1592839168
JavaScript Interview Question: What is Functional Programming. In JavaScript, function arguments are references to the actual data. Setting the color’s rating like this is bad because it changes or mutates the original color object.
#tech #technology #javascript #programming #development
1595098800
Android Interview Questions and Answers from Beginner to Advanced level
DataFlair is committed to provide you all the resources to make you an android professional. We started with android tutorials along with practicals, then we published Real-time android projects along with source code. Now, we come up with frequently asked android interview questions, which will help you in showing expertise in your next interview.
Android – one of the hottest technologies, which is having a bright future. Get ready to crack your next interview with the following android interview questions. These interview questions start with basic and cover deep concepts along with advanced topics.
1. What is Android?
Android is an open-source mobile operating system that is based on the modified versions of Linux kernel. Though it was mainly designed for smartphones, now it is being used for Tablets, Televisions, Smartwatches, and other Android wearables.
2. Who is the inventor of Android Technology?
The inventors of Android Technology are- Andry Rubin, Nick Sears, and Rich Miner.
3. What is the latest version of Android?
The latest version of Android is Android 10.0, known as Android Q. The upcoming major Android release is Android 11, which is the 18th version of Android. [Note: Keep checking the versions, it is as of June 2020.]
4. How many Android versions can you recall right now?
Till now, there are 17 versions of Android, which have their names in alphabetical order. The 18th version of Android is also going to come later this year. The versions of Android are here:
5. Explain the Android Architecture with its components.
This is a popular android developer interview question
Android Architecture consists of 5 components that are-
a. Linux Kernel: It is the foundation of the Android Architecture that resides at the lowest level. It provides the level of abstraction for hardware devices and upper layer components. Linux Kernel also provides various important hardware drivers that act as software interfaces for hardwares like camera, bluetooth, etc.
b. Native Libraries: These are the libraries for Android that are written in C/C++. These libraries are useful to build many core services like ART and HAL. It provides support for core features.
c. Android Runtime: It is an Android Runtime Environment. Android Operating System uses it during the execution of the app. It performs the translation of the application bytecode into the native instructions. The runtime environment of the device then executes these native instructions.
d. Application Framework: Application Framework provides many java classes and interfaces for app development. And it also provides various high-level services. This complete Application framework makes use of Java.
e. Applications: This is the topmost layer of Android Architecture. It provides applications for the end-user, so they can use the android device and compute the tasks.
6. What are the services that the Application framework provides?
The Android application framework has the following key services-
a. Activity Manager: It uses testing and debugging methods.
b. Content provider: It provides the data from application to other layers.
c. Resource Manager: This provides users access to resources.
d. Notification Manager: This gives notification to the users regarding actions taking place in the background.
e. View System: It is the base class for widgets, and it is also responsible for event handling.
7. What are the important features of Linux Kernel?
The important features of the Linux Kernel are as follows:
a. Power Management: Linux Kernel does power management to enhance and improve the battery life of the device.
b. Memory Management: It is useful for the maximum utilization of the available memory of the device.
c. Device Management: It includes managing all the hardware device drivers. It maximizes the utilization of the available resources.
d. Security: It ensures that no application has any such permission that it affects any other application in order to maintain security.
e. Multi-tasking: Multi-tasking provides the users the ease of doing multiple tasks at the same time.
8. What are the building blocks of an Android Application?
This is a popular android interview question for freshers.
The main components of any Android application are- Activity, Services, Content Provider, and Broadcast Receiver. You can understand them as follows:
a. Activity- It is a class that acts as the entry point representing a single screen to the user. It is like a window to show the user interface.
b. Services- Services are the longest-running component that runs in the background.
c. Content Provider- The content provider is an essential component that allows apps to share data between themselves.
d. Broadcast receivers- Broadcast receiver is another most crucial application component. It helps the apps to receive and respond to broadcast messages from the system or some other application.
9. What are the important components of Android Application?
The Components of Android application are listed below:
10. What are the widgets?
Widgets are the variations of Broadcast receivers. They are an important part of home screen customization. They often display some data and also allow users to perform actions on them. Mostly they display the app icon on the screen.
11. Can you name some types of widgets?
Mentioned below are the types of widgets-
a. Informative Widgets: These widgets show some important information. Like, the clock widget or a weather widget.
b. Collective Widgets: They are the collection of some types of elements. For example, a music widget that lets us change, skip, or forward the song.
c. Control Widgets: These widgets help us control the actions within the application through it. Like an email widget that helps check the recent mails.
d. Hybrid Widgets: Hybrid widgets are those that consist of at least two or more types of widgets.
12. What are Intents?
Intents are an important part of Android Applications. They enable communication between components of the same application as well as separate applications. The Intent signals the Android system about a certain event that has occurred.
13. Explain the types of intents briefly?
Intent is of three types that are-
a. Implicit Intents: Implicit intents are those in which there is no description of the component name but only the action.
b. Explicit Intents: In explicit intents, the target component is present by declaring the name of the component.
c. Pending Intents: These are those intents that act as a shield over the Intent objects. It covers the intent objects and grants permission to the external app components to access them.
14. What is a View?
A view is an important building block that helps in designing the user interface of the application. It can be a rectangular box or a circular shape, for example, Text View, Edit Text, Buttons, etc. Views occupy a certain area of the screen, and it is also responsible for event handling. A view is the superclass of all the graphical user interface components.
15. What do you understand by View Group?
It is the subclass of the ViewClass. It gives an invisible container to hold layouts or views. You can understand view groups as special views that are capable of holding other views, that are Child View.
16. What do you understand about Shared Preferences?
It is a simple mechanism for data storage in Android. In this, there is no need to create files, and using APIs, it stores the data in XML files. It stores the data in the pair of key-values. SharedPreferences class lets the user save the values and retrieve them when required. Using SharedPreferences we can save primitive data like- boolean, float, integer, string and long.
17. What is a Notification?
A notification is just like a message that shows up outside the Application UI to provide reminders to the users. They remind the user about a message received, or some other timely information from the app.
18. Give names of Notification types.
There are three types of notifications namely-
a. Toast Notification- This notification is the one that fades away sometime after it pops up.
b. Status Notification- This notification stays till the user takes some action on it.
c. Dialog Notification- This notification is the result of an Active Activity.
19. What are fragments?
A fragment is a part of the complete user interface. These are present in Activity, and an activity can have one or more fragments at the same time. We can reuse a fragment in multiple activities as well.
20. What are the types of fragments?
There are three types of fragments that are: Single Fragment, List Fragment, Fragment Transactions.
21. What are Layout XML files?
Layout XML files contain the structure for the user interface of the application. The XML file also contains various different layouts and views, and they also specify various GUI components that are there in Activity or fragments.
22. What are Resources in Android Application?
The resources in Android Apps defines images, texts, strings, colors, etc. Everything in resources directory is referenced in the source code of the app so that we can use them.
23. Can you develop Android Apps with languages other than Java? If so, name some.
Yes, there are many languages that we can work with, for the development of Android Applications. To name some, I would say Java, Python, C, C++, Kotlin, C#, Corona/LUA.
