Display Loading Image when AJAX call is in Progress using Python Flask PostgreSQL

Display Loading Image when AJAX call is in Progress using Python Flask PostgreSQL

Source Code : https://tutorial101.blogspot.com/2021…

Subscribe: https://www.youtube.com/c/Cairocoders/featured

#python #ajax #postgresql

What is GEEK

Buddha Community

Display Loading Image when AJAX call is in Progress using Python Flask PostgreSQL
Queenie  Davis

Queenie Davis

1653123600

EasyMDE: Simple, Beautiful and Embeddable JavaScript Markdown Editor

EasyMDE - Markdown Editor 

This repository is a fork of SimpleMDE, made by Sparksuite. Go to the dedicated section for more information.

A drop-in JavaScript text area replacement for writing beautiful and understandable Markdown. EasyMDE allows users who may be less experienced with Markdown to use familiar toolbar buttons and shortcuts.

In addition, the syntax is rendered while editing to clearly show the expected result. Headings are larger, emphasized words are italicized, links are underlined, etc.

EasyMDE also features both built-in auto saving and spell checking. The editor is entirely customizable, from theming to toolbar buttons and javascript hooks.

Try the demo

Preview

Quick access

Install EasyMDE

Via npm:

npm install easymde

Via the UNPKG CDN:

<link rel="stylesheet" href="https://unpkg.com/easymde/dist/easymde.min.css">
<script src="https://unpkg.com/easymde/dist/easymde.min.js"></script>

Or jsDelivr:

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/easymde/dist/easymde.min.css">
<script src="https://cdn.jsdelivr.net/npm/easymde/dist/easymde.min.js"></script>

How to use

Loading the editor

After installing and/or importing the module, you can load EasyMDE onto the first textarea element on the web page:

<textarea></textarea>
<script>
const easyMDE = new EasyMDE();
</script>

Alternatively you can select a specific textarea, via JavaScript:

<textarea id="my-text-area"></textarea>
<script>
const easyMDE = new EasyMDE({element: document.getElementById('my-text-area')});
</script>

Editor functions

Use easyMDE.value() to get the content of the editor:

<script>
easyMDE.value();
</script>

Use easyMDE.value(val) to set the content of the editor:

<script>
easyMDE.value('New input for **EasyMDE**');
</script>

Configuration

Options list

  • autoDownloadFontAwesome: If set to true, force downloads Font Awesome (used for icons). If set to false, prevents downloading. Defaults to undefined, which will intelligently check whether Font Awesome has already been included, then download accordingly.
  • autofocus: If set to true, focuses the editor automatically. Defaults to false.
  • autosave: Saves the text that's being written and will load it back in the future. It will forget the text when the form it's contained in is submitted.
    • enabled: If set to true, saves the text automatically. Defaults to false.
    • delay: Delay between saves, in milliseconds. Defaults to 10000 (10 seconds).
    • submit_delay: Delay before assuming that submit of the form failed and saving the text, in milliseconds. Defaults to autosave.delay or 10000 (10 seconds).
    • uniqueId: You must set a unique string identifier so that EasyMDE can autosave. Something that separates this from other instances of EasyMDE elsewhere on your website.
    • timeFormat: Set DateTimeFormat. More information see DateTimeFormat instances. Default locale: en-US, format: hour:minute.
    • text: Set text for autosave.
  • autoRefresh: Useful, when initializing the editor in a hidden DOM node. If set to { delay: 300 }, it will check every 300 ms if the editor is visible and if positive, call CodeMirror's refresh().
  • blockStyles: Customize how certain buttons that style blocks of text behave.
    • bold: Can be set to ** or __. Defaults to **.
    • code: Can be set to ``` or ~~~. Defaults to ```.
    • italic: Can be set to * or _. Defaults to *.
  • unorderedListStyle: can be *, - or +. Defaults to *.
  • scrollbarStyle: Chooses a scrollbar implementation. The default is "native", showing native scrollbars. The core library also provides the "null" style, which completely hides the scrollbars. Addons can implement additional scrollbar models.
  • element: The DOM element for the textarea element to use. Defaults to the first textarea element on the page.
  • forceSync: If set to true, force text changes made in EasyMDE to be immediately stored in original text area. Defaults to false.
  • hideIcons: An array of icon names to hide. Can be used to hide specific icons shown by default without completely customizing the toolbar.
  • indentWithTabs: If set to false, indent using spaces instead of tabs. Defaults to true.
  • initialValue: If set, will customize the initial value of the editor.
  • previewImagesInEditor: - EasyMDE will show preview of images, false by default, preview for images will appear only for images on separate lines.
  • imagesPreviewHandler: - A custom function for handling the preview of images. Takes the parsed string between the parantheses of the image markdown ![]( ) as argument and returns a string that serves as the src attribute of the <img> tag in the preview. Enables dynamic previewing of images in the frontend without having to upload them to a server, allows copy-pasting of images to the editor with preview.
  • insertTexts: Customize how certain buttons that insert text behave. Takes an array with two elements. The first element will be the text inserted before the cursor or highlight, and the second element will be inserted after. For example, this is the default link value: ["[", "](http://)"].
    • horizontalRule
    • image
    • link
    • table
  • lineNumbers: If set to true, enables line numbers in the editor.
  • lineWrapping: If set to false, disable line wrapping. Defaults to true.
  • minHeight: Sets the minimum height for the composition area, before it starts auto-growing. Should be a string containing a valid CSS value like "500px". Defaults to "300px".
  • maxHeight: Sets fixed height for the composition area. minHeight option will be ignored. Should be a string containing a valid CSS value like "500px". Defaults to undefined.
  • onToggleFullScreen: A function that gets called when the editor's full screen mode is toggled. The function will be passed a boolean as parameter, true when the editor is currently going into full screen mode, or false.
  • parsingConfig: Adjust settings for parsing the Markdown during editing (not previewing).
    • allowAtxHeaderWithoutSpace: If set to true, will render headers without a space after the #. Defaults to false.
    • strikethrough: If set to false, will not process GFM strikethrough syntax. Defaults to true.
    • underscoresBreakWords: If set to true, let underscores be a delimiter for separating words. Defaults to false.
  • overlayMode: Pass a custom codemirror overlay mode to parse and style the Markdown during editing.
    • mode: A codemirror mode object.
    • combine: If set to false, will replace CSS classes returned by the default Markdown mode. Otherwise the classes returned by the custom mode will be combined with the classes returned by the default mode. Defaults to true.
  • placeholder: If set, displays a custom placeholder message.
  • previewClass: A string or array of strings that will be applied to the preview screen when activated. Defaults to "editor-preview".
  • previewRender: Custom function for parsing the plaintext Markdown and returning HTML. Used when user previews.
  • promptURLs: If set to true, a JS alert window appears asking for the link or image URL. Defaults to false.
  • promptTexts: Customize the text used to prompt for URLs.
    • image: The text to use when prompting for an image's URL. Defaults to URL of the image:.
    • link: The text to use when prompting for a link's URL. Defaults to URL for the link:.
  • uploadImage: If set to true, enables the image upload functionality, which can be triggered by drag and drop, copy-paste and through the browse-file window (opened when the user click on the upload-image icon). Defaults to false.
  • imageMaxSize: Maximum image size in bytes, checked before upload (note: never trust client, always check the image size at server-side). Defaults to 1024 * 1024 * 2 (2 MB).
  • imageAccept: A comma-separated list of mime-types used to check image type before upload (note: never trust client, always check file types at server-side). Defaults to image/png, image/jpeg.
  • imageUploadFunction: A custom function for handling the image upload. Using this function will render the options imageMaxSize, imageAccept, imageUploadEndpoint and imageCSRFToken ineffective.
    • The function gets a file and onSuccess and onError callback functions as parameters. onSuccess(imageUrl: string) and onError(errorMessage: string)
  • imageUploadEndpoint: The endpoint where the images data will be sent, via an asynchronous POST request. The server is supposed to save this image, and return a JSON response.
    • if the request was successfully processed (HTTP 200 OK): {"data": {"filePath": "<filePath>"}} where filePath is the path of the image (absolute if imagePathAbsolute is set to true, relative if otherwise);
    • otherwise: {"error": "<errorCode>"}, where errorCode can be noFileGiven (HTTP 400 Bad Request), typeNotAllowed (HTTP 415 Unsupported Media Type), fileTooLarge (HTTP 413 Payload Too Large) or importError (see errorMessages below). If errorCode is not one of the errorMessages, it is alerted unchanged to the user. This allows for server-side error messages. No default value.
  • imagePathAbsolute: If set to true, will treat imageUrl from imageUploadFunction and filePath returned from imageUploadEndpoint as an absolute rather than relative path, i.e. not prepend window.location.origin to it.
  • imageCSRFToken: CSRF token to include with AJAX call to upload image. For various instances like Django, Spring and Laravel.
  • imageCSRFName: CSRF token filed name to include with AJAX call to upload image, applied when imageCSRFToken has value, defaults to csrfmiddlewaretoken.
  • imageCSRFHeader: If set to true, passing CSRF token via header. Defaults to false, which pass CSRF through request body.
  • imageTexts: Texts displayed to the user (mainly on the status bar) for the import image feature, where #image_name#, #image_size# and #image_max_size# will replaced by their respective values, that can be used for customization or internationalization:
    • sbInit: Status message displayed initially if uploadImage is set to true. Defaults to Attach files by drag and dropping or pasting from clipboard..
    • sbOnDragEnter: Status message displayed when the user drags a file to the text area. Defaults to Drop image to upload it..
    • sbOnDrop: Status message displayed when the user drops a file in the text area. Defaults to Uploading images #images_names#.
    • sbProgress: Status message displayed to show uploading progress. Defaults to Uploading #file_name#: #progress#%.
    • sbOnUploaded: Status message displayed when the image has been uploaded. Defaults to Uploaded #image_name#.
    • sizeUnits: A comma-separated list of units used to display messages with human-readable file sizes. Defaults to B, KB, MB (example: 218 KB). You can use B,KB,MB instead if you prefer without whitespaces (218KB).
  • errorMessages: Errors displayed to the user, using the errorCallback option, where #image_name#, #image_size# and #image_max_size# will replaced by their respective values, that can be used for customization or internationalization:
    • noFileGiven: The server did not receive any file from the user. Defaults to You must select a file..
    • typeNotAllowed: The user send a file type which doesn't match the imageAccept list, or the server returned this error code. Defaults to This image type is not allowed..
    • fileTooLarge: The size of the image being imported is bigger than the imageMaxSize, or if the server returned this error code. Defaults to Image #image_name# is too big (#image_size#).\nMaximum file size is #image_max_size#..
    • importError: An unexpected error occurred when uploading the image. Defaults to Something went wrong when uploading the image #image_name#..
  • errorCallback: A callback function used to define how to display an error message. Defaults to (errorMessage) => alert(errorMessage).
  • renderingConfig: Adjust settings for parsing the Markdown during previewing (not editing).
    • codeSyntaxHighlighting: If set to true, will highlight using highlight.js. Defaults to false. To use this feature you must include highlight.js on your page or pass in using the hljs option. For example, include the script and the CSS files like:
      <script src="https://cdn.jsdelivr.net/highlight.js/latest/highlight.min.js"></script>
      <link rel="stylesheet" href="https://cdn.jsdelivr.net/highlight.js/latest/styles/github.min.css">
    • hljs: An injectible instance of highlight.js. If you don't want to rely on the global namespace (window.hljs), you can provide an instance here. Defaults to undefined.
    • markedOptions: Set the internal Markdown renderer's options. Other renderingConfig options will take precedence.
    • singleLineBreaks: If set to false, disable parsing GitHub Flavored Markdown (GFM) single line breaks. Defaults to true.
    • sanitizerFunction: Custom function for sanitizing the HTML output of Markdown renderer.
  • shortcuts: Keyboard shortcuts associated with this instance. Defaults to the array of shortcuts.
  • showIcons: An array of icon names to show. Can be used to show specific icons hidden by default without completely customizing the toolbar.
  • spellChecker: If set to false, disable the spell checker. Defaults to true. Optionally pass a CodeMirrorSpellChecker-compliant function.
  • inputStyle: textarea or contenteditable. Defaults to textarea for desktop and contenteditable for mobile. contenteditable option is necessary to enable nativeSpellcheck.
  • nativeSpellcheck: If set to false, disable native spell checker. Defaults to true.
  • sideBySideFullscreen: If set to false, allows side-by-side editing without going into fullscreen. Defaults to true.
  • status: If set to false, hide the status bar. Defaults to the array of built-in status bar items.
    • Optionally, you can set an array of status bar items to include, and in what order. You can even define your own custom status bar items.
  • styleSelectedText: If set to false, remove the CodeMirror-selectedtext class from selected lines. Defaults to true.
  • syncSideBySidePreviewScroll: If set to false, disable syncing scroll in side by side mode. Defaults to true.
  • tabSize: If set, customize the tab size. Defaults to 2.
  • theme: Override the theme. Defaults to easymde.
  • toolbar: If set to false, hide the toolbar. Defaults to the array of icons.
  • toolbarTips: If set to false, disable toolbar button tips. Defaults to true.
  • direction: rtl or ltr. Changes text direction to support right-to-left languages. Defaults to ltr.

