Chiko Nakamura


Javascript Bigint – The Essential Guide To JavaScript's Newest

In JavaScript, the Number type cannot safely represent integer values larger than 253. This limitation has forced developers to use inefficient workarounds and third-party libraries. BigInt is a new data type intended to fix that.

The BigInt data type aims to enable JavaScript
programmers to represent integer values larger than the range supported by the Number data type. The ability to represent integers with arbitrary precision is particularly important when performing mathematical operations on large integers. With BigInt, integer overflow will no longer be an issue.

Additionally, you can safely work with high-resolution timestamps, large integer IDs, and more without having to use a workaround. BigInt is currently a stage 3 proposal. Once added to the specification, it will become the second numeric data type in JavaScript, which will bring the total number of supported data types to eight:

  • Boolean
  • Null
  • Undefined
  • Number
  • BigInt
  • String
  • Symbol
  • Object

In this article, we will take a good look at BigInt and see how it can help overcome the limitations of the Number type in JavaScript.

The Problem

The lack of an explicit integer type in JavaScript is often baffling to programmers coming from other languages. Many programming languages support multiple numeric types such as float, double, integer, and bignum, but that’s not the case with JavaScript. In JavaScript, all numbers are represented in double-precision 64-bit floating-point format as defined by the IEEE 754-2008 standard.

Under this standard, very large integers that cannot be exactly represented are automatically rounded. To be precise, the Number type in JavaScript can only safely represent integers between -9007199254740991 (-(253-1)) and 9007199254740991 (253-1). Any integer value that falls out of this range may lose precision.

This can be easily examined by executing the following code:

console.log(9999999999999999);    // → 10000000000000000

This integer is larger than the largest number JavaScript can reliably represent with the Number primitive. Therefore, it’s rounded. Unexpected rounding can compromise a program’s reliability and security. Here’s another example:

// notice the last digits
9007199254740992 === 9007199254740993;    // → true

JavaScript provides the Number.MAX_SAFE_INTEGER constant that allows you to quickly obtain the maximum safe integer in JavaScript. Similarly, you can obtain the minimum safe integer by using the Number.MIN_SAFE_INTEGER constant:

const minInt = Number.MIN_SAFE_INTEGER;

console.log(minInt);         // → -9007199254740991

console.log(minInt - 5);     // → -9007199254740996

// notice how this outputs the same value as above
console.log(minInt - 4);     // → -9007199254740996

The Solution

As a workaround to these limitations, some JavaScript developers represent large integers using the String type. The Twitter API, for example, adds a string version of IDs to objects when responding with JSON. Additionally, a number of libraries such as bignumber.js have been developed to make working with large integers easier.

With BigInt, applications no longer need a workaround or library to safely represent integers beyond Number.MAX_SAFE_INTEGER and Number.Min_SAFE_INTEGER. Arithmetic operations on large integers can now be performed in standard JavaScript without risking loss of precision. The added benefit of using a native data type over a third-party library is better run-time performance.

To create a BigInt, simply append n to the end of an integer. Compare:

console.log(9007199254740995n);    // → 9007199254740995n
console.log(9007199254740995);     // → 9007199254740996

Alternatively, you can call the BigInt() constructor:

BigInt("9007199254740995");    // → 9007199254740995n

BigInt literals can also be written in binary, octal or hexadecimal notation:

// binary
// → 9007199254740995n

// hex
// → 9007199254740995n

// octal
// → 9007199254740995n

// note that legacy octal syntax is not supported
// → SyntaxError

Keep in mind that you can’t use the strict equality operator to compare a BigInt to a regular number because they are not of the same type:

console.log(10n === 10);    // → false

console.log(typeof 10n);    // → bigint
console.log(typeof 10);     // → number

Instead, you can use the equality operator, which performs implicit type conversion before compering its operands:

console.log(10n == 10);    // → true

All arithmetic operators can be used on BigInts except for the unary plus (+) operator:

10n + 20n;    // → 30n
10n - 20n;    // → -10n
+10n;         // → TypeError: Cannot convert a BigInt value to a number
-10n;         // → -10n
10n * 20n;    // → 200n
20n / 10n;    // → 2n
23n % 10n;    // → 3n
10n ** 3n;    // → 1000n

let x = 10n;
++x;          // → 11n
--x;          // → 10n

The reason that the unary plus (+) operator is not supported is that some programs may rely on the invariant that + always produces a Number, or throws an exception. Changing the behavior of + would also break asm.js code.