24. What are the states of the Activity Lifecycle?
Activity lifecycle has the following four stages-
a. Running State: As soon as the activity starts, it is the first state.
b. Paused State: When some other activity starts without closing the previous one, the running activity turns into the Paused state.
c. Resume State: When the activity opens again after being in pause state, it comes into the Resume State.
d. Stopped State: When the user closes the application or stops using it, the activity goes to the Stopped state.
25. What are some methods of Activity?
The methods of Activity are as follows:
26. How can you launch an activity in Android?
We launch an activity using Intents. For this we need to use intent as follows:
27. What is the service lifecycle?
There are two states of a service that are-
a. Started State: This is when the service starts its execution. A Services come in start state only through the startService() method.
b. Bounded State: A service is in the bounded state when it calls the method bindService().
28. What are some methods of Services?
The methods of service are as follows-
29. What are the types of Broadcast?
Broadcasts are of two types that are-
a. Ordered Broadcast: Ordered broadcasts are Synchronous and work in a proper order. It decides the order by using the priority assigned to the broadcasts.
b. Normal Broadcast: These are asynchronous and unordered. They are more efficient as they run unorderly and all at once. But, they lack full utilization of the results.
30. What are useful impotent folders in Android?
The impotent folders in an Android application are-
31. What are the important files for Android Application when working on Android Studio?
This is an important android studio interview question
There are following three files that we need to work on for an application to work-
a. The AndroidManifest.xml file: It has all the information about the application.
b. The MainActivity.java file: It is the app file that actually gets converted to the dalvik executable and runs the application. It is written in java.
c. The Activity_main.xml file: It is the layout file that is available in the res/layout directory. It is another mostly used file while developing the application.
32. Which database do you use for Android Application development?
The database that we use for Android Applications is SQLite. It is because SQLite is lightweight and specially developed for Android Apps. SQLite works the same way as SQL using the same commands.
33. Tell us some features of Android OS.
The best features of Android include-
34. Why did you learn Android development?
Learning Android Studio is a good idea because of the following-
35. What are the different ways of storage supported in Android?
The various storage ways supported in Android are as follows:
36. What are layouts?
Layout is nothing but arrangements of elements on the device screen. These elements can be images, tests, videos, anything. They basically define the structure of the Android user interface to make it user friendly.
37. How many layout types are there?
The type of layouts used in Android Apps are as follows:
38. What is an APK?
An APK stands for Android Package that is a file format of Android Applications. Android OS uses this package for the distribution and installation of the Android Application.
39. What is an Android Manifest file?
The manifest file describes all the essential information about the project application for build tools, Android operating system, and google play. This file is a must for every Android project that we develop, and it is present in the root of the project source set.
#android tutorials #android basic interview questions #android basic questions #android developer interview questions #android interview question and answer #android interview questions #android interview questions for experienced #android interview questions for fresher
1666245660
One of the things I really love about Swift is how I keep finding interesting ways to use it in various situations, and when I do - I usually share them on Twitter. Here's a collection of all the tips & tricks that I've shared so far. Each entry has a link to the original tweet, if you want to respond with some feedback or question, which is always super welcome! 🚀
⚠️ This list is no longer being updated. For my latest Swift tips, checkout the "Tips" section on Swift by Sundell.
Also make sure to check out all of my other Swift content:
🚀 Here are some quick tips to make async tests faster & more stable:
// BEFORE:
class MentionDetectorTests: XCTestCase {
func testDetectingMention() {
let detector = MentionDetector()
let string = "This test was written by @johnsundell."
detector.detectMentions(in: string) { mentions in
XCTAssertEqual(mentions, ["johnsundell"])
}
sleep(2)
}
}
// AFTER:
class MentionDetectorTests: XCTestCase {
func testDetectingMention() {
let detector = MentionDetector()
let string = "This test was written by @johnsundell."
var mentions: [String]?
let expectation = self.expectation(description: #function)
detector.detectMentions(in: string) {
mentions = $0
expectation.fulfill()
}
waitForExpectations(timeout: 10)
XCTAssertEqual(mentions, ["johnsundell"])
}
}
For more on async testing, check out "Unit testing asynchronous Swift code".
✍️ Adding support for the new Apple Pencil double-tap feature is super easy! All you have to do is to create a UIPencilInteraction
, add it to a view, and implement one delegate method. Hopefully all pencil-compatible apps will soon adopt this.
let interaction = UIPencilInteraction()
interaction.delegate = self
view.addInteraction(interaction)
extension ViewController: UIPencilInteractionDelegate {
func pencilInteractionDidTap(_ interaction: UIPencilInteraction) {
// Handle pencil double-tap
}
}
For more on using this and other iPad Pro features, check out "Building iPad Pro features in Swift".
😎 Here's a cool function that combines a value with a function to return a closure that captures that value, so that it can be called without any arguments. Super useful when working with closure-based APIs and we want to use some of our properties without having to capture self
.
func combine<A, B>(_ value: A, with closure: @escaping (A) -> B) -> () -> B {
return { closure(value) }
}
// BEFORE:
class ProductViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
buyButton.handler = { [weak self] in
guard let self = self else {
return
}
self.productManager.startCheckout(for: self.product)
}
}
}
// AFTER:
class ProductViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
buyButton.handler = combine(product, with: productManager.startCheckout)
}
}
💉 When I'm only using a single function from a dependency, I love to inject that function as a closure, instead of having to create a protocol and inject the whole object. Makes dependency injection & testing super simple.
final class ArticleLoader {
typealias Networking = (Endpoint) -> Future<Data>
private let networking: Networking
init(networking: @escaping Networking = URLSession.shared.load) {
self.networking = networking
}
func loadLatest() -> Future<[Article]> {
return networking(.latestArticles).decode()
}
}
For more on this technique, check out "Simple Swift dependency injection with functions".
💥 It's cool that you can easily assign a closure as a custom NSException
handler. This is super useful when building things in Playgrounds - since you can't use breakpoints - so instead of just signal SIGABRT
, you'll get the full exception description if something goes wrong.
NSSetUncaughtExceptionHandler { exception in
print(exception)
}
❤️ I love that in Swift, we can use the type system to make our code so much more self-documenting - one way of doing so is to use type aliases to give the primitive types that we use a more semantic meaning.
extension List.Item {
// Using type aliases, we can give semantic meaning to the
// primitive types that we use, without having to introduce
// wrapper types.
typealias Index = Int
}
extension List {
enum Mutation {
// Our enum cases now become a lot more self-documenting,
// without having to add additional parameter labels to
// explain them.
case add(Item, Item.Index)
case update(Item, Item.Index)
case remove(Item.Index)
}
}
For more on self-documenting code, check out "Writing self-documenting Swift code".
🤯 A little late night prototyping session reveals that protocol constraints can not only be applied to extensions - they can also be added to protocol definitions!
This is awesome, since it lets us easily define specialized protocols based on more generic ones.
protocol Component {
associatedtype Container
func add(to container: Container)
}
// Protocols that inherit from other protocols can include
// constraints to further specialize them.
protocol ViewComponent: Component where Container == UIView {
associatedtype View: UIView
var view: View { get }
}
extension ViewComponent {
func add(to container: UIView) {
container.addSubview(view)
}
}
For more on specializing protocols, check out "Specializing protocols in Swift".