Options example

Most options demonstrate the non-default behavior:

const editor = new EasyMDE({
    autofocus: true,
    autosave: {
        enabled: true,
        uniqueId: "MyUniqueID",
        delay: 1000,
        submit_delay: 5000,
        timeFormat: {
            locale: 'en-US',
            format: {
                year: 'numeric',
                month: 'long',
                day: '2-digit',
                hour: '2-digit',
                minute: '2-digit',
            },
        },
        text: "Autosaved: "
    },
    blockStyles: {
        bold: "__",
        italic: "_",
    },
    unorderedListStyle: "-",
    element: document.getElementById("MyID"),
    forceSync: true,
    hideIcons: ["guide", "heading"],
    indentWithTabs: false,
    initialValue: "Hello world!",
    insertTexts: {
        horizontalRule: ["", "\n\n-----\n\n"],
        image: ["![](http://", ")"],
        link: ["[", "](https://)"],
        table: ["", "\n\n| Column 1 | Column 2 | Column 3 |\n| -------- | -------- | -------- |\n| Text     | Text      | Text     |\n\n"],
    },
    lineWrapping: false,
    minHeight: "500px",
    parsingConfig: {
        allowAtxHeaderWithoutSpace: true,
        strikethrough: false,
        underscoresBreakWords: true,
    },
    placeholder: "Type here...",

    previewClass: "my-custom-styling",
    previewClass: ["my-custom-styling", "more-custom-styling"],

    previewRender: (plainText) => customMarkdownParser(plainText), // Returns HTML from a custom parser
    previewRender: (plainText, preview) => { // Async method
        setTimeout(() => {
            preview.innerHTML = customMarkdownParser(plainText);
        }, 250);

        return "Loading...";
    },
    promptURLs: true,
    promptTexts: {
        image: "Custom prompt for URL:",
        link: "Custom prompt for URL:",
    },
    renderingConfig: {
        singleLineBreaks: false,
        codeSyntaxHighlighting: true,
        sanitizerFunction: (renderedHTML) => {
            // Using DOMPurify and only allowing <b> tags
            return DOMPurify.sanitize(renderedHTML, {ALLOWED_TAGS: ['b']})
        },
    },
    shortcuts: {
        drawTable: "Cmd-Alt-T"
    },
    showIcons: ["code", "table"],
    spellChecker: false,
    status: false,
    status: ["autosave", "lines", "words", "cursor"], // Optional usage
    status: ["autosave", "lines", "words", "cursor", {
        className: "keystrokes",
        defaultValue: (el) => {
            el.setAttribute('data-keystrokes', 0);
        },
        onUpdate: (el) => {
            const keystrokes = Number(el.getAttribute('data-keystrokes')) + 1;
            el.innerHTML = `${keystrokes} Keystrokes`;
            el.setAttribute('data-keystrokes', keystrokes);
        },
    }], // Another optional usage, with a custom status bar item that counts keystrokes
    styleSelectedText: false,
    sideBySideFullscreen: false,
    syncSideBySidePreviewScroll: false,
    tabSize: 4,
    toolbar: false,
    toolbarTips: false,
});

Toolbar icons

Below are the built-in toolbar icons (only some of which are enabled by default), which can be reorganized however you like. "Name" is the name of the icon, referenced in the JavaScript. "Action" is either a function or a URL to open. "Class" is the class given to the icon. "Tooltip" is the small tooltip that appears via the title="" attribute. Note that shortcut hints are added automatically and reflect the specified action if it has a key bind assigned to it (i.e. with the value of action set to bold and that of tooltip set to Bold, the final text the user will see would be "Bold (Ctrl-B)").

Additionally, you can add a separator between any icons by adding "|" to the toolbar array.

