Coding  Life

Coding Life

1636600766

Build an Air Quality Monitor Using Raspberry Pi Zero W

Knowing the air quality is useful to keep yourself productive because the bad air quality would affect your brain performance more than you'd think.
So, I built a room air quality monitor that displays the temperature, humidity, CO2 density, and barometric pressure of my home office.
It notifies with sound when the CO2 level gets more than 1,000 ppm - So, I can know when to refresh the air.
In this video we show you how to build an air quality monitor using Raspberry Pi Zero W + ANAVI Infrared pHAT

00:00 Hello
00:31 Unbox a Raspberry Pi Zero W
00:48 SanDisk 32GB MicroSD Card
00:54 Anker 2-in-1 USB C Memory Card Reader
01:03 Download Raspberry Pi Imager
01:22 Write a Raspberry Pi OS to the SD Card
01:58 Configure your Wi-Fi network
02:31 Enable SSH server
02:39 Boot the Raspberry Pi
03:03 Check if connected to the Wi-Fi network
03:12 Log in to the Raspberry Pi via SSH
03:29 Unbox an ANAVI Infrared pHAT
04:28 Install the ANAVI Infrared pHAT to the Raspberry Pi Zero
04:40 Connect the sensors to the I2C slots
05:29 MH-Z19 - CO2 density sensor
06:00 Connect MH-Z19 to the UART slot
06:16 Check if MH-Z19 is working
06:33 Update Raspberry Pi packages
07:11 Install git & build tools
07:25 Install python-smbus and i2c-tools
07:41 Enable I2C interface
08:06 Check the I2C interface working
08:16 Get the example code for testing the sensors
08:54 Install wiringpi
09:05 Build the example code
09:43 Enable Serial interface
10:14 Install python-pip
10:33 Install a Python module for mh-z19
10:59 Put MH-Z19 outside for a while for calibration
11:17 Run ZERO point calibration
11:44 Install nginx web server
11:55 Clone a web UI
12:11 Build C programs for the sensors
12:47 Prepare test data
13:43 Configure nginx
14:21 Open the web interface from browser
14:39 Configure root's crontab to update data every 5 minutes
16:01 Put the Raspberry Pi in a cable box

▶ Check out the below article for the step-by-step guide of the commands I run in the video
https://community.inkdrop.app/note/d975606d93c067c5ef8d6adfb5db83b5/note:AYKbsgC9e 

▶ My dotfiles
https://github.com/craftzdog/dotfiles-public 

Credits:
▶ BGM: Epidemic Sound https://www.epidemicsound.com/referral/p96aa8/ 

▶ Subscribe: https://www.youtube.com/c/devaslife/featured 

#raspberry #raspberry-pi 

What is GEEK

Buddha Community

Build an Air Quality Monitor Using Raspberry Pi Zero W
Chloe  Butler

Chloe Butler

1667425440

Pdf2gerb: Perl Script Converts PDF Files to Gerber format

pdf2gerb

Perl script converts PDF files to Gerber format

Pdf2Gerb generates Gerber 274X photoplotting and Excellon drill files from PDFs of a PCB. Up to three PDFs are used: the top copper layer, the bottom copper layer (for 2-sided PCBs), and an optional silk screen layer. The PDFs can be created directly from any PDF drawing software, or a PDF print driver can be used to capture the Print output if the drawing software does not directly support output to PDF.

The general workflow is as follows:

  1. Design the PCB using your favorite CAD or drawing software.
  2. Print the top and bottom copper and top silk screen layers to a PDF file.
  3. Run Pdf2Gerb on the PDFs to create Gerber and Excellon files.
  4. Use a Gerber viewer to double-check the output against the original PCB design.
  5. Make adjustments as needed.
  6. Submit the files to a PCB manufacturer.

Please note that Pdf2Gerb does NOT perform DRC (Design Rule Checks), as these will vary according to individual PCB manufacturer conventions and capabilities. Also note that Pdf2Gerb is not perfect, so the output files must always be checked before submitting them. As of version 1.6, Pdf2Gerb supports most PCB elements, such as round and square pads, round holes, traces, SMD pads, ground planes, no-fill areas, and panelization. However, because it interprets the graphical output of a Print function, there are limitations in what it can recognize (or there may be bugs).