📦 Here's a super handy extension on Swift's Optional
type, which gives us a really nice API for easily unwrapping an optional, or throwing an error in case the value turned out to be nil
:
extension Optional {
func orThrow(_ errorExpression: @autoclosure () -> Error) throws -> Wrapped {
switch self {
case .some(let value):
return value
case .none:
throw errorExpression()
}
}
}
let file = try loadFile(at: path).orThrow(MissingFileError())
For more ways that optionals can be extended, check out "Extending optionals in Swift".
👩🔬 Testing code that uses static APIs can be really tricky, but there's a way that it can often be done - using Swift's first class function capabilities!
Instead of accessing that static API directly, we can inject the function we want to use, which enables us to mock it!
// BEFORE
class FriendsLoader {
func loadFriends(then handler: @escaping (Result<[Friend]>) -> Void) {
Networking.loadData(from: .friends) { result in
...
}
}
}
// AFTER
class FriendsLoader {
typealias Handler<T> = (Result<T>) -> Void
typealias DataLoadingFunction = (Endpoint, @escaping Handler<Data>) -> Void
func loadFriends(using dataLoading: DataLoadingFunction = Networking.loadData,
then handler: @escaping Handler<[Friend]>) {
dataLoading(.friends) { result in
...
}
}
}
// MOCKING IN TESTS
let dataLoading: FriendsLoader.DataLoadingFunction = { _, handler in
handler(.success(mockData))
}
friendsLoader.loadFriends(using: dataLoading) { result in
...
}
🐾 Swift's pattern matching capabilities are so powerful! Two enum cases with associated values can even be matched and handled by the same switch case - which is super useful when handling state changes with similar data.
enum DownloadState {
case inProgress(progress: Double)
case paused(progress: Double)
case cancelled
case finished(Data)
}
func downloadStateDidChange(to state: DownloadState) {
switch state {
case .inProgress(let progress), .paused(let progress):
updateProgressView(with: progress)
case .cancelled:
showCancelledMessage()
case .finished(let data):
process(data)
}
}
🅰 One really nice benefit of Swift multiline string literals - even for single lines of text - is that they don't require quotes to be escaped. Perfect when working with things like HTML, or creating a custom description for an object.
let html = highlighter.highlight("Array<String>")
XCTAssertEqual(html, """
<span class="type">Array</span><<span class="type">String</span>>
""")
💎 While it's very common in functional programming, the reduce
function might be a bit of a hidden gem in Swift. It provides a super useful way to transform a sequence into a single value.
extension Sequence where Element: Equatable {
func numberOfOccurrences(of target: Element) -> Int {
return reduce(0) { result, element in
guard element == target else {
return result
}
return result + 1
}
}
}
You can read more about transforming collections in "Transforming collections in Swift".
📦 When I use Codable in Swift, I want to avoid manual implementations as much as possible, even when there's a mismatch between my code structure and the JSON I'm decoding.
One way that can often be achieved is to use private data containers combined with computed properties.
struct User: Codable {
let name: String
let age: Int
var homeTown: String { return originPlace.name }
private let originPlace: Place
}
private extension User {
struct Place: Codable {
let name: String
}
}
extension User {
struct Container: Codable {
let user: User
}
}
🚢 Instead of using feature branches, I merge almost all of my code directly into master - and then I use feature flags to conditionally enable features when they're ready. That way I can avoid merge conflicts and keep shipping!
extension ListViewController {
func addSearchIfNeeded() {
// Rather than having to keep maintaining a separate
// feature branch for a new feature, we can use a flag
// to conditionally turn it on.
guard FeatureFlags.searchEnabled else {
return
}
let resultsVC = SearchResultsViewController()
let searchVC = UISearchController(
searchResultsController: resultsVC
)
searchVC.searchResultsUpdater = resultsVC
navigationItem.searchController = searchVC
}
}
You can read more about feature flags in "Feature flags in Swift".
💾 Here I'm using tuples to create a lightweight hierarchy for my data, giving me a nice structure without having to introduce any additional types.
struct CodeSegment {
var tokens: (
previous: String?,
current: String
)
var delimiters: (
previous: Character?
next: Character?
)
}
handle(segment.tokens.current)
You can read more about tuples in "Using tuples as lightweight types in Swift"
3️⃣ Whenever I have 3 properties or local variables that share the same prefix, I usually try to extract them into their own method or type. That way I can avoid massive types & methods, and also increase readability, without falling into a "premature optimization" trap.
Before
public func generate() throws {
let contentFolder = try folder.subfolder(named: "content")
let articleFolder = try contentFolder.subfolder(named: "posts")
let articleProcessor = ContentProcessor(folder: articleFolder)
let articles = try articleProcessor.process()
...
}
After
public func generate() throws {
let contentFolder = try folder.subfolder(named: "content")
let articles = try processArticles(in: contentFolder)
...
}
private func processArticles(in folder: Folder) throws -> [ContentItem] {
let folder = try folder.subfolder(named: "posts")
let processor = ContentProcessor(folder: folder)
return try processor.process()
}
👨🔧 Here's two extensions that I always add to the Encodable
& Decodable
protocols, which for me really make the Codable API nicer to use. By using type inference for decoding, a lot of boilerplate can be removed when the compiler is already able to infer the resulting type.
extension Encodable {
func encoded() throws -> Data {
return try JSONEncoder().encode(self)
}
}
extension Data {
func decoded<T: Decodable>() throws -> T {
return try JSONDecoder().decode(T.self, from: self)
}
}
let data = try user.encoded()
// By using a generic type in the decoded() method, the
// compiler can often infer the type we want to decode
// from the current context.
try userDidLogin(data.decoded())
// And if not, we can always supply the type, still making
// the call site read very nicely.
let otherUser = try data.decoded() as User
📦 UserDefaults
is a lot more powerful than what it first might seem like. Not only can it store more complex values (like dates & dictionaries) and parse command line arguments - it also enables easy sharing of settings & lightweight data between apps in the same App Group.
let sharedDefaults = UserDefaults(suiteName: "my-app-group")!
let useDarkMode = sharedDefaults.bool(forKey: "dark-mode")
// This value is put into the shared suite.
sharedDefaults.set(true, forKey: "dark-mode")
// If you want to treat the shared settings as read-only (and add
// local overrides on top of them), you can simply add the shared
// suite to the standard UserDefaults.
let combinedDefaults = UserDefaults.standard
combinedDefaults.addSuite(named: "my-app-group")
// This value is a local override, not added to the shared suite.
combinedDefaults.set(true, forKey: "app-specific-override")
🎨 By overriding layerClass
you can tell UIKit what CALayer
class to use for a UIView
's backing layer. That way you can reduce the amount of layers, and don't have to do any manual layout.
final class GradientView: UIView {
override class var layerClass: AnyClass { return CAGradientLayer.self }
var colors: (start: UIColor, end: UIColor)? {
didSet { updateLayer() }
}
private func updateLayer() {
let layer = self.layer as! CAGradientLayer
layer.colors = colors.map { [$0.start.cgColor, $0.end.cgColor] }
}
}
✅ That the compiler now automatically synthesizes Equatable conformances is such a huge upgrade for Swift! And the cool thing is that it works for all kinds of types - even for enums with associated values! Especially useful when using enums for verification in unit tests.