NameActionTooltip
Class
boldtoggleBoldBold
fa fa-bold
italictoggleItalicItalic
fa fa-italic
strikethroughtoggleStrikethroughStrikethrough
fa fa-strikethrough
headingtoggleHeadingSmallerHeading
fa fa-header
heading-smallertoggleHeadingSmallerSmaller Heading
fa fa-header
heading-biggertoggleHeadingBiggerBigger Heading
fa fa-lg fa-header
heading-1toggleHeading1Big Heading
fa fa-header header-1
heading-2toggleHeading2Medium Heading
fa fa-header header-2
heading-3toggleHeading3Small Heading
fa fa-header header-3
codetoggleCodeBlockCode
fa fa-code
quotetoggleBlockquoteQuote
fa fa-quote-left
unordered-listtoggleUnorderedListGeneric List
fa fa-list-ul
ordered-listtoggleOrderedListNumbered List
fa fa-list-ol
clean-blockcleanBlockClean block
fa fa-eraser
linkdrawLinkCreate Link
fa fa-link
imagedrawImageInsert Image
fa fa-picture-o
tabledrawTableInsert Table
fa fa-table
horizontal-ruledrawHorizontalRuleInsert Horizontal Line
fa fa-minus
previewtogglePreviewToggle Preview
fa fa-eye no-disable
side-by-sidetoggleSideBySideToggle Side by Side
fa fa-columns no-disable no-mobile
fullscreentoggleFullScreenToggle Fullscreen
fa fa-arrows-alt no-disable no-mobile
guideThis linkMarkdown Guide
fa fa-question-circle
undoundoUndo
fa fa-undo
redoredoRedo
fa fa-redo

Toolbar customization

Customize the toolbar using the toolbar option.

Only the order of existing buttons:

const easyMDE = new EasyMDE({
    toolbar: ["bold", "italic", "heading", "|", "quote"]
});

All information and/or add your own icons

const easyMDE = new EasyMDE({
    toolbar: [
        {
            name: "bold",
            action: EasyMDE.toggleBold,
            className: "fa fa-bold",
            title: "Bold",
        },
        "italics", // shortcut to pre-made button
        {
            name: "custom",
            action: (editor) => {
                // Add your own code
            },
            className: "fa fa-star",
            title: "Custom Button",
            attributes: { // for custom attributes
                id: "custom-id",
                "data-value": "custom value" // HTML5 data-* attributes need to be enclosed in quotation marks ("") because of the dash (-) in its name.
            }
        },
        "|" // Separator
        // [, ...]
    ]
});

Put some buttons on dropdown menu

const easyMDE = new EasyMDE({
    toolbar: [{
                name: "heading",
                action: EasyMDE.toggleHeadingSmaller,
                className: "fa fa-header",
                title: "Headers",
            },
            "|",
            {
                name: "others",
                className: "fa fa-blind",
                title: "others buttons",
                children: [
                    {
                        name: "image",
                        action: EasyMDE.drawImage,
                        className: "fa fa-picture-o",
                        title: "Image",
                    },
                    {
                        name: "quote",
                        action: EasyMDE.toggleBlockquote,
                        className: "fa fa-percent",
                        title: "Quote",
                    },
                    {
                        name: "link",
                        action: EasyMDE.drawLink,
                        className: "fa fa-link",
                        title: "Link",
                    }
                ]
            },
        // [, ...]
    ]
});

Keyboard shortcuts

EasyMDE comes with an array of predefined keyboard shortcuts, but they can be altered with a configuration option. The list of default ones is as follows:

Shortcut (Windows / Linux)Shortcut (macOS)Action
Ctrl-'Cmd-'"toggleBlockquote"
Ctrl-BCmd-B"toggleBold"
Ctrl-ECmd-E"cleanBlock"
Ctrl-HCmd-H"toggleHeadingSmaller"
Ctrl-ICmd-I"toggleItalic"
Ctrl-KCmd-K"drawLink"
Ctrl-LCmd-L"toggleUnorderedList"
Ctrl-PCmd-P"togglePreview"
Ctrl-Alt-CCmd-Alt-C"toggleCodeBlock"
Ctrl-Alt-ICmd-Alt-I"drawImage"
Ctrl-Alt-LCmd-Alt-L"toggleOrderedList"
Shift-Ctrl-HShift-Cmd-H"toggleHeadingBigger"
F9F9"toggleSideBySide"
F11F11"toggleFullScreen"

Here is how you can change a few, while leaving others untouched:

const editor = new EasyMDE({
    shortcuts: {
        "toggleOrderedList": "Ctrl-Alt-K", // alter the shortcut for toggleOrderedList
        "toggleCodeBlock": null, // unbind Ctrl-Alt-C
        "drawTable": "Cmd-Alt-T", // bind Cmd-Alt-T to drawTable action, which doesn't come with a default shortcut
    }
});

Shortcuts are automatically converted between platforms. If you define a shortcut as "Cmd-B", on PC that shortcut will be changed to "Ctrl-B". Conversely, a shortcut defined as "Ctrl-B" will become "Cmd-B" for Mac users.

The list of actions that can be bound is the same as the list of built-in actions available for toolbar buttons.

Advanced use

Event handling

You can catch the following list of events: https://codemirror.net/doc/manual.html#events

const easyMDE = new EasyMDE();
easyMDE.codemirror.on("change", () => {
    console.log(easyMDE.value());
});

Removing EasyMDE from text area

You can revert to the initial text area by calling the toTextArea method. Note that this clears up the autosave (if enabled) associated with it. The text area will retain any text from the destroyed EasyMDE instance.

const easyMDE = new EasyMDE();
// ...
easyMDE.toTextArea();
easyMDE = null;

If you need to remove registered event listeners (when the editor is not needed anymore), call easyMDE.cleanup().

Useful methods

The following self-explanatory methods may be of use while developing with EasyMDE.

const easyMDE = new EasyMDE();
easyMDE.isPreviewActive(); // returns boolean
easyMDE.isSideBySideActive(); // returns boolean
easyMDE.isFullscreenActive(); // returns boolean
easyMDE.clearAutosavedValue(); // no returned value

How it works

EasyMDE is a continuation of SimpleMDE.

SimpleMDE began as an improvement of lepture's Editor project, but has now taken on an identity of its own. It is bundled with CodeMirror and depends on Font Awesome.

CodeMirror is the backbone of the project and parses much of the Markdown syntax as it's being written. This allows us to add styles to the Markdown that's being written. Additionally, a toolbar and status bar have been added to the top and bottom, respectively. Previews are rendered by Marked using GitHub Flavored Markdown (GFM).

SimpleMDE fork

I originally made this fork to implement FontAwesome 5 compatibility into SimpleMDE. When that was done I submitted a pull request, which has not been accepted yet. This, and the project being inactive since May 2017, triggered me to make more changes and try to put new life into the project.

Changes include:

  • FontAwesome 5 compatibility
  • Guide button works when editor is in preview mode
  • Links are now https:// by default
  • Small styling changes
  • Support for Node 8 and beyond
  • Lots of refactored code
  • Links in preview will open in a new tab by default
  • TypeScript support

My intention is to continue development on this project, improving it and keeping it alive.

Hacking EasyMDE

You may want to edit this library to adapt its behavior to your needs. This can be done in some quick steps:

  1. Follow the prerequisites and installation instructions in the contribution guide;
  2. Do your changes;
  3. Run gulp command, which will generate files: dist/easymde.min.css and dist/easymde.min.js;
  4. Copy-paste those files to your code base, and you are done.

Contributing

Want to contribute to EasyMDE? Thank you! We have a contribution guide just for you!


Author: Ionaru
Source Code: https://github.com/Ionaru/easy-markdown-editor
License: MIT license

#react-native #react 

Dotnet Script: Run C# Scripts From The .NET CLI

dotnet script

Run C# scripts from the .NET CLI, define NuGet packages inline and edit/debug them in VS Code - all of that with full language services support from OmniSharp.

NuGet Packages

NameVersionFramework(s)
dotnet-script (global tool)Nugetnet6.0, net5.0, netcoreapp3.1
Dotnet.Script (CLI as Nuget)Nugetnet6.0, net5.0, netcoreapp3.1
Dotnet.Script.CoreNugetnetcoreapp3.1 , netstandard2.0
Dotnet.Script.DependencyModelNugetnetstandard2.0
Dotnet.Script.DependencyModel.NugetNugetnetstandard2.0

Installing

Prerequisites

The only thing we need to install is .NET Core 3.1 or .NET 5.0 SDK.

.NET Core Global Tool

.NET Core 2.1 introduced the concept of global tools meaning that you can install dotnet-script using nothing but the .NET CLI.

dotnet tool install -g dotnet-script

You can invoke the tool using the following command: dotnet-script
Tool 'dotnet-script' (version '0.22.0') was successfully installed.

The advantage of this approach is that you can use the same command for installation across all platforms. .NET Core SDK also supports viewing a list of installed tools and their uninstallation.

dotnet tool list -g

Package Id         Version      Commands
---------------------------------------------
dotnet-script      0.22.0       dotnet-script
dotnet tool uninstall dotnet-script -g

Tool 'dotnet-script' (version '0.22.0') was successfully uninstalled.