See docs/Pdf2Gerb.pdf for install/setup, config, usage, and other info.


pdf2gerb_cfg.pm

#Pdf2Gerb config settings:
#Put this file in same folder/directory as pdf2gerb.pl itself (global settings),
#or copy to another folder/directory with PDFs if you want PCB-specific settings.
#There is only one user of this file, so we don't need a custom package or namespace.
#NOTE: all constants defined in here will be added to main namespace.
#package pdf2gerb_cfg;

use strict; #trap undef vars (easier debug)
use warnings; #other useful info (easier debug)


##############################################################################################
#configurable settings:
#change values here instead of in main pfg2gerb.pl file

use constant WANT_COLORS => ($^O !~ m/Win/); #ANSI colors no worky on Windows? this must be set < first DebugPrint() call

#just a little warning; set realistic expectations:
#DebugPrint("${\(CYAN)}Pdf2Gerb.pl ${\(VERSION)}, $^O O/S\n${\(YELLOW)}${\(BOLD)}${\(ITALIC)}This is EXPERIMENTAL software.  \nGerber files MAY CONTAIN ERRORS.  Please CHECK them before fabrication!${\(RESET)}", 0); #if WANT_DEBUG

use constant METRIC => FALSE; #set to TRUE for metric units (only affect final numbers in output files, not internal arithmetic)
use constant APERTURE_LIMIT => 0; #34; #max #apertures to use; generate warnings if too many apertures are used (0 to not check)
use constant DRILL_FMT => '2.4'; #'2.3'; #'2.4' is the default for PCB fab; change to '2.3' for CNC

use constant WANT_DEBUG => 0; #10; #level of debug wanted; higher == more, lower == less, 0 == none
use constant GERBER_DEBUG => 0; #level of debug to include in Gerber file; DON'T USE FOR FABRICATION
use constant WANT_STREAMS => FALSE; #TRUE; #save decompressed streams to files (for debug)
use constant WANT_ALLINPUT => FALSE; #TRUE; #save entire input stream (for debug ONLY)

#DebugPrint(sprintf("${\(CYAN)}DEBUG: stdout %d, gerber %d, want streams? %d, all input? %d, O/S: $^O, Perl: $]${\(RESET)}\n", WANT_DEBUG, GERBER_DEBUG, WANT_STREAMS, WANT_ALLINPUT), 1);
#DebugPrint(sprintf("max int = %d, min int = %d\n", MAXINT, MININT), 1); 

#define standard trace and pad sizes to reduce scaling or PDF rendering errors:
#This avoids weird aperture settings and replaces them with more standardized values.
#(I'm not sure how photoplotters handle strange sizes).
#Fewer choices here gives more accurate mapping in the final Gerber files.
#units are in inches
use constant TOOL_SIZES => #add more as desired
(
#round or square pads (> 0) and drills (< 0):
    .010, -.001,  #tiny pads for SMD; dummy drill size (too small for practical use, but needed so StandardTool will use this entry)
    .031, -.014,  #used for vias
    .041, -.020,  #smallest non-filled plated hole
    .051, -.025,
    .056, -.029,  #useful for IC pins
    .070, -.033,
    .075, -.040,  #heavier leads
#    .090, -.043,  #NOTE: 600 dpi is not high enough resolution to reliably distinguish between .043" and .046", so choose 1 of the 2 here
    .100, -.046,
    .115, -.052,
    .130, -.061,
    .140, -.067,
    .150, -.079,
    .175, -.088,
    .190, -.093,
    .200, -.100,
    .220, -.110,
    .160, -.125,  #useful for mounting holes
#some additional pad sizes without holes (repeat a previous hole size if you just want the pad size):
    .090, -.040,  #want a .090 pad option, but use dummy hole size
    .065, -.040, #.065 x .065 rect pad
    .035, -.040, #.035 x .065 rect pad
#traces:
    .001,  #too thin for real traces; use only for board outlines
    .006,  #minimum real trace width; mainly used for text
    .008,  #mainly used for mid-sized text, not traces
    .010,  #minimum recommended trace width for low-current signals
    .012,
    .015,  #moderate low-voltage current
    .020,  #heavier trace for power, ground (even if a lighter one is adequate)
    .025,
    .030,  #heavy-current traces; be careful with these ones!
    .040,
    .050,
    .060,
    .080,
    .100,
    .120,
);
#Areas larger than the values below will be filled with parallel lines:
#This cuts down on the number of aperture sizes used.
#Set to 0 to always use an aperture or drill, regardless of size.
use constant { MAX_APERTURE => max((TOOL_SIZES)) + .004, MAX_DRILL => -min((TOOL_SIZES)) + .004 }; #max aperture and drill sizes (plus a little tolerance)
#DebugPrint(sprintf("using %d standard tool sizes: %s, max aper %.3f, max drill %.3f\n", scalar((TOOL_SIZES)), join(", ", (TOOL_SIZES)), MAX_APERTURE, MAX_DRILL), 1);