Naturally, when used with BigInt operands, arithmetic operators are expected to return a BigInt value. Therefore, the result of the division (/) operator is automatically rounded down to the nearest integer. For example:

25 / 10;      // → 2.5
25n / 10n;    // → 2n

Implicit Type Conversion

Because implicit type conversion could lose information, mixed operations between BigInts and Numbers are not allowed. When mixing large integers and floating-point numbers, the resulting value may not be accurately representable by BigInt or Number. Consider the following example:

(9007199254740992n + 1n) + 0.5

The result of this expression is outside of the domain of both BigInt and Number. A Number with a fractional part cannot be accurately converted to a BigInt. And a BigInt larger than 253 cannot be accurately converted to a Number.

As a result of this restriction, it’s not possible to perform arithmetic operations with a mix of Number and BigInt operands. You also cannot pass a BigInt to Web APIs and built-in JavaScript functions that expect a Number. Attempting to do so will cause a TypeError:

10 + 10n;    // → TypeError
Math.max(2n, 4n, 6n);    // → TypeError

Note that relational operators do not follow this rule, as shown in this example:

10n > 5;    // → true

If you want to perform arithmetic computations with BigInt and Number, you first need to determine the domain in which the operation should be done. To do that, simply convert either of the operands by calling Number() or BigInt():

BigInt(10) + 10n;    // → 20n
// or
10 + Number(10n);    // → 20

When encountered in a Boolean context, BigInt is treated similar to Number. In other words, a BigInt is considered a truthy value as long as it’s not 0n:

if (5n) {
    // this code block will be executed

if (0n) {
    // but this code block won't

No implicit type conversion occurs when sorting an array of BigInts and Numbers:

const arr = [3n, 4, 2, 1n, 0, -1n];

arr.sort();    // → [-1n, 0, 1n, 2, 3n, 4]

Bitwise operators such as |, &, <<, >>, and ^ operate on BigInts in a similar way to Numbers. Negative numbers are interpreted as infinite-length two’s complement. Mixed operands are not allowed. Here are some examples:

90 | 115;      // → 123
90n | 115n;    // → 123n
90n | 115;     // → TypeError

The BigInt Constructor

As with other primitive types, a BigInt can be created using a constructor function. The argument passed to BigInt() is automatically converted to a BigInt, if possible:

BigInt("10");    // → 10n
BigInt(10);      // → 10n
BigInt(true);    // → 1n

Data types and values that cannot be converted throw an exception:

BigInt(10.2);     // → RangeError
BigInt(null);     // → TypeError
BigInt("abc");    // → SyntaxError

You can directly perform arithmetic operations on a BigInt created using a constructor:

BigInt(10) * 10n;    // → 100n

When used as operands of the strict equality operator, BigInts created using a constructor are treated similar to regular ones:

BigInt(true) === 1n;    // → true

Library Functions

JavaScript provides two library functions for representing BigInt values as signed or unsigned integers:

This is image title

These functions are particularly useful when performing 64-bit arithmetic operations. This way you can stay within the intended range.

Browser Support And Transpiling

At the time of this writing, Chrome +67 and Opera +54 fully support the BigInt data type. Unfortunately, Edge and Safari haven’t implemented it yet. Firefox doesn’t support BigInt by default, but it can be enabled by setting javascript.options.bigint to true in about:config. An up-to-date list of supported browsers is available on Can I use….

Unluckily, transpiling BigInt is an extremely complicated process, which incurs hefty run-time performance penalty. It’s also impossible to directly polyfill BigInt because the proposal changes the behavior of several existing operators. For now, a better alternative is to use the JSBI library, which is a pure-JavaScript implementation of the BigInt proposal.