Windows

choco install dotnet.script

We also provide a PowerShell script for installation.

(new-object Net.WebClient).DownloadString("https://raw.githubusercontent.com/filipw/dotnet-script/master/install/install.ps1") | iex

Linux and Mac

curl -s https://raw.githubusercontent.com/filipw/dotnet-script/master/install/install.sh | bash

If permission is denied we can try with sudo

curl -s https://raw.githubusercontent.com/filipw/dotnet-script/master/install/install.sh | sudo bash

Docker

A Dockerfile for running dotnet-script in a Linux container is available. Build:

cd build
docker build -t dotnet-script -f Dockerfile ..

And run:

docker run -it dotnet-script --version

Github

You can manually download all the releases in zip format from the GitHub releases page.

Usage

Our typical helloworld.csx might look like this:

Console.WriteLine("Hello world!");

That is all it takes and we can execute the script. Args are accessible via the global Args array.

dotnet script helloworld.csx

Scaffolding

Simply create a folder somewhere on your system and issue the following command.

dotnet script init

This will create main.csx along with the launch configuration needed to debug the script in VS Code.

.
├── .vscode
│   └── launch.json
├── main.csx
└── omnisharp.json

We can also initialize a folder using a custom filename.

dotnet script init custom.csx

Instead of main.csx which is the default, we now have a file named custom.csx.

.
├── .vscode
│   └── launch.json
├── custom.csx
└── omnisharp.json

Note: Executing dotnet script init inside a folder that already contains one or more script files will not create the main.csx file.

Running scripts

Scripts can be executed directly from the shell as if they were executables.

foo.csx arg1 arg2 arg3

OSX/Linux

Just like all scripts, on OSX/Linux you need to have a #! and mark the file as executable via chmod +x foo.csx. If you use dotnet script init to create your csx it will automatically have the #! directive and be marked as executable.

The OSX/Linux shebang directive should be #!/usr/bin/env dotnet-script

#!/usr/bin/env dotnet-script
Console.WriteLine("Hello world");

You can execute your script using dotnet script or dotnet-script, which allows you to pass arguments to control your script execution more.

foo.csx arg1 arg2 arg3
dotnet script foo.csx -- arg1 arg2 arg3
dotnet-script foo.csx -- arg1 arg2 arg3

Passing arguments to scripts

All arguments after -- are passed to the script in the following way:

dotnet script foo.csx -- arg1 arg2 arg3

Then you can access the arguments in the script context using the global Args collection:

foreach (var arg in Args)
{
    Console.WriteLine(arg);
}

All arguments before -- are processed by dotnet script. For example, the following command-line

dotnet script -d foo.csx -- -d

will pass the -d before -- to dotnet script and enable the debug mode whereas the -d after -- is passed to script for its own interpretation of the argument.

NuGet Packages

dotnet script has built-in support for referencing NuGet packages directly from within the script.

#r "nuget: AutoMapper, 6.1.0"

package

Note: Omnisharp needs to be restarted after adding a new package reference

Package Sources

We can define package sources using a NuGet.Config file in the script root folder. In addition to being used during execution of the script, it will also be used by OmniSharp that provides language services for packages resolved from these package sources.

As an alternative to maintaining a local NuGet.Config file we can define these package sources globally either at the user level or at the computer level as described in Configuring NuGet Behaviour

It is also possible to specify packages sources when executing the script.

dotnet script foo.csx -s https://SomePackageSource

Multiple packages sources can be specified like this:

dotnet script foo.csx -s https://SomePackageSource -s https://AnotherPackageSource

Creating DLLs or Exes from a CSX file

Dotnet-Script can create a standalone executable or DLL for your script.

SwitchLong switchdescription
-o--outputDirectory where the published executable should be placed. Defaults to a 'publish' folder in the current directory.
-n--nameThe name for the generated DLL (executable not supported at this time). Defaults to the name of the script.
 --dllPublish to a .dll instead of an executable.
-c--configurationConfiguration to use for publishing the script [Release/Debug]. Default is "Debug"
-d--debugEnables debug output.
-r--runtimeThe runtime used when publishing the self contained executable. Defaults to your current runtime.

The executable you can run directly independent of dotnet install, while the DLL can be run using the dotnet CLI like this:

dotnet script exec {path_to_dll} -- arg1 arg2

Caching

We provide two types of caching, the dependency cache and the execution cache which is explained in detail below. In order for any of these caches to be enabled, it is required that all NuGet package references are specified using an exact version number. The reason for this constraint is that we need to make sure that we don't execute a script with a stale dependency graph.

Dependency Cache

In order to resolve the dependencies for a script, a dotnet restore is executed under the hood to produce a project.assets.json file from which we can figure out all the dependencies we need to add to the compilation. This is an out-of-process operation and represents a significant overhead to the script execution. So this cache works by looking at all the dependencies specified in the script(s) either in the form of NuGet package references or assembly file references. If these dependencies matches the dependencies from the last script execution, we skip the restore and read the dependencies from the already generated project.assets.json file. If any of the dependencies has changed, we must restore again to obtain the new dependency graph.

Execution cache

In order to execute a script it needs to be compiled first and since that is a CPU and time consuming operation, we make sure that we only compile when the source code has changed. This works by creating a SHA256 hash from all the script files involved in the execution. This hash is written to a temporary location along with the DLL that represents the result of the script compilation. When a script is executed the hash is computed and compared with the hash from the previous compilation. If they match there is no need to recompile and we run from the already compiled DLL. If the hashes don't match, the cache is invalidated and we recompile.

You can override this automatic caching by passing --no-cache flag, which will bypass both caches and cause dependency resolution and script compilation to happen every time we execute the script.

Cache Location

The temporary location used for caches is a sub-directory named dotnet-script under (in order of priority):

  1. The path specified for the value of the environment variable named DOTNET_SCRIPT_CACHE_LOCATION, if defined and value is not empty.
  2. Linux distributions only: $XDG_CACHE_HOME if defined otherwise $HOME/.cache
  3. macOS only: ~/Library/Caches
  4. The value returned by Path.GetTempPath for the platform.

 

Debugging

The days of debugging scripts using Console.WriteLine are over. One major feature of dotnet script is the ability to debug scripts directly in VS Code. Just set a breakpoint anywhere in your script file(s) and hit F5(start debugging)

debug

Script Packages

Script packages are a way of organizing reusable scripts into NuGet packages that can be consumed by other scripts. This means that we now can leverage scripting infrastructure without the need for any kind of bootstrapping.

Creating a script package

A script package is just a regular NuGet package that contains script files inside the content or contentFiles folder.

The following example shows how the scripts are laid out inside the NuGet package according to the standard convention .

└── contentFiles
    └── csx
        └── netstandard2.0
            └── main.csx

This example contains just the main.csx file in the root folder, but packages may have multiple script files either in the root folder or in subfolders below the root folder.

When loading a script package we will look for an entry point script to be loaded. This entry point script is identified by one of the following.

  • A script called main.csx in the root folder
  • A single script file in the root folder

If the entry point script cannot be determined, we will simply load all the scripts files in the package.

The advantage with using an entry point script is that we can control loading other scripts from the package.

Consuming a script package

To consume a script package all we need to do specify the NuGet package in the #loaddirective.

The following example loads the simple-targets package that contains script files to be included in our script.

#load "nuget:simple-targets-csx, 6.0.0"

using static SimpleTargets;
var targets = new TargetDictionary();

targets.Add("default", () => Console.WriteLine("Hello, world!"));

Run(Args, targets);

Note: Debugging also works for script packages so that we can easily step into the scripts that are brought in using the #load directive.

Remote Scripts

Scripts don't actually have to exist locally on the machine. We can also execute scripts that are made available on an http(s) endpoint.

This means that we can create a Gist on Github and execute it just by providing the URL to the Gist.

This Gist contains a script that prints out "Hello World"

We can execute the script like this

dotnet script https://gist.githubusercontent.com/seesharper/5d6859509ea8364a1fdf66bbf5b7923d/raw/0a32bac2c3ea807f9379a38e251d93e39c8131cb/HelloWorld.csx

That is a pretty long URL, so why don't make it a TinyURL like this:

dotnet script https://tinyurl.com/y8cda9zt

Script Location

A pretty common scenario is that we have logic that is relative to the script path. We don't want to require the user to be in a certain directory for these paths to resolve correctly so here is how to provide the script path and the script folder regardless of the current working directory.

public static string GetScriptPath([CallerFilePath] string path = null) => path;
public static string GetScriptFolder([CallerFilePath] string path = null) => Path.GetDirectoryName(path);

Tip: Put these methods as top level methods in a separate script file and #load that file wherever access to the script path and/or folder is needed.

