Jean  Glover

Jean Glover

1620482400

Connecting Apicurio Registry With Secured Strimzi Clusters

Apicurio Registry is a datastore for sharing standard event schemas and API designs across API and event-driven architectures. Apicurio Registry decouples the structure of your data from your client applications, and enables you to share and manage your data types and API descriptions at runtime. Decoupling your data structure from your client applications reduces costs by decreasing overall message size, which creates efficiencies by increasing consistent re-use of schemas and API designs across your organization.

Some of the most common uses cases where Apicurio Registry helps us are:

  • Client applications can dynamically push or pull the latest schema updates to or from Apicurio Registry at runtime without needing to redeploy.
  • Developer teams can query the registry for existing schemas required for services already deployed in production.
  • Developer teams can register new schemas required for new services in development or rolling to production.
  • Store schemas used to serialize and deserialize messages, which can then be referenced from your client applications to ensure that the messages that they send and receive are compatible with those schemas.

Apicurio provides a open-sourced Schema Registry that is ready to be involved in this scenario.

Apicurio Registry includes a set of pluggable storage options to store the APIs, rules, and validations. The Kafka-based storage option, provided by Strimzi, is suitable for production environments when persistent storage is configured for Kafka clusters running on OpenShift.

#kubernetes

What is GEEK

Buddha Community

Connecting Apicurio Registry With Secured Strimzi Clusters
Wilford  Pagac

Wilford Pagac

1596789120

Best Custom Web & Mobile App Development Company

Everything around us has become smart, like smart infrastructures, smart cities, autonomous vehicles, to name a few. The innovation of smart devices makes it possible to achieve these heights in science and technology. But, data is vulnerable, there is a risk of attack by cybercriminals. To get started, let’s know about IoT devices.

What are IoT devices?

The Internet Of Things(IoT) is a system that interrelates computer devices like sensors, software, and actuators, digital machines, etc. They are linked together with particular objects that work through the internet and transfer data over devices without humans interference.

Famous examples are Amazon Alexa, Apple SIRI, Interconnected baby monitors, video doorbells, and smart thermostats.

How could your IoT devices be vulnerable?

When technologies grow and evolve, risks are also on the high stakes. Ransomware attacks are on the continuous increase; securing data has become the top priority.

When you think your smart home won’t fudge a thing against cybercriminals, you should also know that they are vulnerable. When cybercriminals access our smart voice speakers like Amazon Alexa or Apple Siri, it becomes easy for them to steal your data.

Cybersecurity report 2020 says popular hacking forums expose 770 million email addresses and 21 million unique passwords, 620 million accounts have been compromised from 16 hacked websites.

The attacks are likely to increase every year. To help you secure your data of IoT devices, here are some best tips you can implement.

Tips to secure your IoT devices

1. Change Default Router Name

Your router has the default name of make and model. When we stick with the manufacturer name, attackers can quickly identify our make and model. So give the router name different from your addresses, without giving away personal information.

2. Know your connected network and connected devices

If your devices are connected to the internet, these connections are vulnerable to cyber attacks when your devices don’t have the proper security. Almost every web interface is equipped with multiple devices, so it’s hard to track the device. But, it’s crucial to stay aware of them.

3. Change default usernames and passwords

When we use the default usernames and passwords, it is attackable. Because the cybercriminals possibly know the default passwords come with IoT devices. So use strong passwords to access our IoT devices.

4. Manage strong, Unique passwords for your IoT devices and accounts

Use strong or unique passwords that are easily assumed, such as ‘123456’ or ‘password1234’ to protect your accounts. Give strong and complex passwords formed by combinations of alphabets, numeric, and not easily bypassed symbols.

Also, change passwords for multiple accounts and change them regularly to avoid attacks. We can also set several attempts to wrong passwords to set locking the account to safeguard from the hackers.

5. Do not use Public WI-FI Networks

Are you try to keep an eye on your IoT devices through your mobile devices in different locations. I recommend you not to use the public WI-FI network to access them. Because they are easily accessible through for everyone, you are still in a hurry to access, use VPN that gives them protection against cyber-attacks, giving them privacy and security features, for example, using Express VPN.