#NOTE: Compare the PDF to the original CAD file to check the accuracy of the PDF rendering and parsing!
#for example, the CAD software I used generated the following circles for holes:
#CAD hole size:   parsed PDF diameter:      error:
#  .014                .016                +.002
#  .020                .02267              +.00267
#  .025                .026                +.001
#  .029                .03167              +.00267
#  .033                .036                +.003
#  .040                .04267              +.00267
#This was usually ~ .002" - .003" too big compared to the hole as displayed in the CAD software.
#To compensate for PDF rendering errors (either during CAD Print function or PDF parsing logic), adjust the values below as needed.
#units are pixels; for example, a value of 2.4 at 600 dpi = .0004 inch, 2 at 600 dpi = .0033"
use constant
{
    HOLE_ADJUST => -0.004 * 600, #-2.6, #holes seemed to be slightly oversized (by .002" - .004"), so shrink them a little
    RNDPAD_ADJUST => -0.003 * 600, #-2, #-2.4, #round pads seemed to be slightly oversized, so shrink them a little
    SQRPAD_ADJUST => +0.001 * 600, #+.5, #square pads are sometimes too small by .00067, so bump them up a little
    RECTPAD_ADJUST => 0, #(pixels) rectangular pads seem to be okay? (not tested much)
    TRACE_ADJUST => 0, #(pixels) traces seemed to be okay?
    REDUCE_TOLERANCE => .001, #(inches) allow this much variation when reducing circles and rects
};

#Also, my CAD's Print function or the PDF print driver I used was a little off for circles, so define some additional adjustment values here:
#Values are added to X/Y coordinates; units are pixels; for example, a value of 1 at 600 dpi would be ~= .002 inch
use constant
{
    CIRCLE_ADJUST_MINX => 0,
    CIRCLE_ADJUST_MINY => -0.001 * 600, #-1, #circles were a little too high, so nudge them a little lower
    CIRCLE_ADJUST_MAXX => +0.001 * 600, #+1, #circles were a little too far to the left, so nudge them a little to the right
    CIRCLE_ADJUST_MAXY => 0,
    SUBST_CIRCLE_CLIPRECT => FALSE, #generate circle and substitute for clip rects (to compensate for the way some CAD software draws circles)
    WANT_CLIPRECT => TRUE, #FALSE, #AI doesn't need clip rect at all? should be on normally?
    RECT_COMPLETION => FALSE, #TRUE, #fill in 4th side of rect when 3 sides found
};

#allow .012 clearance around pads for solder mask:
#This value effectively adjusts pad sizes in the TOOL_SIZES list above (only for solder mask layers).
use constant SOLDER_MARGIN => +.012; #units are inches

#line join/cap styles:
use constant
{
    CAP_NONE => 0, #butt (none); line is exact length
    CAP_ROUND => 1, #round cap/join; line overhangs by a semi-circle at either end
    CAP_SQUARE => 2, #square cap/join; line overhangs by a half square on either end
    CAP_OVERRIDE => FALSE, #cap style overrides drawing logic
};
    