REPL

This release contains a C# REPL (Read-Evaluate-Print-Loop). The REPL mode ("interactive mode") is started by executing dotnet-script without any arguments.

The interactive mode allows you to supply individual C# code blocks and have them executed as soon as you press Enter. The REPL is configured with the same default set of assembly references and using statements as regular CSX script execution.

Basic usage

Once dotnet-script starts you will see a prompt for input. You can start typing C# code there.

~$ dotnet script
> var x = 1;
> x+x
2

If you submit an unterminated expression into the REPL (no ; at the end), it will be evaluated and the result will be serialized using a formatter and printed in the output. This is a bit more interesting than just calling ToString() on the object, because it attempts to capture the actual structure of the object. For example:

~$ dotnet script
> var x = new List<string>();
> x.Add("foo");
> x
List<string>(1) { "foo" }
> x.Add("bar");
> x
List<string>(2) { "foo", "bar" }
>

Inline Nuget packages

REPL also supports inline Nuget packages - meaning the Nuget packages can be installed into the REPL from within the REPL. This is done via our #r and #load from Nuget support and uses identical syntax.

~$ dotnet script
> #r "nuget: Automapper, 6.1.1"
> using AutoMapper;
> typeof(MapperConfiguration)
[AutoMapper.MapperConfiguration]
> #load "nuget: simple-targets-csx, 6.0.0";
> using static SimpleTargets;
> typeof(TargetDictionary)
[Submission#0+SimpleTargets+TargetDictionary]

Multiline mode

Using Roslyn syntax parsing, we also support multiline REPL mode. This means that if you have an uncompleted code block and press Enter, we will automatically enter the multiline mode. The mode is indicated by the * character. This is particularly useful for declaring classes and other more complex constructs.

~$ dotnet script
> class Foo {
* public string Bar {get; set;}
* }
> var foo = new Foo();

REPL commands

Aside from the regular C# script code, you can invoke the following commands (directives) from within the REPL:

CommandDescription
#loadLoad a script into the REPL (same as #load usage in CSX)
#rLoad an assembly into the REPL (same as #r usage in CSX)
#resetReset the REPL back to initial state (without restarting it)
#clsClear the console screen without resetting the REPL state
#exitExits the REPL

Seeding REPL with a script

You can execute a CSX script and, at the end of it, drop yourself into the context of the REPL. This way, the REPL becomes "seeded" with your code - all the classes, methods or variables are available in the REPL context. This is achieved by running a script with an -i flag.

For example, given the following CSX script:

var msg = "Hello World";
Console.WriteLine(msg);

When you run this with the -i flag, Hello World is printed, REPL starts and msg variable is available in the REPL context.

~$ dotnet script foo.csx -i
Hello World
>

You can also seed the REPL from inside the REPL - at any point - by invoking a #load directive pointed at a specific file. For example:

~$ dotnet script
> #load "foo.csx"
Hello World
>

Piping

The following example shows how we can pipe data in and out of a script.

The UpperCase.csx script simply converts the standard input to upper case and writes it back out to standard output.

using (var streamReader = new StreamReader(Console.OpenStandardInput()))
{
    Write(streamReader.ReadToEnd().ToUpper());
}

We can now simply pipe the output from one command into our script like this.

echo "This is some text" | dotnet script UpperCase.csx
THIS IS SOME TEXT

Debugging

The first thing we need to do add the following to the launch.config file that allows VS Code to debug a running process.

{
    "name": ".NET Core Attach",
    "type": "coreclr",
    "request": "attach",
    "processId": "${command:pickProcess}"
}

To debug this script we need a way to attach the debugger in VS Code and the simplest thing we can do here is to wait for the debugger to attach by adding this method somewhere.

public static void WaitForDebugger()
{
    Console.WriteLine("Attach Debugger (VS Code)");
    while(!Debugger.IsAttached)
    {
    }
}

To debug the script when executing it from the command line we can do something like

WaitForDebugger();
using (var streamReader = new StreamReader(Console.OpenStandardInput()))
{
    Write(streamReader.ReadToEnd().ToUpper()); // <- SET BREAKPOINT HERE
}

Now when we run the script from the command line we will get

$ echo "This is some text" | dotnet script UpperCase.csx
Attach Debugger (VS Code)

This now gives us a chance to attach the debugger before stepping into the script and from VS Code, select the .NET Core Attach debugger and pick the process that represents the executing script.

Once that is done we should see our breakpoint being hit.

Configuration(Debug/Release)

By default, scripts will be compiled using the debug configuration. This is to ensure that we can debug a script in VS Code as well as attaching a debugger for long running scripts.

There are however situations where we might need to execute a script that is compiled with the release configuration. For instance, running benchmarks using BenchmarkDotNet is not possible unless the script is compiled with the release configuration.

We can specify this when executing the script.

dotnet script foo.csx -c release

 

Nullable reference types

Starting from version 0.50.0, dotnet-script supports .Net Core 3.0 and all the C# 8 features. The way we deal with nullable references types in dotnet-script is that we turn every warning related to nullable reference types into compiler errors. This means every warning between CS8600 and CS8655 are treated as an error when compiling the script.

Nullable references types are turned off by default and the way we enable it is using the #nullable enable compiler directive. This means that existing scripts will continue to work, but we can now opt-in on this new feature.

#!/usr/bin/env dotnet-script

#nullable enable

string name = null;

Trying to execute the script will result in the following error

main.csx(5,15): error CS8625: Cannot convert null literal to non-nullable reference type.

We will also see this when working with scripts in VS Code under the problems panel.

image

Download Details:
Author: filipw
Source Code: https://github.com/filipw/dotnet-script
License: MIT License

#dotnet  #aspdotnet  #csharp 

Display Loading Image when AJAX call is in Progress using Python Flask PostgreSQL

Display Loading Image when AJAX call is in Progress using Python Flask PostgreSQL

Source Code : https://tutorial101.blogspot.com/2021…

Subscribe: https://www.youtube.com/c/Cairocoders/featured

#python #ajax #postgresql

Face Recognition with OpenCV and Python

Introduction

What is face recognition? Or what is recognition? When you look at an apple fruit, your mind immediately tells you that this is an apple fruit. This process, your mind telling you that this is an apple fruit is recognition in simple words. So what is face recognition then? I am sure you have guessed it right. When you look at your friend walking down the street or a picture of him, you recognize that he is your friend Paulo. Interestingly when you look at your friend or a picture of him you look at his face first before looking at anything else. Ever wondered why you do that? This is so that you can recognize him by looking at his face. Well, this is you doing face recognition.

But the real question is how does face recognition works? It is quite simple and intuitive. Take a real life example, when you meet someone first time in your life you don't recognize him, right? While he talks or shakes hands with you, you look at his face, eyes, nose, mouth, color and overall look. This is your mind learning or training for the face recognition of that person by gathering face data. Then he tells you that his name is Paulo. At this point your mind knows that the face data it just learned belongs to Paulo. Now your mind is trained and ready to do face recognition on Paulo's face. Next time when you will see Paulo or his face in a picture you will immediately recognize him. This is how face recognition work. The more you will meet Paulo, the more data your mind will collect about Paulo and especially his face and the better you will become at recognizing him.

Now the next question is how to code face recognition with OpenCV, after all this is the only reason why you are reading this article, right? OK then. You might say that our mind can do these things easily but to actually code them into a computer is difficult? Don't worry, it is not. Thanks to OpenCV, coding face recognition is as easier as it feels. The coding steps for face recognition are same as we discussed it in real life example above.

  • Training Data Gathering: Gather face data (face images in this case) of the persons you want to recognize
  • Training of Recognizer: Feed that face data (and respective names of each face) to the face recognizer so that it can learn.
  • Recognition: Feed new faces of the persons and see if the face recognizer you just trained recognizes them.

OpenCV comes equipped with built in face recognizer, all you have to do is feed it the face data. It's that simple and this how it will look once we are done coding it.

visualization

OpenCV Face Recognizers

OpenCV has three built in face recognizers and thanks to OpenCV's clean coding, you can use any of them by just changing a single line of code. Below are the names of those face recognizers and their OpenCV calls.

  1. EigenFaces Face Recognizer Recognizer - cv2.face.createEigenFaceRecognizer()
  2. FisherFaces Face Recognizer Recognizer - cv2.face.createFisherFaceRecognizer()
  3. Local Binary Patterns Histograms (LBPH) Face Recognizer - cv2.face.createLBPHFaceRecognizer()

We have got three face recognizers but do you know which one to use and when? Or which one is better? I guess not. So why not go through a brief summary of each, what you say? I am assuming you said yes :) So let's dive into the theory of each.

