1605593957
On August 20, 2020, a provider of access management tools released an advisory detailing several misconfiguration issues that affected the kubelet. This feature of Kubernetes functions as the primary “node agent” running on each node. In order to support this functionality, the kubelet maintains full control over a pod running in a node.
As reported by the Container Journal, digital attackers could exploit the misconfigurations described in the advisory to gain access to the kubelet. Subsequently, they could conduct reconnaissance of a cluster, access a container’s app and move laterally in the cluster. This could give malicious actors all they need to gather more information about the pods and run commands within them for the purpose of compromising the Kubernetes environment and stealing sensitive data.
The reality is that similar pod-related vulnerabilities and weaknesses will continue to come up. Acknowledging this reality, organizations need to focus on protecting their pods. StackRox couldn’t agree more with this observation:
A critical cornerstone of any Kubernetes security strategy is to secure the pods and containers that make up your clusters. The good news is that Kubernetes itself as well as its ecosystem make available multiple types of flexible capabilities and tools that enable you to protect pods in ways that range from applying general security best practices to meeting specific, fine-grained requirements based on workload type or other needs. Kubernetes security context and security policies, including Pod Security Policies, are the best way to get started and immediately increase the security of your Kubernetes applications.
This blog post will explain how organizations can use security contexts to keep their pods safe. It will then discuss how organizations can enforce those security contexts using three different types of pod security policies. Finally, the blog post will provide some insight into how organizations might look beyond pod security policies to address their pod security needs.
#kubernetes #security
1602964260
Last year, we provided a list of Kubernetes tools that proved so popular we have decided to curate another list of some useful additions for working with the platform—among which are many tools that we personally use here at Caylent. Check out the original tools list here in case you missed it.
According to a recent survey done by Stackrox, the dominance Kubernetes enjoys in the market continues to be reinforced, with 86% of respondents using it for container orchestration.
(State of Kubernetes and Container Security, 2020)
And as you can see below, more and more companies are jumping into containerization for their apps. If you’re among them, here are some tools to aid you going forward as Kubernetes continues its rapid growth.
(State of Kubernetes and Container Security, 2020)
#blog #tools #amazon elastic kubernetes service #application security #aws kms #botkube #caylent #cli #container monitoring #container orchestration tools #container security #containers #continuous delivery #continuous deployment #continuous integration #contour #developers #development #developments #draft #eksctl #firewall #gcp #github #harbor #helm #helm charts #helm-2to3 #helm-aws-secret-plugin #helm-docs #helm-operator-get-started #helm-secrets #iam #json #k-rail #k3s #k3sup #k8s #keel.sh #keycloak #kiali #kiam #klum #knative #krew #ksniff #kube #kube-prod-runtime #kube-ps1 #kube-scan #kube-state-metrics #kube2iam #kubeapps #kubebuilder #kubeconfig #kubectl #kubectl-aws-secrets #kubefwd #kubernetes #kubernetes command line tool #kubernetes configuration #kubernetes deployment #kubernetes in development #kubernetes in production #kubernetes ingress #kubernetes interfaces #kubernetes monitoring #kubernetes networking #kubernetes observability #kubernetes plugins #kubernetes secrets #kubernetes security #kubernetes security best practices #kubernetes security vendors #kubernetes service discovery #kubernetic #kubesec #kubeterminal #kubeval #kudo #kuma #microsoft azure key vault #mozilla sops #octant #octarine #open source #palo alto kubernetes security #permission-manager #pgp #rafay #rakess #rancher #rook #secrets operations #serverless function #service mesh #shell-operator #snyk #snyk container #sonobuoy #strongdm #tcpdump #tenkai #testing #tigera #tilt #vert.x #wireshark #yaml
1596789120
Everything around us has become smart, like smart infrastructures, smart cities, autonomous vehicles, to name a few. The innovation of smart devices makes it possible to achieve these heights in science and technology. But, data is vulnerable, there is a risk of attack by cybercriminals. To get started, let’s know about IoT devices.
The Internet Of Things(IoT) is a system that interrelates computer devices like sensors, software, and actuators, digital machines, etc. They are linked together with particular objects that work through the internet and transfer data over devices without humans interference.
Famous examples are Amazon Alexa, Apple SIRI, Interconnected baby monitors, video doorbells, and smart thermostats.
When technologies grow and evolve, risks are also on the high stakes. Ransomware attacks are on the continuous increase; securing data has become the top priority.
When you think your smart home won’t fudge a thing against cybercriminals, you should also know that they are vulnerable. When cybercriminals access our smart voice speakers like Amazon Alexa or Apple Siri, it becomes easy for them to steal your data.
Cybersecurity report 2020 says popular hacking forums expose 770 million email addresses and 21 million unique passwords, 620 million accounts have been compromised from 16 hacked websites.
The attacks are likely to increase every year. To help you secure your data of IoT devices, here are some best tips you can implement.
Your router has the default name of make and model. When we stick with the manufacturer name, attackers can quickly identify our make and model. So give the router name different from your addresses, without giving away personal information.
If your devices are connected to the internet, these connections are vulnerable to cyber attacks when your devices don’t have the proper security. Almost every web interface is equipped with multiple devices, so it’s hard to track the device. But, it’s crucial to stay aware of them.
When we use the default usernames and passwords, it is attackable. Because the cybercriminals possibly know the default passwords come with IoT devices. So use strong passwords to access our IoT devices.
Use strong or unique passwords that are easily assumed, such as ‘123456’ or ‘password1234’ to protect your accounts. Give strong and complex passwords formed by combinations of alphabets, numeric, and not easily bypassed symbols.