struct Article: Equatable {
let title: String
let text: String
}
struct User: Equatable {
let name: String
let age: Int
}
extension Navigator {
enum Destination: Equatable {
case profile(User)
case article(Article)
}
}
func testNavigatingToArticle() {
let article = Article(title: "Title", text: "Text")
controller.select(article)
XCTAssertEqual(navigator.destinations, [.article(article)])
}
🤝 Associated types can have defaults in Swift - which is super useful for types that are not easily inferred (for example when they're not used for a specific instance method or property).
protocol Identifiable {
associatedtype RawIdentifier: Codable = String
var id: Identifier<Self> { get }
}
struct User: Identifiable {
let id: Identifier<User>
let name: String
}
struct Group: Identifiable {
typealias RawIdentifier = Int
let id: Identifier<Group>
let name: String
}
🆔 If you want to avoid using plain strings as identifiers (which can increase both type safety & readability), it's really easy to create a custom Identifier type that feels just like a native Swift type, thanks to protocols!
More on this topic in "Type-safe identifiers in Swift".
struct Identifier: Hashable {
let string: String
}
extension Identifier: ExpressibleByStringLiteral {
init(stringLiteral value: String) {
string = value
}
}
extension Identifier: CustomStringConvertible {
var description: String {
return string
}
}
extension Identifier: Codable {
init(from decoder: Decoder) throws {
let container = try decoder.singleValueContainer()
string = try container.decode(String.self)
}
func encode(to encoder: Encoder) throws {
var container = encoder.singleValueContainer()
try container.encode(string)
}
}
struct Article: Codable {
let id: Identifier
let title: String
}
let article = Article(id: "my-article", title: "Hello world!")
🙌 A really cool thing about using tuples to model the internal state of a Swift type, is that you can unwrap an optional tuple's members directly into local variables.
Very useful in order to group multiple optional values together for easy unwrapping & handling.
class ImageTransformer {
private var queue = [(image: UIImage, transform: Transform)]()
private func processNext() {
// When unwrapping an optional tuple, you can assign the members
// directly to local variables.
guard let (image, transform) = queue.first else {
return
}
let context = Context()
context.draw(image)
context.apply(transform)
...
}
}
❤️ I love to structure my code using extensions in Swift. One big benefit of doing so when it comes to struct initializers, is that defining a convenience initializer doesn't remove the default one the compiler generates - best of both worlds!
struct Article {
let date: Date
var title: String
var text: String
var comments: [Comment]
}
extension Article {
init(title: String, text: String) {
self.init(date: Date(), title: title, text: text, comments: [])
}
}
let articleA = Article(title: "Best Cupcake Recipe", text: "...")
let articleB = Article(
date: Date(),
title: "Best Cupcake Recipe",
text: "...",
comments: [
Comment(user: currentUser, text: "Yep, can confirm!")
]
)
🏈 A big benefit of using throwing functions for synchronous Swift APIs is that the caller can decide whether they want to treat the return value as optional (try?
) or required (try
).
func loadFile(named name: String) throws -> File {
guard let url = urlForFile(named: name) else {
throw File.Error.missing
}
do {
let data = try Data(contentsOf: url)
return File(url: url, data: data)
} catch {
throw File.Error.invalidData(error)
}
}
let requiredFile = try loadFile(named: "AppConfig.json")
let optionalFile = try? loadFile(named: "UserSettings.json")
🐝 Types that are nested in generics automatically inherit their parent's generic types - which is super useful when defining accessory types (for things like states or outcomes).
struct Task<Input, Output> {
typealias Closure = (Input) throws -> Output
let closure: Closure
}
extension Task {
enum Result {
case success(Output)
case failure(Error)
}
}
🤖 Now that the Swift compiler automatically synthesizes Equatable & Hashable conformances for value types, it's easier than ever to setup model structures with nested types that are all Equatable
/Hashable
!
typealias Value = Hashable & Codable
struct User: Value {
var name: String
var age: Int
var lastLoginDate: Date?
var settings: Settings
}
extension User {
struct Settings: Value {
var itemsPerPage: Int
var theme: Theme
}
}
extension User.Settings {
enum Theme: String, Value {
case light
case dark
}
}
You can read more about using nested types in Swift here.
🎉 Swift 4.1 is here! One of the key features it brings is conditional conformances, which lets you have a type only conform to a protocol under certain constraints.
protocol UnboxTransformable {
associatedtype RawValue
static func transform(_ value: RawValue) throws -> Self?
}
extension Array: UnboxTransformable where Element: UnboxTransformable {
typealias RawValue = [Element.RawValue]
static func transform(_ value: RawValue) throws -> [Element]? {
return try value.compactMap(Element.transform)
}
}
I also have an article with lots of more info on conditional conformances here. Paul Hudson also has a great overview of all Swift 4.1 features here.
🕵️♀️ A cool thing about Swift type aliases is that they can be generic! Combine that with tuples and you can easily define simple generic types.
typealias Pair<T> = (T, T)
extension Game {
func calculateScore(for players: Pair<Player>) -> Int {
...
}
}
You can read more about using tuples as lightweight types here.
☑️ A really cool "hidden" feature of UserDefaults is that it contains any arguments that were passed to the app at launch!
Super useful both in Swift command line tools & scripts, but also to temporarily override a value when debugging iOS apps.
let defaults = UserDefaults.standard
let query = defaults.string(forKey: "query")
let resultCount = defaults.integer(forKey: "results")
👏 Swift's &
operator is awesome! Not only can you use it to compose protocols, you can compose other types too! Very useful if you want to hide concrete types & implementation details.
protocol LoadableFromURL {
func load(from url: URL)
}
class ContentViewController: UIViewController, LoadableFromURL {
func load(from url: URL) {
...
}
}
class ViewControllerFactory {
func makeContentViewController() -> UIViewController & LoadableFromURL {
return ContentViewController()
}
}
🤗 When capturing values in mocks, using an array (instead of just a single value) makes it easy to verify that only a certain number of values were passed.
Perfect for protecting against "over-calling" something.
class UserManagerTests: XCTestCase {
func testObserversCalledWhenUserFirstLogsIn() {
let manager = UserManager()
let observer = ObserverMock()
manager.addObserver(observer)
// First login, observers should be notified
let user = User(id: 123, name: "John")
manager.userDidLogin(user)
XCTAssertEqual(observer.users, [user])
// If the same user logs in again, observers shouldn't be notified
manager.userDidLogin(user)
XCTAssertEqual(observer.users, [user])
}
}
private extension UserManagerTests {
class ObserverMock: UserManagerObserver {
private(set) var users = [User]()
func userDidChange(to user: User) {
users.append(user)
}
}
}
👋 When writing tests, you don't always need to create mocks - you can create stubs using real instances of things like errors, URLs & UserDefaults.