EigenFaces Face Recognizer

This algorithm considers the fact that not all parts of a face are equally important and equally useful. When you look at some one you recognize him/her by his distinct features like eyes, nose, cheeks, forehead and how they vary with respect to each other. So you are actually focusing on the areas of maximum change (mathematically speaking, this change is variance) of the face. For example, from eyes to nose there is a significant change and same is the case from nose to mouth. When you look at multiple faces you compare them by looking at these parts of the faces because these parts are the most useful and important components of a face. Important because they catch the maximum change among faces, change the helps you differentiate one face from the other. This is exactly how EigenFaces face recognizer works.

EigenFaces face recognizer looks at all the training images of all the persons as a whole and try to extract the components which are important and useful (the components that catch the maximum variance/change) and discards the rest of the components. This way it not only extracts the important components from the training data but also saves memory by discarding the less important components. These important components it extracts are called principal components. Below is an image showing the principal components extracted from a list of faces.

Principal Components eigenfaces_opencv source

You can see that principal components actually represent faces and these faces are called eigen faces and hence the name of the algorithm.

So this is how EigenFaces face recognizer trains itself (by extracting principal components). Remember, it also keeps a record of which principal component belongs to which person. One thing to note in above image is that Eigenfaces algorithm also considers illumination as an important component.

Later during recognition, when you feed a new image to the algorithm, it repeats the same process on that image as well. It extracts the principal component from that new image and compares that component with the list of components it stored during training and finds the component with the best match and returns the person label associated with that best match component.

Easy peasy, right? Next one is easier than this one.

FisherFaces Face Recognizer

This algorithm is an improved version of EigenFaces face recognizer. Eigenfaces face recognizer looks at all the training faces of all the persons at once and finds principal components from all of them combined. By capturing principal components from all the of them combined you are not focusing on the features that discriminate one person from the other but the features that represent all the persons in the training data as a whole.

This approach has drawbacks, for example, images with sharp changes (like light changes which is not a useful feature at all) may dominate the rest of the images and you may end up with features that are from external source like light and are not useful for discrimination at all. In the end, your principal components will represent light changes and not the actual face features.

Fisherfaces algorithm, instead of extracting useful features that represent all the faces of all the persons, it extracts useful features that discriminate one person from the others. This way features of one person do not dominate over the others and you have the features that discriminate one person from the others.

Below is an image of features extracted using Fisherfaces algorithm.

Fisher Faces eigenfaces_opencv source

You can see that features extracted actually represent faces and these faces are called fisher faces and hence the name of the algorithm.

One thing to note here is that even in Fisherfaces algorithm if multiple persons have images with sharp changes due to external sources like light they will dominate over other features and affect recognition accuracy.

Getting bored with this theory? Don't worry, only one face recognizer is left and then we will dive deep into the coding part.

Local Binary Patterns Histograms (LBPH) Face Recognizer

I wrote a detailed explaination on Local Binary Patterns Histograms in my previous article on face detection using local binary patterns histograms. So here I will just give a brief overview of how it works.

We know that Eigenfaces and Fisherfaces are both affected by light and in real life we can't guarantee perfect light conditions. LBPH face recognizer is an improvement to overcome this drawback.

Idea is to not look at the image as a whole instead find the local features of an image. LBPH alogrithm try to find the local structure of an image and it does that by comparing each pixel with its neighboring pixels.

Take a 3x3 window and move it one image, at each move (each local part of an image), compare the pixel at the center with its neighbor pixels. The neighbors with intensity value less than or equal to center pixel are denoted by 1 and others by 0. Then you read these 0/1 values under 3x3 window in a clockwise order and you will have a binary pattern like 11100011 and this pattern is local to some area of the image. You do this on whole image and you will have a list of local binary patterns.

LBP Labeling LBP labeling

Now you get why this algorithm has Local Binary Patterns in its name? Because you get a list of local binary patterns. Now you may be wondering, what about the histogram part of the LBPH? Well after you get a list of local binary patterns, you convert each binary pattern into a decimal number (as shown in above image) and then you make a histogram of all of those values. A sample histogram looks like this.

Sample Histogram LBP labeling

I guess this answers the question about histogram part. So in the end you will have one histogram for each face image in the training data set. That means if there were 100 images in training data set then LBPH will extract 100 histograms after training and store them for later recognition. Remember, algorithm also keeps track of which histogram belongs to which person.

Later during recognition, when you will feed a new image to the recognizer for recognition it will generate a histogram for that new image, compare that histogram with the histograms it already has, find the best match histogram and return the person label associated with that best match histogram. 

Below is a list of faces and their respective local binary patterns images. You can see that the LBP images are not affected by changes in light conditions.

LBP Faces LBP faces source

The theory part is over and now comes the coding part! Ready to dive into coding? Let's get into it then.

Coding Face Recognition with OpenCV

The Face Recognition process in this tutorial is divided into three steps.

  1. Prepare training data: In this step we will read training images for each person/subject along with their labels, detect faces from each image and assign each detected face an integer label of the person it belongs to.
  2. Train Face Recognizer: In this step we will train OpenCV's LBPH face recognizer by feeding it the data we prepared in step 1.
  3. Testing: In this step we will pass some test images to face recognizer and see if it predicts them correctly.

[There should be a visualization diagram for above steps here]

To detect faces, I will use the code from my previous article on face detection. So if you have not read it, I encourage you to do so to understand how face detection works and its Python coding.

Import Required Modules

Before starting the actual coding we need to import the required modules for coding. So let's import them first.

  • cv2: is OpenCV module for Python which we will use for face detection and face recognition.
  • os: We will use this Python module to read our training directories and file names.
  • numpy: We will use this module to convert Python lists to numpy arrays as OpenCV face recognizers accept numpy arrays.
#import OpenCV module
import cv2
#import os module for reading training data directories and paths
import os
#import numpy to convert python lists to numpy arrays as 
#it is needed by OpenCV face recognizers
import numpy as np

#matplotlib for display our images
import matplotlib.pyplot as plt
%matplotlib inline 

Training Data

The more images used in training the better. Normally a lot of images are used for training a face recognizer so that it can learn different looks of the same person, for example with glasses, without glasses, laughing, sad, happy, crying, with beard, without beard etc. To keep our tutorial simple we are going to use only 12 images for each person.

So our training data consists of total 2 persons with 12 images of each person. All training data is inside training-data folder. training-data folder contains one folder for each person and each folder is named with format sLabel (e.g. s1, s2) where label is actually the integer label assigned to that person. For example folder named s1 means that this folder contains images for person 1. The directory structure tree for training data is as follows:

training-data
|-------------- s1
|               |-- 1.jpg
|               |-- ...
|               |-- 12.jpg
|-------------- s2
|               |-- 1.jpg
|               |-- ...
|               |-- 12.jpg

The test-data folder contains images that we will use to test our face recognizer after it has been successfully trained.

As OpenCV face recognizer accepts labels as integers so we need to define a mapping between integer labels and persons actual names so below I am defining a mapping of persons integer labels and their respective names.

Note: As we have not assigned label 0 to any person so the mapping for label 0 is empty.

#there is no label 0 in our training data so subject name for index/label 0 is empty
subjects = ["", "Tom Cruise", "Shahrukh Khan"]

Prepare training data

You may be wondering why data preparation, right? Well, OpenCV face recognizer accepts data in a specific format. It accepts two vectors, one vector is of faces of all the persons and the second vector is of integer labels for each face so that when processing a face the face recognizer knows which person that particular face belongs too.

For example, if we had 2 persons and 2 images for each person.

PERSON-1    PERSON-2   

img1        img1         
img2        img2

Then the prepare data step will produce following face and label vectors.

FACES                        LABELS

person1_img1_face              1
person1_img2_face              1
person2_img1_face              2
person2_img2_face              2

Preparing data step can be further divided into following sub-steps.

  1. Read all the folder names of subjects/persons provided in training data folder. So for example, in this tutorial we have folder names: s1, s2.
  2. For each subject, extract label number. Do you remember that our folders have a special naming convention? Folder names follow the format sLabel where Label is an integer representing the label we have assigned to that subject. So for example, folder name s1 means that the subject has label 1, s2 means subject label is 2 and so on. The label extracted in this step is assigned to each face detected in the next step.
  3. Read all the images of the subject, detect face from each image.
  4. Add each face to faces vector with corresponding subject label (extracted in above step) added to labels vector.

[There should be a visualization for above steps here]

Did you read my last article on face detection? No? Then you better do so right now because to detect faces, I am going to use the code from my previous article on face detection. So if you have not read it, I encourage you to do so to understand how face detection works and its coding. Below is the same code.