#number of elements in each shape type:
use constant
{
    RECT_SHAPELEN => 6, #x0, y0, x1, y1, count, "rect" (start, end corners)
    LINE_SHAPELEN => 6, #x0, y0, x1, y1, count, "line" (line seg)
    CURVE_SHAPELEN => 10, #xstart, ystart, x0, y0, x1, y1, xend, yend, count, "curve" (bezier 2 points)
    CIRCLE_SHAPELEN => 5, #x, y, 5, count, "circle" (center + radius)
};
#const my %SHAPELEN =
#Readonly my %SHAPELEN =>
our %SHAPELEN =
(
    rect => RECT_SHAPELEN,
    line => LINE_SHAPELEN,
    curve => CURVE_SHAPELEN,
    circle => CIRCLE_SHAPELEN,
);

#panelization:
#This will repeat the entire body the number of times indicated along the X or Y axes (files grow accordingly).
#Display elements that overhang PCB boundary can be squashed or left as-is (typically text or other silk screen markings).
#Set "overhangs" TRUE to allow overhangs, FALSE to truncate them.
#xpad and ypad allow margins to be added around outer edge of panelized PCB.
use constant PANELIZE => {'x' => 1, 'y' => 1, 'xpad' => 0, 'ypad' => 0, 'overhangs' => TRUE}; #number of times to repeat in X and Y directions

# Set this to 1 if you need TurboCAD support.
#$turboCAD = FALSE; #is this still needed as an option?

#CIRCAD pad generation uses an appropriate aperture, then moves it (stroke) "a little" - we use this to find pads and distinguish them from PCB holes. 
use constant PAD_STROKE => 0.3; #0.0005 * 600; #units are pixels
#convert very short traces to pads or holes:
use constant TRACE_MINLEN => .001; #units are inches
#use constant ALWAYS_XY => TRUE; #FALSE; #force XY even if X or Y doesn't change; NOTE: needs to be TRUE for all pads to show in FlatCAM and ViewPlot
use constant REMOVE_POLARITY => FALSE; #TRUE; #set to remove subtractive (negative) polarity; NOTE: must be FALSE for ground planes

#PDF uses "points", each point = 1/72 inch
#combined with a PDF scale factor of .12, this gives 600 dpi resolution (1/72 * .12 = 600 dpi)
use constant INCHES_PER_POINT => 1/72; #0.0138888889; #multiply point-size by this to get inches

# The precision used when computing a bezier curve. Higher numbers are more precise but slower (and generate larger files).
#$bezierPrecision = 100;
use constant BEZIER_PRECISION => 36; #100; #use const; reduced for faster rendering (mainly used for silk screen and thermal pads)

# Ground planes and silk screen or larger copper rectangles or circles are filled line-by-line using this resolution.
use constant FILL_WIDTH => .01; #fill at most 0.01 inch at a time

# The max number of characters to read into memory
use constant MAX_BYTES => 10 * M; #bumped up to 10 MB, use const

use constant DUP_DRILL1 => TRUE; #FALSE; #kludge: ViewPlot doesn't load drill files that are too small so duplicate first tool

my $runtime = time(); #Time::HiRes::gettimeofday(); #measure my execution time

print STDERR "Loaded config settings from '${\(__FILE__)}'.\n";
1; #last value must be truthful to indicate successful load


#############################################################################################
#junk/experiment:

#use Package::Constants;
#use Exporter qw(import); #https://perldoc.perl.org/Exporter.html

#my $caller = "pdf2gerb::";

#sub cfg
#{
#    my $proto = shift;
#    my $class = ref($proto) || $proto;
#    my $settings =
#    {
#        $WANT_DEBUG => 990, #10; #level of debug wanted; higher == more, lower == less, 0 == none
#    };
#    bless($settings, $class);
#    return $settings;
#}

#use constant HELLO => "hi there2"; #"main::HELLO" => "hi there";
#use constant GOODBYE => 14; #"main::GOODBYE" => 12;

#print STDERR "read cfg file\n";

#our @EXPORT_OK = Package::Constants->list(__PACKAGE__); #https://www.perlmonks.org/?node_id=1072691; NOTE: "_OK" skips short/common names

#print STDERR scalar(@EXPORT_OK) . " consts exported:\n";
#foreach(@EXPORT_OK) { print STDERR "$_\n"; }
#my $val = main::thing("xyz");
#print STDERR "caller gave me $val\n";
#foreach my $arg (@ARGV) { print STDERR "arg $arg\n"; }

Download Details:

Author: swannman
Source Code: https://github.com/swannman/pdf2gerb

License: GPL-3.0 license

#perl 

bindu singh

bindu singh

1647351133

Procedure To Become An Air Hostess/Cabin Crew

Minimum educational required – 10+2 passed in any stream from a recognized board.