Here's how to do that for some common tasks/object types in Swift:
// Create errors using NSError (#function can be used to reference the name of the test)
let error = NSError(domain: #function, code: 1, userInfo: nil)
// Create non-optional URLs using file paths
let url = URL(fileURLWithPath: "Some/URL")
// Reference the test bundle using Bundle(for:)
let bundle = Bundle(for: type(of: self))
// Create an explicit UserDefaults object (instead of having to use a mock)
let userDefaults = UserDefaults(suiteName: #function)
// Create queues to control/await concurrent operations
let queue = DispatchQueue(label: #function)
For when you actually do need mocking, check out "Mocking in Swift".
⏱ I've started using "then" as an external parameter label for completion handlers. Makes the call site read really nicely (Because I do ❤️ conversational API design) regardless of whether trailing closure syntax is used or not.
protocol DataLoader {
// Adding type aliases to protocols can be a great way to
// reduce verbosity for parameter types.
typealias Handler = (Result<Data>) -> Void
associatedtype Endpoint
func loadData(from endpoint: Endpoint, then handler: @escaping Handler)
}
loader.loadData(from: .messages) { result in
...
}
loader.loadData(from: .messages, then: { result in
...
})
😴 Combining lazily evaluated sequences with builder pattern-like properties can lead to some pretty sweet APIs for configurable sequences in Swift.
Also useful for queries & other things you "build up" and then execute.
// Extension adding builder pattern-like properties that return
// a new sequence value with the given configuration applied
extension FileSequence {
var recursive: FileSequence {
var sequence = self
sequence.isRecursive = true
return sequence
}
var includingHidden: FileSequence {
var sequence = self
sequence.includeHidden = true
return sequence
}
}
// BEFORE
let files = folder.makeFileSequence(recursive: true, includeHidden: true)
// AFTER
let files = folder.files.recursive.includingHidden
Want an intro to lazy sequences? Check out "Swift sequences: The art of being lazy".
My top 3 tips for faster & more stable UI tests:
📱 Reset the app's state at the beginning of every test.
🆔 Use accessibility identifiers instead of UI strings.
⏱ Use expectations instead of waiting time.
func testOpeningArticle() {
// Launch the app with an argument that tells it to reset its state
let app = XCUIApplication()
app.launchArguments.append("--uitesting")
app.launch()
// Check that the app is displaying an activity indicator
let activityIndicator = app.activityIndicator.element
XCTAssertTrue(activityIndicator.exists)
// Wait for the loading indicator to disappear = content is ready
expectation(for: NSPredicate(format: "exists == 0"),
evaluatedWith: activityIndicator)
// Use a generous timeout in case the network is slow
waitForExpectations(timeout: 10)
// Tap the cell for the first article
app.tables.cells["Article.0"].tap()
// Assert that a label with the accessibility identifier "Article.Title" exists
let label = app.staticTexts["Article.Title"]
XCTAssertTrue(label.exists)
}
📋 It's super easy to access the contents of the clipboard from a Swift script. A big benefit of Swift scripting is being able to use Cocoa's powerful APIs for Mac apps.
import Cocoa
let clipboard = NSPasteboard.general.string(forType: .string)
🎯 Using Swift tuples for view state can be a super nice way to group multiple properties together and render them reactively using the layout system.
By using a tuple we don't have to either introduce a new type or make our view model-aware.
class TextView: UIView {
var state: (title: String?, text: String?) {
// By telling UIKit that our view needs layout and binding our
// state in layoutSubviews, we can react to state changes without
// doing unnecessary layout work.
didSet { setNeedsLayout() }
}
private let titleLabel = UILabel()
private let textLabel = UILabel()
override func layoutSubviews() {
super.layoutSubviews()
titleLabel.text = state.title
textLabel.text = state.text
...
}
}
⚾️ Swift tests can throw, which is super useful in order to avoid complicated logic or force unwrapping. By making errors conform to LocalizedError
, you can also get a nice error message in Xcode if there's a failure.
class ImageCacheTests: XCTestCase {
func testCachingAndLoadingImage() throws {
let bundle = Bundle(for: type(of: self))
let cache = ImageCache(bundle: bundle)
// Bonus tip: You can easily load images from your test
// bundle using this UIImage initializer
let image = try require(UIImage(named: "sample", in: bundle, compatibleWith: nil))
try cache.cache(image, forKey: "key")
let cachedImage = try cache.image(forKey: "key")
XCTAssertEqual(image, cachedImage)
}
}
enum ImageCacheError {
case emptyKey
case dataConversionFailed
}
// When using throwing tests, making your errors conform to
// LocalizedError will render a much nicer error message in
// Xcode (per default only the error code is shown).
extension ImageCacheError: LocalizedError {
var errorDescription: String? {
switch self {
case .emptyKey:
return "An empty key was given"
case .dataConversionFailed:
return "Failed to convert the given image to Data"
}
}
}
For more information, and the implementation of the require
method used above, check out "Avoiding force unwrapping in Swift unit tests".
✍️ Unlike static
properties, class
properties can be overridden by subclasses (however, they can't be stored, only computed).
class TableViewCell: UITableViewCell {
class var preferredHeight: CGFloat { return 60 }
}
class TallTableViewCell: TableViewCell {
override class var preferredHeight: CGFloat { return 100 }
}
👨🎨 Creating extensions with static factory methods can be a great alternative to subclassing in Swift, especially for things like setting up UIViews, CALayers or other kinds of styling.
It also lets you remove a lot of styling & setup from your view controllers.
extension UILabel {
static func makeForTitle() -> UILabel {
let label = UILabel()
label.font = .boldSystemFont(ofSize: 24)
label.textColor = .darkGray
label.adjustsFontSizeToFitWidth = true
label.minimumScaleFactor = 0.75
return label
}
static func makeForText() -> UILabel {
let label = UILabel()
label.font = .systemFont(ofSize: 16)
label.textColor = .black
label.numberOfLines = 0
return label
}
}
class ArticleViewController: UIViewController {
lazy var titleLabel = UILabel.makeForTitle()
lazy var textLabel = UILabel.makeForText()
}
🧒 An awesome thing about child view controllers is that they're automatically resized to match their parent, making them a super nice solution for things like loading & error views.
class ListViewController: UIViewController {
func loadItems() {
let loadingViewController = LoadingViewController()
add(loadingViewController)
dataLoader.loadItems { [weak self] result in
loadingViewController.remove()
self?.handle(result)
}
}
}
For more about child view controller (including the add
and remove
methods used above), check out "Using child view controllers as plugins in Swift".
🤐 Using the zip function in Swift you can easily combine two sequences. Super useful when using two sequences to do some work, since zip takes care of all the bounds-checking.
func render(titles: [String]) {
for (label, text) in zip(titleLabels, titles) {
print(text)
label.text = text
}
}
🎛 The awesome thing about option sets in Swift is that they can automatically either be passed as a single member or as a set. Even cooler is that you can easily define your own option sets as well, perfect for options and other non-exclusive values.