#function to detect face using OpenCV
def detect_face(img):
    #convert the test image to gray image as opencv face detector expects gray images
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    #load OpenCV face detector, I am using LBP which is fast
    #there is also a more accurate but slow Haar classifier
    face_cascade = cv2.CascadeClassifier('opencv-files/lbpcascade_frontalface.xml')

    #let's detect multiscale (some images may be closer to camera than others) images
    #result is a list of faces
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5);
    
    #if no faces are detected then return original img
    if (len(faces) == 0):
        return None, None
    
    #under the assumption that there will be only one face,
    #extract the face area
    (x, y, w, h) = faces[0]
    
    #return only the face part of the image
    return gray[y:y+w, x:x+h], faces[0]

I am using OpenCV's LBP face detector. On line 4, I convert the image to grayscale because most operations in OpenCV are performed in gray scale, then on line 8 I load LBP face detector using cv2.CascadeClassifier class. After that on line 12 I use cv2.CascadeClassifier class' detectMultiScale method to detect all the faces in the image. on line 20, from detected faces I only pick the first face because in one image there will be only one face (under the assumption that there will be only one prominent face). As faces returned by detectMultiScale method are actually rectangles (x, y, width, height) and not actual faces images so we have to extract face image area from the main image. So on line 23 I extract face area from gray image and return both the face image area and face rectangle.

Now you have got a face detector and you know the 4 steps to prepare the data, so are you ready to code the prepare data step? Yes? So let's do it.

#this function will read all persons' training images, detect face from each image
#and will return two lists of exactly same size, one list 
# of faces and another list of labels for each face
def prepare_training_data(data_folder_path):
    
    #------STEP-1--------
    #get the directories (one directory for each subject) in data folder
    dirs = os.listdir(data_folder_path)
    
    #list to hold all subject faces
    faces = []
    #list to hold labels for all subjects
    labels = []
    
    #let's go through each directory and read images within it
    for dir_name in dirs:
        
        #our subject directories start with letter 's' so
        #ignore any non-relevant directories if any
        if not dir_name.startswith("s"):
            continue;
            
        #------STEP-2--------
        #extract label number of subject from dir_name
        #format of dir name = slabel
        #, so removing letter 's' from dir_name will give us label
        label = int(dir_name.replace("s", ""))
        
        #build path of directory containin images for current subject subject
        #sample subject_dir_path = "training-data/s1"
        subject_dir_path = data_folder_path + "/" + dir_name
        
        #get the images names that are inside the given subject directory
        subject_images_names = os.listdir(subject_dir_path)
        
        #------STEP-3--------
        #go through each image name, read image, 
        #detect face and add face to list of faces
        for image_name in subject_images_names:
            
            #ignore system files like .DS_Store
            if image_name.startswith("."):
                continue;
            
            #build image path
            #sample image path = training-data/s1/1.pgm
            image_path = subject_dir_path + "/" + image_name

            #read image
            image = cv2.imread(image_path)
            
            #display an image window to show the image 
            cv2.imshow("Training on image...", image)
            cv2.waitKey(100)
            
            #detect face
            face, rect = detect_face(image)
            
            #------STEP-4--------
            #for the purpose of this tutorial
            #we will ignore faces that are not detected
            if face is not None:
                #add face to list of faces
                faces.append(face)
                #add label for this face
                labels.append(label)
            
    cv2.destroyAllWindows()
    cv2.waitKey(1)
    cv2.destroyAllWindows()
    
    return faces, labels

I have defined a function that takes the path, where training subjects' folders are stored, as parameter. This function follows the same 4 prepare data substeps mentioned above.

(step-1) On line 8 I am using os.listdir method to read names of all folders stored on path passed to function as parameter. On line 10-13 I am defining labels and faces vectors.

(step-2) After that I traverse through all subjects' folder names and from each subject's folder name on line 27 I am extracting the label information. As folder names follow the sLabel naming convention so removing the letter s from folder name will give us the label assigned to that subject.

(step-3) On line 34, I read all the images names of of the current subject being traversed and on line 39-66 I traverse those images one by one. On line 53-54 I am using OpenCV's imshow(window_title, image) along with OpenCV's waitKey(interval) method to display the current image being traveresed. The waitKey(interval) method pauses the code flow for the given interval (milliseconds), I am using it with 100ms interval so that we can view the image window for 100ms. On line 57, I detect face from the current image being traversed.

(step-4) On line 62-66, I add the detected face and label to their respective vectors.

But a function can't do anything unless we call it on some data that it has to prepare, right? Don't worry, I have got data of two beautiful and famous celebrities. I am sure you will recognize them!

training-data

Let's call this function on images of these beautiful celebrities to prepare data for training of our Face Recognizer. Below is a simple code to do that.

#let's first prepare our training data
#data will be in two lists of same size
#one list will contain all the faces
#and other list will contain respective labels for each face
print("Preparing data...")
faces, labels = prepare_training_data("training-data")
print("Data prepared")

#print total faces and labels
print("Total faces: ", len(faces))
print("Total labels: ", len(labels))
Preparing data...
Data prepared
Total faces:  23
Total labels:  23

This was probably the boring part, right? Don't worry, the fun stuff is coming up next. It's time to train our own face recognizer so that once trained it can recognize new faces of the persons it was trained on. Read? Ok then let's train our face recognizer.

Train Face Recognizer

As we know, OpenCV comes equipped with three face recognizers.

  1. EigenFace Recognizer: This can be created with cv2.face.createEigenFaceRecognizer()
  2. FisherFace Recognizer: This can be created with cv2.face.createFisherFaceRecognizer()
  3. Local Binary Patterns Histogram (LBPH): This can be created with cv2.face.LBPHFisherFaceRecognizer()

I am going to use LBPH face recognizer but you can use any face recognizer of your choice. No matter which of the OpenCV's face recognizer you use the code will remain the same. You just have to change one line, the face recognizer initialization line given below.

#create our LBPH face recognizer 
face_recognizer = cv2.face.createLBPHFaceRecognizer()

#or use EigenFaceRecognizer by replacing above line with 
#face_recognizer = cv2.face.createEigenFaceRecognizer()

#or use FisherFaceRecognizer by replacing above line with 
#face_recognizer = cv2.face.createFisherFaceRecognizer()

Now that we have initialized our face recognizer and we also have prepared our training data, it's time to train the face recognizer. We will do that by calling the train(faces-vector, labels-vector) method of face recognizer.

#train our face recognizer of our training faces
face_recognizer.train(faces, np.array(labels))

Did you notice that instead of passing labels vector directly to face recognizer I am first converting it to numpy array? This is because OpenCV expects labels vector to be a numpy array.

Still not satisfied? Want to see some action? Next step is the real action, I promise!

Prediction

Now comes my favorite part, the prediction part. This is where we actually get to see if our algorithm is actually recognizing our trained subjects's faces or not. We will take two test images of our celeberities, detect faces from each of them and then pass those faces to our trained face recognizer to see if it recognizes them.

Below are some utility functions that we will use for drawing bounding box (rectangle) around face and putting celeberity name near the face bounding box.

#function to draw rectangle on image 
#according to given (x, y) coordinates and 
#given width and heigh
def draw_rectangle(img, rect):
    (x, y, w, h) = rect
    cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
    
#function to draw text on give image starting from
#passed (x, y) coordinates. 
def draw_text(img, text, x, y):
    cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)

First function draw_rectangle draws a rectangle on image based on passed rectangle coordinates. It uses OpenCV's built in function cv2.rectangle(img, topLeftPoint, bottomRightPoint, rgbColor, lineWidth) to draw rectangle. We will use it to draw a rectangle around the face detected in test image.

Second function draw_text uses OpenCV's built in function cv2.putText(img, text, startPoint, font, fontSize, rgbColor, lineWidth) to draw text on image.

Now that we have the drawing functions, we just need to call the face recognizer's predict(face) method to test our face recognizer on test images. Following function does the prediction for us.

#this function recognizes the person in image passed
#and draws a rectangle around detected face with name of the 
#subject
def predict(test_img):
    #make a copy of the image as we don't want to chang original image
    img = test_img.copy()
    #detect face from the image
    face, rect = detect_face(img)

    #predict the image using our face recognizer 
    label= face_recognizer.predict(face)
    #get name of respective label returned by face recognizer
    label_text = subjects[label]
    
    #draw a rectangle around face detected
    draw_rectangle(img, rect)
    #draw name of predicted person
    draw_text(img, label_text, rect[0], rect[1]-5)
    
    return img
  • line-6 read the test image
  • line-7 detect face from test image
  • line-11 recognize the face by calling face recognizer's predict(face) method. This method will return a lable
  • line-12 get the name associated with the label
  • line-16 draw rectangle around the detected face
  • line-18 draw name of predicted subject above face rectangle

Now that we have the prediction function well defined, next step is to actually call this function on our test images and display those test images to see if our face recognizer correctly recognized them. So let's do it. This is what we have been waiting for.

print("Predicting images...")

