pub get or flutter pub get. Check the docs for your editor to learn more.

Import it

Now in your Dart code, you can use:

import 'package:test_cov_console/test_cov_console.dart';

example/lib/main.dart

import 'package:flutter/material.dart';

void main() {
  runApp(MyApp());
}

class MyApp extends StatelessWidget {
  // This widget is the root of your application.
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'Flutter Demo',
      theme: ThemeData(
        // This is the theme of your application.
        //
        // Try running your application with "flutter run". You'll see the
        // application has a blue toolbar. Then, without quitting the app, try
        // changing the primarySwatch below to Colors.green and then invoke
        // "hot reload" (press "r" in the console where you ran "flutter run",
        // or simply save your changes to "hot reload" in a Flutter IDE).
        // Notice that the counter didn't reset back to zero; the application
        // is not restarted.
        primarySwatch: Colors.blue,
        // This makes the visual density adapt to the platform that you run
        // the app on. For desktop platforms, the controls will be smaller and
        // closer together (more dense) than on mobile platforms.
        visualDensity: VisualDensity.adaptivePlatformDensity,
      ),
      home: MyHomePage(title: 'Flutter Demo Home Page'),
    );
  }
}

class MyHomePage extends StatefulWidget {
  MyHomePage({Key? key, required this.title}) : super(key: key);

  // This widget is the home page of your application. It is stateful, meaning
  // that it has a State object (defined below) that contains fields that affect
  // how it looks.

  // This class is the configuration for the state. It holds the values (in this
  // case the title) provided by the parent (in this case the App widget) and
  // used by the build method of the State. Fields in a Widget subclass are
  // always marked "final".

  final String title;

  @override
  _MyHomePageState createState() => _MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage> {
  int _counter = 0;

  void _incrementCounter() {
    setState(() {
      // This call to setState tells the Flutter framework that something has
      // changed in this State, which causes it to rerun the build method below
      // so that the display can reflect the updated values. If we changed
      // _counter without calling setState(), then the build method would not be
      // called again, and so nothing would appear to happen.
      _counter++;
    });
  }

  @override
  Widget build(BuildContext context) {
    // This method is rerun every time setState is called, for instance as done
    // by the _incrementCounter method above.
    //
    // The Flutter framework has been optimized to make rerunning build methods
    // fast, so that you can just rebuild anything that needs updating rather
    // than having to individually change instances of widgets.
    return Scaffold(
      appBar: AppBar(
        // Here we take the value from the MyHomePage object that was created by
        // the App.build method, and use it to set our appbar title.
        title: Text(widget.title),
      ),
      body: Center(
        // Center is a layout widget. It takes a single child and positions it
        // in the middle of the parent.
        child: Column(
          // Column is also a layout widget. It takes a list of children and
          // arranges them vertically. By default, it sizes itself to fit its
          // children horizontally, and tries to be as tall as its parent.
          //
          // Invoke "debug painting" (press "p" in the console, choose the
          // "Toggle Debug Paint" action from the Flutter Inspector in Android
          // Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
          // to see the wireframe for each widget.
          //
          // Column has various properties to control how it sizes itself and
          // how it positions its children. Here we use mainAxisAlignment to
          // center the children vertically; the main axis here is the vertical
          // axis because Columns are vertical (the cross axis would be
          // horizontal).
          mainAxisAlignment: MainAxisAlignment.center,
          children: <Widget>[
            Text(
              'You have pushed the button this many times:',
            ),
            Text(
              '$_counter',
              style: Theme.of(context).textTheme.headline4,
            ),
          ],
        ),
      ),
      floatingActionButton: FloatingActionButton(
        onPressed: _incrementCounter,
        tooltip: 'Increment',
        child: Icon(Icons.add),
      ), // This trailing comma makes auto-formatting nicer for build methods.
    );
  }
}

Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console 
License: BSD-3-Clause license

#flutter #dart #test 

Reptile: OpenAI’s Latest Meta-Learning Algorithm

As more data, better algorithms, and higher computing power continue to shape the future of artificial intelligence (AI), reliable machine learning models have become paramount to optimise outcomes. OpenAI’s meta-learning algorithm, Reptile, is one such model designed to perform a wide array of tasks.

Read more: https://analyticsindiamag.com/reptile-openais-latest-meta-learning-algorithm/

#ai #openai #data #algorithm

Mckenzie  Osiki

Mckenzie Osiki

1622134500

Inside MoveNet, Google’s Latest Pose Detection Model

Ahead of Google I/O, Google Research launched a new pose detection model in TensorFlow.js called MoveNet. This ultra-fast and accurate model can detect 17 key points in the human body. MoveNet is currently available on TF Hub with two variants — Lightning and Thunder.

While Lightning is intended for latency-critical applications, Thunder is for applications that call for higher accuracy. Both models claim to run faster than real-time (30+ frames per second (FPS)) on most personal computers, laptops and phones.

The model can be launched in the browser using TensorFlow.js architecture with no server calls needed after the initial page load or external packages. The live demo version is available here.

Currently, the MoveNet model works for the individual in the camera field-of-view. But, soon, Google Research looks to extend the MoveNet model to the multi-person domain so that developers can support applications with multiple people.

#developers corner #body movements online #body movements virtual #fitness machine learning #google i/o #google latest #google new development #google research latest #machine learning models body poses #ose detection model #remote healthcare solutions #tensorflow latest model #track body movements #wellness machine learning