6. Establish firewalls to discover the vulnerabilities

There are software and firewalls like intrusion detection system/intrusion prevention system in the market. This will be useful to screen and analyze the wire traffic of a network. You can identify the security weakness by the firewall scanners within the network structure. Use these firewalls to get rid of unwanted security issues and vulnerabilities.

7. Reconfigure your device settings

Every smart device comes with the insecure default settings, and sometimes we are not able to change these default settings configurations. These conditions need to be assessed and need to reconfigure the default settings.

8. Authenticate the IoT applications

Nowadays, every smart app offers authentication to secure the accounts. There are many types of authentication methods like single-factor authentication, two-step authentication, and multi-factor authentication. Use any one of these to send a one time password (OTP) to verify the user who logs in the smart device to keep our accounts from falling into the wrong hands.

9. Update the device software up to date

Every smart device manufacturer releases updates to fix bugs in their software. These security patches help us to improve our protection of the device. Also, update the software on the smartphone, which we are used to monitoring the IoT devices to avoid vulnerabilities.

10. Track the smartphones and keep them safe

When we connect the smart home to the smartphone and control them via smartphone, you need to keep them safe. If you miss the phone almost, every personal information is at risk to the cybercriminals. But sometimes it happens by accident, makes sure that you can clear all the data remotely.

However, securing smart devices is essential in the world of data. There are still cybercriminals bypassing the securities. So make sure to do the safety measures to avoid our accounts falling out into the wrong hands. I hope these steps will help you all to secure your IoT devices.

If you have any, feel free to share them in the comments! I’d love to know them.

Are you looking for more? Subscribe to weekly newsletters that can help your stay updated IoT application developments.

#iot #enterprise iot security #how iot can be used to enhance security #how to improve iot security #how to protect iot devices from hackers #how to secure iot devices #iot security #iot security devices #iot security offerings #iot security technologies iot security plus #iot vulnerable devices #risk based iot security program

PostgreSQL Connection Pooling: Part 4 – PgBouncer vs. Pgpool-II

In our previous posts in this series, we spoke at length about using PgBouncer  and Pgpool-II , the connection pool architecture and pros and cons of leveraging one for your PostgreSQL deployment. In our final post, we will put them head-to-head in a detailed feature comparison and compare the results of PgBouncer vs. Pgpool-II performance for your PostgreSQL hosting !

The bottom line – Pgpool-II is a great tool if you need load-balancing and high availability. Connection pooling is almost a bonus you get alongside. PgBouncer does only one thing, but does it really well. If the objective is to limit the number of connections and reduce resource consumption, PgBouncer wins hands down.

It is also perfectly fine to use both PgBouncer and Pgpool-II in a chain – you can have a PgBouncer to provide connection pooling, which talks to a Pgpool-II instance that provides high availability and load balancing. This gives you the best of both worlds!

Using PgBouncer with Pgpool-II - Connection Pooling Diagram

PostgreSQL Connection Pooling: Part 4 – PgBouncer vs. Pgpool-II

CLICK TO TWEET

Performance Testing

While PgBouncer may seem to be the better option in theory, theory can often be misleading. So, we pitted the two connection poolers head-to-head, using the standard pgbench tool, to see which one provides better transactions per second throughput through a benchmark test. For good measure, we ran the same tests without a connection pooler too.

Testing Conditions

All of the PostgreSQL benchmark tests were run under the following conditions:

  1. Initialized pgbench using a scale factor of 100.
  2. Disabled auto-vacuuming on the PostgreSQL instance to prevent interference.
  3. No other workload was working at the time.
  4. Used the default pgbench script to run the tests.
  5. Used default settings for both PgBouncer and Pgpool-II, except max_children*. All PostgreSQL limits were also set to their defaults.
  6. All tests ran as a single thread, on a single-CPU, 2-core machine, for a duration of 5 minutes.
  7. Forced pgbench to create a new connection for each transaction using the -C option. This emulates modern web application workloads and is the whole reason to use a pooler!