The age limit is 18 to 25 years. It may differ from one airline to another!

 

Physical and Medical standards –

  • Females must be 157 cm in height and males must be 170 cm in height (for males). This parameter may vary from one airline toward the next.
  • The candidate's body weight should be proportional to his or her height.
  • Candidates with blemish-free skin will have an advantage.
  • Physical fitness is required of the candidate.
  • Eyesight requirements: a minimum of 6/9 vision is required. Many airlines allow applicants to fix their vision to 20/20!
  • There should be no history of mental disease in the candidate's past.
  • The candidate should not have a significant cardiovascular condition.

You can become an air hostess if you meet certain criteria, such as a minimum educational level, an age limit, language ability, and physical characteristics.

As can be seen from the preceding information, a 10+2 pass is the minimal educational need for becoming an air hostess in India. So, if you have a 10+2 certificate from a recognized board, you are qualified to apply for an interview for air hostess positions!

You can still apply for this job if you have a higher qualification (such as a Bachelor's or Master's Degree).

So That I may recommend, joining Special Personality development courses, a learning gallery that offers aviation industry courses by AEROFLY INTERNATIONAL AVIATION ACADEMY in CHANDIGARH. They provide extra sessions included in the course and conduct the entire course in 6 months covering all topics at an affordable pricing structure. They pay particular attention to each and every aspirant and prepare them according to airline criteria. So be a part of it and give your aspirations So be a part of it and give your aspirations wings.

Read More:   Safety and Emergency Procedures of Aviation || Operations of Travel and Hospitality Management || Intellectual Language and Interview Training || Premiere Coaching For Retail and Mass Communication |Introductory Cosmetology and Tress Styling  ||  Aircraft Ground Personnel Competent Course

For more information:

Visit us at:     https://aerofly.co.in

Phone         :     wa.me//+919988887551 

Address:     Aerofly International Aviation Academy, SCO 68, 4th Floor, Sector 17-D,                            Chandigarh, Pin 160017 

Email:     info@aerofly.co.in

 

#air hostess institute in Delhi, 

#air hostess institute in Chandigarh, 

#air hostess institute near me,

#best air hostess institute in India,
#air hostess institute,

#best air hostess institute in Delhi, 

#air hostess institute in India, 

#best air hostess institute in India,

#air hostess training institute fees, 

#top 10 air hostess training institute in India, 

#government air hostess training institute in India, 

#best air hostess training institute in the world,

#air hostess training institute fees, 

#cabin crew course fees, 

#cabin crew course duration and fees, 

#best cabin crew training institute in Delhi, 

#cabin crew courses after 12th,

#best cabin crew training institute in Delhi, 

#cabin crew training institute in Delhi, 

#cabin crew training institute in India,

#cabin crew training institute near me,

#best cabin crew training institute in India,

#best cabin crew training institute in Delhi, 

#best cabin crew training institute in the world, 

#government cabin crew training institute

Coding  Life

Coding Life

1636600766

Build an Air Quality Monitor Using Raspberry Pi Zero W

Knowing the air quality is useful to keep yourself productive because the bad air quality would affect your brain performance more than you'd think.
So, I built a room air quality monitor that displays the temperature, humidity, CO2 density, and barometric pressure of my home office.
It notifies with sound when the CO2 level gets more than 1,000 ppm - So, I can know when to refresh the air.
In this video we show you how to build an air quality monitor using Raspberry Pi Zero W + ANAVI Infrared pHAT