// Option sets are awesome, because you can easily pass them
// both using dot syntax and array literal syntax, like when
// using the UIView animation API:
UIView.animate(withDuration: 0.3,
delay: 0,
options: .allowUserInteraction,
animations: animations)
UIView.animate(withDuration: 0.3,
delay: 0,
options: [.allowUserInteraction, .layoutSubviews],
animations: animations)
// The cool thing is that you can easily define your own option
// sets as well, by defining a struct that has an Int rawValue,
// that will be used as a bit mask.
extension Cache {
struct Options: OptionSet {
static let saveToDisk = Options(rawValue: 1)
static let clearOnMemoryWarning = Options(rawValue: 1 << 1)
static let clearDaily = Options(rawValue: 1 << 2)
let rawValue: Int
}
}
// We can now use Cache.Options just like UIViewAnimationOptions:
Cache(options: .saveToDisk)
Cache(options: [.saveToDisk, .clearDaily])
🙌 Using the where
clause when designing protocol-oriented APIs in Swift can let your implementations (or others' if it's open source) have a lot more freedom, especially when it comes to collections.
See "Using generic type constraints in Swift 4" for more info.
public protocol PathFinderMap {
associatedtype Node
// Using the 'where' clause for associated types, we can
// ensure that a type meets certain requirements (in this
// case that it's a sequence with Node elements).
associatedtype NodeSequence: Sequence where NodeSequence.Element == Node
// Instead of using a concrete type (like [Node]) here, we
// give implementors of this protocol more freedom while
// still meeting our requirements. For example, one
// implementation might use Set<Node>.
func neighbors(of node: Node) -> NodeSequence
}
👨🍳 Combine first class functions in Swift with the fact that Dictionary elements are (Key, Value) tuples and you can build yourself some pretty awesome functional chains when iterating over a Dictionary.
func makeActor(at coordinate: Coordinate, for building: Building) -> Actor {
let actor = Actor()
actor.position = coordinate.point
actor.animation = building.animation
return actor
}
func render(_ buildings: [Coordinate : Building]) {
buildings.map(makeActor).forEach(add)
}
😎 In Swift, you can call any instance method as a static function and it will return a closure representing that method. This is how running tests using SPM on Linux works.
More about this topic in my blog post "First class functions in Swift".
// This produces a '() -> Void' closure which is a reference to the
// given view's 'removeFromSuperview' method.
let closure = UIView.removeFromSuperview(view)
// We can now call it just like we would any other closure, and it
// will run 'view.removeFromSuperview()'
closure()
// This is how running tests using the Swift Package Manager on Linux
// works, you return your test functions as closures:
extension UserManagerTests {
static var allTests = [
("testLoggingIn", testLoggingIn),
("testLoggingOut", testLoggingOut),
("testUserPermissions", testUserPermissions)
]
}
👏 One really nice benefit of dropping suffixes from method names (and just using verbs, when possible) is that it becomes super easy to support both single and multiple arguments, and it works really well semantically.
extension UIView {
func add(_ subviews: UIView...) {
subviews.forEach(addSubview)
}
}
view.add(button)
view.add(label)
// By dropping the "Subview" suffix from the method name, both
// single and multiple arguments work really well semantically.
view.add(button, label)
👽 Using the AnyObject
(or class
) constraint on protocols is not only useful when defining delegates (or other weak references), but also when you always want instances to be mutable without copying.
// By constraining a protocol with 'AnyObject' it can only be adopted
// by classes, which means all instances will always be mutable, and
// that it's the original instance (not a copy) that will be mutated.
protocol DataContainer: AnyObject {
var data: Data? { get set }
}
class UserSettingsManager {
private var settings: Settings
private let dataContainer: DataContainer
// Since DataContainer is a protocol, we an easily mock it in
// tests if we use dependency injection
init(settings: Settings, dataContainer: DataContainer) {
self.settings = settings
self.dataContainer = dataContainer
}
func saveSettings() throws {
let data = try settings.serialize()
// We can now assign properties on an instance of our protocol
// because the compiler knows it's always going to be a class
dataContainer.data = data
}
}
🍣 Even if you define a custom raw value for a string-based enum in Swift, the full case name will be used in string interpolation.
Super useful when using separate raw values for JSON, while still wanting to use the full case name in other contexts.
extension Building {
// This enum has custom raw values that are used when decoding
// a value, for example from JSON.
enum Kind: String {
case castle = "C"
case town = "T"
case barracks = "B"
case goldMine = "G"
case camp = "CA"
case blacksmith = "BL"
}
var animation: Animation {
return Animation(
// When used in string interpolation, the full case name is still used.
// For 'castle' this will be 'buildings/castle'.
name: "buildings/\(kind)",
frameCount: frameCount,
frameDuration: frameDuration
)
}
}
👨🔬 Continuing to experiment with expressive ways of comparing a value with a list of candidates in Swift. Adding an extension on Equatable is probably my favorite approach so far.
extension Equatable {
func isAny(of candidates: Self...) -> Bool {
return candidates.contains(self)
}
}
let isHorizontal = direction.isAny(of: .left, .right)
See tip 35 for my previous experiment.
📐 A really interesting side-effect of a UIView
's bounds
being its rect within its own coordinate system is that transforms don't affect it at all. That's why it's usually a better fit than frame
when doing layout calculations of subviews.
let view = UIView()
view.frame.size = CGSize(width: 100, height: 100)
view.transform = CGAffineTransform(scaleX: 2, y: 2)
print(view.frame) // (-50.0, -50.0, 200.0, 200.0)
print(view.bounds) // (0.0, 0.0, 100.0, 100.0)
👏 It's awesome that many UIKit APIs with completion handlers and other optional parameters import into Swift with default arguments (even though they are written in Objective-C). Getting rid of all those nil arguments is so nice!
// BEFORE: All parameters are specified, just like in Objective-C
viewController.present(modalViewController, animated: true, completion: nil)
modalViewController.dismiss(animated: true, completion: nil)
viewController.transition(from: loadingViewController,
to: contentViewController,
duration: 0.3,
options: [],
animations: animations,
completion: nil)
// AFTER: Since many UIKit APIs with completion handlers and other
// optional parameters import into Swift with default arguments,
// we can make our calls shorter
viewController.present(modalViewController, animated: true)
modalViewController.dismiss(animated: true)
viewController.transition(from: loadingViewController,
to: contentViewController,
duration: 0.3,
animations: animations)
✂️ Avoiding Massive View Controllers is all about finding the right levels of abstraction and splitting things up.
My personal rule of thumb is that as soon as I have 3 methods or properties that have the same prefix, I break them out into their own type.