#load test images
test_img1 = cv2.imread("test-data/test1.jpg")
test_img2 = cv2.imread("test-data/test2.jpg")

#perform a prediction
predicted_img1 = predict(test_img1)
predicted_img2 = predict(test_img2)
print("Prediction complete")

#create a figure of 2 plots (one for each test image)
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))

#display test image1 result
ax1.imshow(cv2.cvtColor(predicted_img1, cv2.COLOR_BGR2RGB))

#display test image2 result
ax2.imshow(cv2.cvtColor(predicted_img2, cv2.COLOR_BGR2RGB))

#display both images
cv2.imshow("Tom cruise test", predicted_img1)
cv2.imshow("Shahrukh Khan test", predicted_img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()
Predicting images...
Prediction complete

wohooo! Is'nt it beautiful? Indeed, it is!

End Notes

Face Recognition is a fascinating idea to work on and OpenCV has made it extremely simple and easy for us to code it. It just takes a few lines of code to have a fully working face recognition application and we can switch between all three face recognizers with a single line of code change. It's that simple.

Although EigenFaces, FisherFaces and LBPH face recognizers are good but there are even better ways to perform face recognition like using Histogram of Oriented Gradients (HOGs) and Neural Networks. So the more advanced face recognition algorithms are now a days implemented using a combination of OpenCV and Machine learning. I have plans to write some articles on those more advanced methods as well, so stay tuned!

Download Details:
Author: informramiz
Source Code: https://github.com/informramiz/opencv-face-recognition-python
License: MIT License

#opencv  #python #facerecognition 

Python Global Variables – How to Define a Global Variable Example

In this article, you will learn the basics of global variables.

To begin with, you will learn how to declare variables in Python and what the term 'variable scope' actually means.

Then, you will learn the differences between local and global variables and understand how to define global variables and how to use the global keyword.

What Are Variables in Python and How Do You Create Them? An Introduction for Beginners

You can think of variables as storage containers.

They are storage containers for holding data, information, and values that you would like to save in the computer's memory. You can then reference or even manipulate them at some point throughout the life of the program.

A variable has a symbolic name, and you can think of that name as the label on the storage container that acts as its identifier.

The variable name will be a reference and pointer to the data stored inside it. So, there is no need to remember the details of your data and information – you only need to reference the variable name that holds that data and information.

When giving a variable a name, make sure that it is descriptive of the data it holds. Variable names need to be clear and easily understandable both for your future self and the other developers you may be working with.

Now, let's see how to actually create a variable in Python.

When declaring variables in Python, you don't need to specify their data type.

For example, in the C programming language, you have to mention explicitly the type of data the variable will hold.

So, if you wanted to store your age which is an integer, or int type, this is what you would have to do in C:

#include <stdio.h>
 
int main(void)
{
  int age = 28;
  // 'int' is the data type
  // 'age' is the name 
  // 'age' is capable of holding integer values
  // positive/negative whole numbers or 0
  // '=' is the assignment operator
  // '28' is the value
}

However, this is how you would write the above in Python:

age = 28

#'age' is the variable name, or identifier
# '=' is the assignment operator
#'28' is the value assigned to the variable, so '28' is the value of 'age'

The variable name is always on the left-hand side, and the value you want to assign goes on the right-hand side after the assignment operator.

Keep in mind that you can change the values of variables throughout the life of a program:

my_age = 28

print(f"My age in 2022 is {my_age}.")

my_age = 29

print(f"My age in 2023 will be {my_age}.")

#output

#My age in 2022 is 28.
#My age in 2023 will be 29.

You keep the same variable name, my_age, but only change the value from 28 to 29.

What Does Variable Scope in Python Mean?

Variable scope refers to the parts and boundaries of a Python program where a variable is available, accessible, and visible.

There are four types of scope for Python variables, which are also known as the LEGB rule:

  • Local,
  • Enclosing,
  • Global,
  • Built-in.

For the rest of this article, you will focus on learning about creating variables with global scope, and you will understand the difference between the local and global variable scopes.

How to Create Variables With Local Scope in Python

Variables defined inside a function's body have local scope, which means they are accessible only within that particular function. In other words, they are 'local' to that function.

You can only access a local variable by calling the function.

def learn_to_code():
    #create local variable
    coding_website = "freeCodeCamp"
    print(f"The best place to learn to code is with {coding_website}!")

#call function
learn_to_code()


#output

#The best place to learn to code is with freeCodeCamp!

Look at what happens when I try to access that variable with a local scope from outside the function's body:

def learn_to_code():
    #create local variable
    coding_website = "freeCodeCamp"
    print(f"The best place to learn to code is with {coding_website}!")

#try to print local variable 'coding_website' from outside the function
print(coding_website)

#output

#NameError: name 'coding_website' is not defined

It raises a NameError because it is not 'visible' in the rest of the program. It is only 'visible' within the function where it was defined.

How to Create Variables With Global Scope in Python

When you define a variable outside a function, like at the top of the file, it has a global scope and it is known as a global variable.

A global variable is accessed from anywhere in the program.

You can use it inside a function's body, as well as access it from outside a function:

#create a global variable
coding_website = "freeCodeCamp"

def learn_to_code():
    #access the variable 'coding_website' inside the function
    print(f"The best place to learn to code is with {coding_website}!")

#call the function
learn_to_code()

#access the variable 'coding_website' from outside the function
print(coding_website)

#output

#The best place to learn to code is with freeCodeCamp!
#freeCodeCamp

What happens when there is a global and local variable, and they both have the same name?

#global variable
city = "Athens"

def travel_plans():
    #local variable with the same name as the global variable
    city = "London"
    print(f"I want to visit {city} next year!")

#call function - this will output the value of local variable
travel_plans()

#reference global variable - this will output the value of global variable
print(f"I want to visit {city} next year!")

#output

#I want to visit London next year!
#I want to visit Athens next year!

In the example above, maybe you were not expecting that specific output.

Maybe you thought that the value of city would change when I assigned it a different value inside the function.

Maybe you expected that when I referenced the global variable with the line print(f" I want to visit {city} next year!"), the output would be #I want to visit London next year! instead of #I want to visit Athens next year!.

However, when the function was called, it printed the value of the local variable.

Then, when I referenced the global variable outside the function, the value assigned to the global variable was printed.

They didn't interfere with one another.

That said, using the same variable name for global and local variables is not considered a best practice. Make sure that your variables don't have the same name, as you may get some confusing results when you run your program.

How to Use the global Keyword in Python

What if you have a global variable but want to change its value inside a function?

Look at what happens when I try to do that:

#global variable
city = "Athens"

def travel_plans():
    #First, this is like when I tried to access the global variable defined outside the function. 
    # This works fine on its own, as you saw earlier on.
    print(f"I want to visit {city} next year!")

    #However, when I then try to re-assign a different value to the global variable 'city' from inside the function,
    #after trying to print it,
    #it will throw an error
    city = "London"
    print(f"I want to visit {city} next year!")

#call function
travel_plans()

#output

#UnboundLocalError: local variable 'city' referenced before assignment

By default Python thinks you want to use a local variable inside a function.

So, when I first try to print the value of the variable and then re-assign a value to the variable I am trying to access, Python gets confused.

The way to change the value of a global variable inside a function is by using the global keyword:

#global variable
city = "Athens"

#print value of global variable
print(f"I want to visit {city} next year!")

def travel_plans():
    global city
    #print initial value of global variable
    print(f"I want to visit {city} next year!")
    #assign a different value to global variable from within function
    city = "London"
    #print new value
    print(f"I want to visit {city} next year!")

#call function
travel_plans()

#print value of global variable
print(f"I want to visit {city} next year!")

Use the global keyword before referencing it in the function, as you will get the following error: SyntaxError: name 'city' is used prior to global declaration.

Earlier, you saw that you couldn't access variables created inside functions since they have local scope.

The global keyword changes the visibility of variables declared inside functions.

def learn_to_code():
   global coding_website
   coding_website = "freeCodeCamp"
   print(f"The best place to learn to code is with {coding_website}!")

#call function
learn_to_code()

#access variable from within the function
print(coding_website)

#output

#The best place to learn to code is with freeCodeCamp!
#freeCodeCamp

Conclusion

And there you have it! You now know the basics of global variables in Python and can tell the differences between local and global variables.

I hope you found this article useful.

You'll start from the basics and learn in an interactive and beginner-friendly way. You'll also build five projects at the end to put into practice and help reinforce what you've learned.

Thanks for reading and happy coding!

Source: https://www.freecodecamp.org/news/python-global-variables-examples/

#python