Also, change passwords for multiple accounts and change them regularly to avoid attacks. We can also set several attempts to wrong passwords to set locking the account to safeguard from the hackers.
Are you try to keep an eye on your IoT devices through your mobile devices in different locations. I recommend you not to use the public WI-FI network to access them. Because they are easily accessible through for everyone, you are still in a hurry to access, use VPN that gives them protection against cyber-attacks, giving them privacy and security features, for example, using Express VPN.
There are software and firewalls like intrusion detection system/intrusion prevention system in the market. This will be useful to screen and analyze the wire traffic of a network. You can identify the security weakness by the firewall scanners within the network structure. Use these firewalls to get rid of unwanted security issues and vulnerabilities.
Every smart device comes with the insecure default settings, and sometimes we are not able to change these default settings configurations. These conditions need to be assessed and need to reconfigure the default settings.
Nowadays, every smart app offers authentication to secure the accounts. There are many types of authentication methods like single-factor authentication, two-step authentication, and multi-factor authentication. Use any one of these to send a one time password (OTP) to verify the user who logs in the smart device to keep our accounts from falling into the wrong hands.
Every smart device manufacturer releases updates to fix bugs in their software. These security patches help us to improve our protection of the device. Also, update the software on the smartphone, which we are used to monitoring the IoT devices to avoid vulnerabilities.
When we connect the smart home to the smartphone and control them via smartphone, you need to keep them safe. If you miss the phone almost, every personal information is at risk to the cybercriminals. But sometimes it happens by accident, makes sure that you can clear all the data remotely.
However, securing smart devices is essential in the world of data. There are still cybercriminals bypassing the securities. So make sure to do the safety measures to avoid our accounts falling out into the wrong hands. I hope these steps will help you all to secure your IoT devices.
If you have any, feel free to share them in the comments! I’d love to know them.
Are you looking for more? Subscribe to weekly newsletters that can help your stay updated IoT application developments.
#iot #enterprise iot security #how iot can be used to enhance security #how to improve iot security #how to protect iot devices from hackers #how to secure iot devices #iot security #iot security devices #iot security offerings #iot security technologies iot security plus #iot vulnerable devices #risk based iot security program
1620054600
Many multinational organizations now run their applications on microservice architecture inside their cloud environments, and (many) administrators are responsible for defining multiple policies on those environments. These giant IT organizations have extensive infrastructure systems and their systems have their own policy modules or their own built-in authorization systems. This is an excellent solution to a policy issue at enterprise scale (especially if you have the investment and resources to ensure best practice implementation), but such an overall ecosystem can be fragmented, which means if you want to improve control and visibility over who can do what across the stack, you would face a lot of complexity.
Doing a lot of policy enforcement manually is the problem of the past. This does not work in today’s modern environments where everything is very dynamic and ephemeral, where the technology stack is very heterogeneous, where every development team could use a different language. So, the question is, how do you gain granular control over manual policies to automate and streamline their implementation? And the answer is with Open Policy Agent (OPA).
OPA provides technology that helps unify policy enforcement across a wide range of software and enable or empower administrators with more control over their systems. These policies are incredibly helpful in maintaining security, compliance, standardization across environments where we need to define and enforce such policies in a declarative way.
#blog #kubernetes #security #kubernetes open policy agent #opa #open policy agent #policy enforcement #policy implementation
1589643180
Kubernetes was not famous for its security features when it was first introduced as a container orchestration system, but the platform has evolved a lot over the years. Aside from being portable and infrastructure-agnostic, Kubernetes also offers a wide range of security features and tools that can help you harden the security of your apps and services.
Pod security is one of the ways you can safeguard your entire cloud ecosystem. Kubernetes Pod Security Policies are basically a series of policies that govern how Pods interact with the host operating system and other resources within the cluster. It defines the conditions under which Pods are allowed to run and use cluster resources.
Kubernetes Pod Security Policies will act as the controller that allows the creation and update and Pods within the cluster. You start by defining a set of rules for the pods and then activate the controller so that new and updated Pods are checked against those rules.
#kubernetes #pod security policies #security policy
1605593957
On August 20, 2020, a provider of access management tools released an advisory detailing several misconfiguration issues that affected the kubelet. This feature of Kubernetes functions as the primary “node agent” running on each node. In order to support this functionality, the kubelet maintains full control over a pod running in a node.
As reported by the Container Journal, digital attackers could exploit the misconfigurations described in the advisory to gain access to the kubelet. Subsequently, they could conduct reconnaissance of a cluster, access a container’s app and move laterally in the cluster. This could give malicious actors all they need to gather more information about the pods and run commands within them for the purpose of compromising the Kubernetes environment and stealing sensitive data.
The reality is that similar pod-related vulnerabilities and weaknesses will continue to come up. Acknowledging this reality, organizations need to focus on protecting their pods. StackRox couldn’t agree more with this observation:
A critical cornerstone of any Kubernetes security strategy is to secure the pods and containers that make up your clusters. The good news is that Kubernetes itself as well as its ecosystem make available multiple types of flexible capabilities and tools that enable you to protect pods in ways that range from applying general security best practices to meeting specific, fine-grained requirements based on workload type or other needs. Kubernetes security context and security policies, including Pod Security Policies, are the best way to get started and immediately increase the security of your Kubernetes applications.
This blog post will explain how organizations can use security contexts to keep their pods safe. It will then discuss how organizations can enforce those security contexts using three different types of pod security policies. Finally, the blog post will provide some insight into how organizations might look beyond pod security policies to address their pod security needs.
#kubernetes #security