// BEFORE
class LoginViewController: UIViewController {
private lazy var signUpLabel = UILabel()
private lazy var signUpImageView = UIImageView()
private lazy var signUpButton = UIButton()
}
// AFTER
class LoginViewController: UIViewController {
private lazy var signUpView = SignUpView()
}
class SignUpView: UIView {
private lazy var label = UILabel()
private lazy var imageView = UIImageView()
private lazy var button = UIButton()
}
❤️ I love the fact that optionals are enums in Swift - it makes it so easy to extend them with convenience APIs for certain types. Especially useful when doing things like data validation on optional values.
func validateTextFields() -> Bool {
guard !usernameTextField.text.isNilOrEmpty else {
return false
}
...
return true
}
// Since all optionals are actual enum values in Swift, we can easily
// extend them for certain types, to add our own convenience APIs
extension Optional where Wrapped == String {
var isNilOrEmpty: Bool {
switch self {
case let string?:
return string.isEmpty
case nil:
return true
}
}
}
// Since strings are now Collections in Swift 4, you can even
// add this property to all optional collections:
extension Optional where Wrapped: Collection {
var isNilOrEmpty: Bool {
switch self {
case let collection?:
return collection.isEmpty
case nil:
return true
}
}
}
🗺 Using the where
keyword can be a super nice way to quickly apply a filter in a for
-loop in Swift. You can of course use map
, filter
and forEach
, or guard
, but for simple loops I think this is very expressive and nice.
func archiveMarkedPosts() {
for post in posts where post.isMarked {
archive(post)
}
}
func healAllies() {
for player in players where player.isAllied(to: currentPlayer) {
player.heal()
}
}
👻 Variable shadowing can be super useful in Swift, especially when you want to create a local copy of a parameter value in order to use it as state within a closure.
init(repeatMode: RepeatMode, closure: @escaping () -> UpdateOutcome) {
// Shadow the argument with a local, mutable copy
var repeatMode = repeatMode
self.closure = {
// With shadowing, there's no risk of accidentially
// referring to the immutable version
switch repeatMode {
case .forever:
break
case .times(let count):
guard count > 0 else {
return .finished
}
// We can now capture the mutable version and use
// it for state in a closure
repeatMode = .times(count - 1)
}
return closure()
}
}
✒️ Dot syntax is one of my favorite features of Swift. What's really cool is that it's not only for enums, any static method or property can be used with dot syntax - even initializers! Perfect for convenience APIs and default parameters.
public enum RepeatMode {
case times(Int)
case forever
}
public extension RepeatMode {
static var never: RepeatMode {
return .times(0)
}
static var once: RepeatMode {
return .times(1)
}
}
view.perform(animation, repeated: .once)
// To make default parameters more compact, you can even use init with dot syntax
class ImageLoader {
init(cache: Cache = .init(), decoder: ImageDecoder = .init()) {
...
}
}
🚀 One really cool aspect of Swift having first class functions is that you can pass any function (or even initializer) as a closure, and even call it with a tuple containing its parameters!
// This function lets us treat any "normal" function or method as
// a closure and run it with a tuple that contains its parameters
func call<Input, Output>(_ function: (Input) -> Output, with input: Input) -> Output {
return function(input)
}
class ViewFactory {
func makeHeaderView() -> HeaderView {
// We can now pass an initializer as a closure, and a tuple
// containing its parameters
return call(HeaderView.init, with: loadTextStyles())
}
private func loadTextStyles() -> (font: UIFont, color: UIColor) {
return (theme.font, theme.textColor)
}
}
class HeaderView {
init(font: UIFont, textColor: UIColor) {
...
}
}
💉 If you've been struggling to test code that uses static APIs, here's a technique you can use to enable static dependency injection without having to modify any call sites:
// Before: Almost impossible to test due to the use of singletons
class Analytics {
static func log(_ event: Event) {
Database.shared.save(event)
let dictionary = event.serialize()
NetworkManager.shared.post(dictionary, to: eventURL)
}
}
// After: Much easier to test, since we can inject mocks as arguments
class Analytics {
static func log(_ event: Event,
database: Database = .shared,
networkManager: NetworkManager = .shared) {
database.save(event)
let dictionary = event.serialize()
networkManager.post(dictionary, to: eventURL)
}
}
🎉 In Swift 4, type inference works for lazy properties and you don't need to explicitly refer to self
!
// Swift 3
class PurchaseView: UIView {
private lazy var buyButton: UIButton = self.makeBuyButton()
private func makeBuyButton() -> UIButton {
let button = UIButton()
button.setTitle("Buy", for: .normal)
button.setTitleColor(.blue, for: .normal)
return button
}
}
// Swift 4
class PurchaseView: UIView {
private lazy var buyButton = makeBuyButton()
private func makeBuyButton() -> UIButton {
let button = UIButton()
button.setTitle("Buy", for: .normal)
button.setTitleColor(.blue, for: .normal)
return button
}
}
😎 You can turn any Swift Error
into an NSError
, which is super useful when pattern matching with a code 👍. Also, switching on optionals is pretty cool!
let task = urlSession.dataTask(with: url) { data, _, error in
switch error {
case .some(let error as NSError) where error.code == NSURLErrorNotConnectedToInternet:
presenter.showOfflineView()
case .some(let error):
presenter.showGenericErrorView()
case .none:
presenter.renderContent(from: data)
}
}
task.resume()
Also make sure to check out Kostas Kremizas' tip about how you can pattern match directly against a member of URLError
.
🖥 Here's an easy way to make iOS model code that uses UIImage
macOS compatible - like me and Gui Rambo discussed on the Swift by Sundell Podcast.
// Either put this in a separate file that you only include in your macOS target or wrap the code in #if os(macOS) / #endif
import Cocoa
// Step 1: Typealias UIImage to NSImage
typealias UIImage = NSImage
// Step 2: You might want to add these APIs that UIImage has but NSImage doesn't.
extension NSImage {
var cgImage: CGImage? {
var proposedRect = CGRect(origin: .zero, size: size)
return cgImage(forProposedRect: &proposedRect,
context: nil,
hints: nil)
}
convenience init?(named name: String) {
self.init(named: Name(name))
}
}
// Step 3: Profit - you can now make your model code that uses UIImage cross-platform!
struct User {
let name: String
let profileImage: UIImage
}
🤖 You can easily define a protocol-oriented API that can only be mutated internally, by using an internal protocol that extends a public one.
// Declare a public protocol that acts as your immutable API
public protocol ModelHolder {
associatedtype Model
var model: Model { get }
}
// Declare an extended, internal protocol that provides a mutable API
internal protocol MutableModelHolder: ModelHolder {
var model: Model { get set }
}
// You can now implement the requirements using 'public internal(set)'
public class UserHolder: MutableModelHolder {
public internal(set) var model: User
internal init(model: User) {
self.model = model
}
}
🎛 You can switch on a set using array literals as cases in Swift! Can be really useful to avoid many if
/else if
statements.
class RoadTile: Tile {
var connectedDirections = Set<Direction>()
func render() {
switch connectedDirections {
case [.up, .down]:
image = UIImage(named: "road-vertical")
case [.left, .right]:
image = UIImage(named: "road-horizontal")
default:
image = UIImage(named: "road")
}
}
}
🌍 When caching localized content in an app, it's a good idea to add the current locale to all keys, to prevent bugs when switching languages.
func cache(_ content: Content, forKey key: String) throws {
let data = try wrap(content) as Data
let key = localize(key: key)
try storage.store(data, forKey: key)
}
func loadCachedContent(forKey key: String) -> Content? {
let key = localize(key: key)
let data = storage.loadData(forKey: key)
return data.flatMap { try? unbox(data: $0) }
}
private func localize(key: String) -> String {
return key + "-" + Bundle.main.preferredLocalizations[0]
}
🚳 Here's an easy way to setup a test to avoid accidental retain cycles with object relationships (like weak delegates & observers) in Swift:
func testDelegateNotRetained() {
// Assign the delegate (weak) and also retain it using a local var
var delegate: Delegate? = DelegateMock()
controller.delegate = delegate
XCTAssertNotNil(controller.delegate)
// Release the local var, which should also release the weak reference
delegate = nil
XCTAssertNil(controller.delegate)
}
👨🔬 Playing around with an expressive way to check if a value matches any of a list of candidates in Swift:
// Instead of multiple conditions like this:
if string == "One" || string == "Two" || string == "Three" {
}
// You can now do:
if string == any(of: "One", "Two", "Three") {
}
You can find a gist with the implementation here.