This library provides an API that behaves exactly the same as the native BigInt. Here’s how you can use JSBI:

import JSBI from './jsbi.mjs';

const b1 = JSBI.BigInt(Number.MAX_SAFE_INTEGER);
const b2 = JSBI.BigInt('10');

const result = JSBI.add(b1, b2);

console.log(String(result));    // → '9007199254741001'

An advantage of using JSBI is that once browser support improves, you won’t need to rewrite your code. Instead, you can automatically compile your JSBI code into native BigInt code by using a babel plugin. Furthermore, the performance of JSBI is on par with native BigInt implementations. You can expect wider browser support for BigInt soon.


BigInt is a new data type intended for use when integer values are larger than the range supported by the Number data type. This data type allows us to safely perform arithmetic operations on large integers, represent high-resolution timestamps, use large integer IDs, and more without the need to use a library.

It’s important to keep in mind that you cannot perform arithmetic operations with a mix of Number and BigInt operands. You’ll need to determine the domain in which the operation should be done by explicitly converting either of the operands. Moreover, for compatibility reasons, you are not allowed to use the unary plus (+) operator on a BigInt.


What is GEEK

Buddha Community

Javascript Bigint – The Essential Guide To JavaScript's Newest

Niraj Kafle


The essential JavaScript concepts that you should understand

As a JavaScript developer of any level, you need to understand its foundational concepts and some of the new ideas that help us developing code. In this article, we are going to review 16 basic concepts. So without further ado, let’s get to it.

#javascript-interview #javascript-development #javascript-fundamental #javascript #javascript-tips

Rahul Jangid


What is JavaScript - Stackfindover - Blog

Who invented JavaScript, how it works, as we have given information about Programming language in our previous article ( What is PHP ), but today we will talk about what is JavaScript, why JavaScript is used The Answers to all such questions and much other information about JavaScript, you are going to get here today. Hope this information will work for you.

Who invented JavaScript?

JavaScript language was invented by Brendan Eich in 1995. JavaScript is inspired by Java Programming Language. The first name of JavaScript was Mocha which was named by Marc Andreessen, Marc Andreessen is the founder of Netscape and in the same year Mocha was renamed LiveScript, and later in December 1995, it was renamed JavaScript which is still in trend.

What is JavaScript?

JavaScript is a client-side scripting language used with HTML (Hypertext Markup Language). JavaScript is an Interpreted / Oriented language called JS in programming language JavaScript code can be run on any normal web browser. To run the code of JavaScript, we have to enable JavaScript of Web Browser. But some web browsers already have JavaScript enabled.

Today almost all websites are using it as web technology, mind is that there is maximum scope in JavaScript in the coming time, so if you want to become a programmer, then you can be very beneficial to learn JavaScript.

JavaScript Hello World Program

In JavaScript, ‘document.write‘ is used to represent a string on a browser.

<script type="text/javascript">
	document.write("Hello World!");

How to comment JavaScript code?

  • For single line comment in JavaScript we have to use // (double slashes)
  • For multiple line comments we have to use / * – – * /
<script type="text/javascript">

//single line comment

/* document.write("Hello"); */


Advantages and Disadvantages of JavaScript

#javascript #javascript code #javascript hello world #what is javascript #who invented javascript

Hire Dedicated JavaScript Developers -Hire JavaScript Developers

It is said that a digital resource a business has must be interactive in nature, so the website or the business app should be interactive. How do you make the app interactive? With the use of JavaScript.

Does your business need an interactive website or app?

Hire Dedicated JavaScript Developer from WebClues Infotech as the developer we offer is highly skilled and expert in what they do. Our developers are collaborative in nature and work with complete transparency with the customers.

The technology used to develop the overall app by the developers from WebClues Infotech is at par with the latest available technology.