00:00 Hello
00:31 Unbox a Raspberry Pi Zero W
00:48 SanDisk 32GB MicroSD Card
00:54 Anker 2-in-1 USB C Memory Card Reader
01:03 Download Raspberry Pi Imager
01:22 Write a Raspberry Pi OS to the SD Card
01:58 Configure your Wi-Fi network
02:31 Enable SSH server
02:39 Boot the Raspberry Pi
03:03 Check if connected to the Wi-Fi network
03:12 Log in to the Raspberry Pi via SSH
03:29 Unbox an ANAVI Infrared pHAT
04:28 Install the ANAVI Infrared pHAT to the Raspberry Pi Zero
04:40 Connect the sensors to the I2C slots
05:29 MH-Z19 - CO2 density sensor
06:00 Connect MH-Z19 to the UART slot
06:16 Check if MH-Z19 is working
06:33 Update Raspberry Pi packages
07:11 Install git & build tools
07:25 Install python-smbus and i2c-tools
07:41 Enable I2C interface
08:06 Check the I2C interface working
08:16 Get the example code for testing the sensors
08:54 Install wiringpi
09:05 Build the example code
09:43 Enable Serial interface
10:14 Install python-pip
10:33 Install a Python module for mh-z19
10:59 Put MH-Z19 outside for a while for calibration
11:17 Run ZERO point calibration
11:44 Install nginx web server
11:55 Clone a web UI
12:11 Build C programs for the sensors
12:47 Prepare test data
13:43 Configure nginx
14:21 Open the web interface from browser
14:39 Configure root's crontab to update data every 5 minutes
16:01 Put the Raspberry Pi in a cable box

▶ Check out the below article for the step-by-step guide of the commands I run in the video
https://community.inkdrop.app/note/d975606d93c067c5ef8d6adfb5db83b5/note:AYKbsgC9e 

▶ My dotfiles
https://github.com/craftzdog/dotfiles-public 

Credits:
▶ BGM: Epidemic Sound https://www.epidemicsound.com/referral/p96aa8/ 

▶ Subscribe: https://www.youtube.com/c/devaslife/featured 

#raspberry #raspberry-pi 

TensorFlow Lite Object Detection using Raspberry Pi and Pi Camera

I have not created the Object Detection model, I have just merely cloned Google’s Tensor Flow Lite model and followed their Raspberry Pi Tutorial which they talked about in the Readme! You don’t need to use this article if you understand everything from the Readme. I merely talk about what I did!

Prerequisites:

  • I have used a Raspberry Pi 3 Model B and PI Camera Board (3D printed a case for camera board). **I had this connected before starting and did not include this in the 90 minutes **(plenty of YouTube videos showing how to do this depending on what Pi model you have. I used a video like this a while ago!)

  • I have used my Apple Macbook which is Linux at heart and so is the Raspberry Pi. By using Apple you don’t need to install any applications to interact with the Raspberry Pi, but on Windows you do (I will explain where to go in the article if you use windows)

#raspberry-pi #object-detection #raspberry-pi-camera #tensorflow-lite #tensorflow #tensorflow lite object detection using raspberry pi and pi camera

Tools and Images to Build a Raspberry Pi n8n server

n8n-pi

Tools and Images to Build a Raspberry Pi n8n server

Introduction

The purpose of this project is to create a Raspberry Pi image preconfigured with n8n so that it runs out of the box.

What is n8n?

n8n is a no-code/low code environment used to connect and automate different systems and services. It is programmed using a series of connected nodes that receive, transform, and then transmit date from and to other nodes. Each node represents a service or system allowing these different entities to interact. All of this is done using a WebUI.

Why n8n-pi?

Whevever a new technology is released, two common barriers often prevent potential users from trying out the technology:

  1. System costs
  2. Installation & configuration challenges

The n8n-pi project eliminates these two roadblocks by preconfiguring a working system that runs on easily available, low cost hardware. For as little as $40 and a few minutes, they can have a full n8n system up and running.

Thanks!

This project would not be possible if it was not for the help of the following:

Documentation

All documentation for this project can be found at http://n8n-pi.tephlon.xyz.

Download Details:

Author: TephlonDude

GitHub: https://github.com/TephlonDude/n8n-pi

#pi #raspberry pi #raspberry #raspberry-pi