We ran each iteration for 5 minutes to ensure any noise averaged out. Here is how the middleware was installed:

  • For PgBouncer, we installed it on the same box as the PostgreSQL server(s). This is the configuration we use in our managed PostgreSQL clusters. Since PgBouncer is a very light-weight process, installing it on the box has no impact on overall performance.
  • For Pgpool-II, we tested both when the Pgpool-II instance was installed on the same machine as PostgreSQL (on box column), and when it was installed on a different machine (off box column). As expected, the performance is much better when Pgpool-II is off the box as it doesn’t have to compete with the PostgreSQL server for resources.

Throughput Benchmark

Here are the transactions per second (TPS) results for each scenario across a range of number of clients:

#database #developer #performance #postgresql #connection control #connection pooler #connection pooler performance #connection queue #high availability #load balancing #number of connections #performance testing #pgbench #pgbouncer #pgbouncer and pgpool-ii #pgbouncer vs pgpool #pgpool-ii #pooling modes #postgresql connection pooling #postgresql limits #resource consumption #throughput benchmark #transactions per second #without pooling

Security  IT

Security IT

1606927174

10 Cyber Security Tools to Watch Out for in 2021 - DZone Security

With an immense number of companies and entities climbing onto the digital bandwagon, cybersecurity considerations have come up as limelight. Besides, new technologies such as Big Data, IoT, and Artificial Intelligence/Machine Learning are gradually more making inroads into our everyday lives, the threats related to cybercrime are mounting as well. Additionally, the usage of mobile and web apps in transacting financial information has put the complete digital stuff exposed to cybersecurity breaches. The inherent risks and vulnerabilities found in such apps can be exploited by attackers or cybercriminals to draw off crucial information data counting money. Internationally, cyber-security breaches have caused a yearly loss of USD 20.38 million in 2019 (Source: Statista). Plus, cybercrime has led to a 0.80 percent loss of the entire world’s Gross domestic product, which sums up to approx. USD 2.1 trillion in the year 2019 alone (Source: Cybriant.com).

In this article, take a look at ten cyber security tools to watch out for in 2021, including NMap, Wireshark, Metasploit, and more!

#security #cyber security #security testing #security testing tools #cyber security tools

SecOps Teams Wrestle with Manual Processes, HR Gaps

Only about half of enterprises are satisfied with their ability to detect cybersecurity threats, according to a survey from Forrester Consulting – with respondents painting a picture of major resource and technology gaps hamstringing their efforts to block cyberattacks.

According to the just-released 2020 State of Security Operations survey of 314 enterprise security professionals, enterprise security teams around the world feel that they struggle with the growing pace, volume and sophistication of cyberattacks. A whopping 79 percent of enterprises covered in the survey have experienced a cyber-breach in the past year, and nearly 50 percent have been breached in the past six months.

#cloud security #hacks #malware #most recent threatlists #uncategorized #web security #2020 #automated triage #enterprise security #forrester consulting #manual processes #secops #security alerts #security defense #state of security operations #survey #workforce skills gap

Ida  Nader

Ida Nader

1602963300

Cloud Security: Is it Worth it?

Storing and managing corporate data by applying the cloud is becoming more and more popular. Companies grow, and it gets too expensive, and resources consuming to store their data on traditional servers. To prove it, look at the research conducted by Google in 2019 that includes insights for the cloud computing market for the next 10 years.

Around 80% of US respondents (about 1,100 businesses participated) revealed that they are thinking about cloud adoption by 2029. In 2019, only about 40% made a switch. 72% of businesses state that they’d like to automate security solutions by 2029, while now only 33% actually do it.

What do these numbers tell us? That companies seem to be suspicious about cloud security and prefer traditional on-premises data storage to the cloud environment. Why are they afraid to entrust cloud providers with their data? What to do to get rid of this fear? How to prove that the future of security is after the cloud?

In our article, we aim to answer these questions and more, but first, you need to be able to identify the reasons why companies have cloud-related trust issues. The first step in eliminating a problem is identifying it, let’s do it together!

#cloud-security #security-of-data #cybersecurity #cloud-computing #aws-security #azure-security #data-breaches #cyber-security