Get your business app with JavaScript

For more inquiry click here

Book Free Interview:

#hire dedicated javascript developers #hire javascript developers #top javascript developers for hire #hire javascript developer #hire a freelancer for javascript developer #hire the best javascript developers

Cayla  Erdman

Cayla Erdman


A quick guide to JavaScript Arrays


Arrays are a structure common to all programming languages so knowing what they are and having a firm grasp on what you’re able to accomplish with Arrays will take you a long way in your journey as a software developer. The code examples I share in this post will be in JavaScript but the concepts are common among all languages. What you learn here can easily be translated to any other language you work with.

In this post I’ll be covering how to perform the create, read update and delete operations using arrays, some common functions that come with the Array prototype and also how to implement them.

What is an Array

Before we jump into the juicy bits of Arrays, lets quickly gloss over what they are. Arrays

  • are a fundamental data type in JavaScript
  • are an ordered collection of values called **elements **that are stored at and accessed via an index
  • are untyped, meaning that the elements of an array could be of different types. This allows us to create complex arrays such as an array of objects or even an array of arrays (multidimensional arrays)
  • can have elements that are constants or expressions
  • have a property called length that tells you the number of elements in the array
  • inherit properties from Array.prototype that includes a wide variety useful functions that can be called from arrays or array-like objects

CRUD operations using Arrays

If you’re not familiar with the term CRUD it stands for Create, Read, Update and Delete. In this section we’ll go through each one of these operations and cover different ways you can perform each one.

Creating Arrays

There are several ways you can create an Array but the most common ways are by using

  • the Array literal syntax
  • the Array constructor i.e. new Array()

Lets take a look at each one with examples

Array literal

The array literal is the most common way of creating an array. It uses the square brackets as a notion of a container followed by comma separated values inside the square brackets. The following examples show how to use the array literal syntax and how arrays are untyped i.e. can contain elements of different types.

Image for post

Examples of untyped arrays in JavaScript created with the array literal syntax.

Array constructor

Another way to create an array is through the Array constructor.

const myArray = new Array();

Using the Array constructor, as shown above, is the same as creating an array with the array literal syntax. i.e.

// The following two lines behave exactly the same way i.e. both create an empty arrays

const myArray = new Array();
const myOtherArray = [];

The array constructor, however, is able to receive arguments that allow it to behave in different ways depending on the number and type of arguments passed to it.

  • You can pass a single numeric argument which creates an array of the specified length. This option is mostly used when you know how many elements you’ll be placing in the array
const myArray = new Array(5);

Note: If you want to define the array with a specified size, as shown above, the argument passed must be a numeric value. Any other type would be considered as the first element that’ll be placed in the array.

  • Or you can pass two or more arguments or a non-numeric argument to place the values inside the array. This works the same way as shown in the array literal examples.

Image for post

Examples of arrays created by using the Array constructor in JavaScript

As stated earlier, these two ways are the most common ways of creating arrays that you’ll see and use 99% of the time. There are a few other ways but we won’t dive deep into how they work. They are

  • the spread operator const someArray = […someOtherArray]
  • the static method Array.of()
  • and the static method Array.from()

#javascript #web-development #javascript-tips #javascript-development #javascript-arrays #sql

Ajay Kapoor


JS Development Company India | JavaScript Development Services

PixelCrayons: Our JavaScript web development service offers you a feature-packed & dynamic web application that effectively caters to your business challenges and provide you the best RoI. Our JavaScript web development company works on all major frameworks & libraries like Angular, React, Nodejs, Vue.js, to name a few.

With 15+ years of domain expertise, we have successfully delivered 13800+ projects and have successfully garnered 6800+ happy customers with 97%+ client retention rate.

Looking for professional JavaScript web app development services? We provide custom JavaScript development services applying latest version frameworks and libraries to propel businesses to the next level. Our well-defined and manageable JS development processes are balanced between cost, time and quality along with clear communication.

Our JavaScript development companies offers you strict NDA, 100% money back guarantee and agile/DevOps approach.

#javascript development company #javascript development services #javascript web development #javascript development #javascript web development services #javascript web development company