👪 APIs in a Swift extension automatically inherit its access control level, making it a neat way to organize public, internal & private APIs.
public extension Animation {
init(textureNamed textureName: String) {
frames = [Texture(name: textureName)]
}
init(texturesNamed textureNames: [String], frameDuration: TimeInterval = 1) {
frames = textureNames.map(Texture.init)
self.frameDuration = frameDuration
}
init(image: Image) {
frames = [Texture(image: image)]
}
}
internal extension Animation {
func loadFrameImages() -> [Image] {
return frames.map { $0.loadImageIfNeeded() }
}
}
🗺 Using map
you can transform an optional value into an optional Result
type by simply passing in the enum case.
enum Result<Value> {
case value(Value)
case error(Error)
}
class Promise<Value> {
private var result: Result<Value>?
init(value: Value? = nil) {
result = value.map(Result.value)
}
}
👌 It's so nice that you can assign directly to self
in struct
initializers in Swift. Very useful when adding conformance to protocols.
extension Bool: AnswerConvertible {
public init(input: String) throws {
switch input.lowercased() {
case "y", "yes", "👍":
self = true
default:
self = false
}
}
}
☎️ Defining Swift closures as inline functions enables you to recursively call them, which is super useful in things like custom sequences.
class Database {
func records(matching query: Query) -> AnySequence<Record> {
var recordIterator = loadRecords().makeIterator()
func iterate() -> Record? {
guard let nextRecord = recordIterator.next() else {
return nil
}
guard nextRecord.matches(query) else {
// Since the closure is an inline function, it can be recursively called,
// in this case in order to advance to the next item.
return iterate()
}
return nextRecord
}
// AnySequence/AnyIterator are part of the standard library and provide an easy way
// to define custom sequences using closures.
return AnySequence { AnyIterator(iterate) }
}
}
Rob Napier points out that using the above might cause crashes if used on a large databaset, since Swift has no guaranteed Tail Call Optimization (TCO).
Slava Pestov also points out that another benefit of inline functions vs closures is that they can have their own generic parameter list.
🏖 Using lazy properties in Swift, you can pass self
to required Objective-C dependencies without having to use force-unwrapped optionals.
class DataLoader: NSObject {
lazy var urlSession: URLSession = self.makeURLSession()
private func makeURLSession() -> URLSession {
return URLSession(configuration: .default, delegate: self, delegateQueue: .main)
}
}
class Renderer {
lazy var displayLink: CADisplayLink = self.makeDisplayLink()
private func makeDisplayLink() -> CADisplayLink {
return CADisplayLink(target: self, selector: #selector(screenDidRefresh))
}
}
👓 If you have a property in Swift that needs to be weak
or lazy
, you can still make it readonly by using private(set)
.
class Node {
private(set) weak var parent: Node?
private(set) lazy var children = [Node]()
func add(child: Node) {
children.append(child)
child.parent = self
}
}
🌏 Tired of using URL(string: "url")!
for static URLs? Make URL
conform to ExpressibleByStringLiteral
and you can now simply use "url"
instead.
extension URL: ExpressibleByStringLiteral {
// By using 'StaticString' we disable string interpolation, for safety
public init(stringLiteral value: StaticString) {
self = URL(string: "\(value)").require(hint: "Invalid URL string literal: \(value)")
}
}
// We can now define URLs using static string literals 🎉
let url: URL = "https://www.swiftbysundell.com"
let task = URLSession.shared.dataTask(with: "https://www.swiftbysundell.com")
// In Swift 3 or earlier, you also have to implement 2 additional initializers
extension URL {
public init(extendedGraphemeClusterLiteral value: StaticString) {
self.init(stringLiteral: value)
}
public init(unicodeScalarLiteral value: StaticString) {
self.init(stringLiteral: value)
}
}
To find the extension that adds the require()
method on Optional
that I use above, check out Require.
✚ I'm always careful with operator overloading, but for manipulating things like sizes, points & frames I find them super useful.
extension CGSize {
static func *(lhs: CGSize, rhs: CGFloat) -> CGSize {
return CGSize(width: lhs.width * rhs, height: lhs.height * rhs)
}
}
button.frame.size = image.size * 2
If you like the above idea, check out CGOperators, which contains math operator overloads for all Core Graphics' vector types.
🔗 You can use closure types in generic constraints in Swift. Enables nice APIs for handling sequences of closures.
extension Sequence where Element == () -> Void {
func callAll() {
forEach { $0() }
}
}
extension Sequence where Element == () -> String {
func joinedResults(separator: String) -> String {
return map { $0() }.joined(separator: separator)
}
}
callbacks.callAll()
let names = nameProviders.joinedResults(separator: ", ")
(If you're using Swift 3, you have to change Element
to Iterator.Element
)
🎉 Using associated enum values is a super nice way to encapsulate mutually exclusive state info (and avoiding state-specific optionals).
// BEFORE: Lots of state-specific, optional properties
class Player {
var isWaitingForMatchMaking: Bool
var invitingUser: User?
var numberOfLives: Int
var playerDefeatedBy: Player?
var roundDefeatedIn: Int?
}
// AFTER: All state-specific information is encapsulated in enum cases
class Player {
enum State {
case waitingForMatchMaking
case waitingForInviteResponse(from: User)
case active(numberOfLives: Int)
case defeated(by: Player, roundNumber: Int)
}
var state: State
}
👍 I really like using enums for all async result types, even boolean ones. Self-documenting, and makes the call site a lot nicer to read too!
protocol PushNotificationService {
// Before
func enablePushNotifications(completionHandler: @escaping (Bool) -> Void)
// After
func enablePushNotifications(completionHandler: @escaping (PushNotificationStatus) -> Void)
}
enum PushNotificationStatus {
case enabled
case disabled
}
service.enablePushNotifications { status in
if status == .enabled {
enableNotificationsButton.removeFromSuperview()
}
}
🏃 Want to work on your async code in a Swift Playground? Just set needsIndefiniteExecution
to true to keep it running:
import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true
DispatchQueue.main.asyncAfter(deadline: .now() + 3) {
let greeting = "Hello after 3 seconds"
print(greeting)
}
To stop the playground from executing, simply call PlaygroundPage.current.finishExecution()
.
💦 Avoid memory leaks when accidentially refering to self
in closures by overriding it locally with a weak reference:
Swift >= 4.2
dataLoader.loadData(from: url) { [weak self] result in
guard let self = self else {
return
}
self.cache(result)
...
Swift < 4.2
dataLoader.loadData(from: url) { [weak self] result in
guard let `self` = self else {
return
}
self.cache(result)
...
Note that the reason the above currently works is because of a compiler bug (which I hope gets turned into a properly supported feature soon).
🕓 Using dispatch work items you can easily cancel a delayed asynchronous GCD task if you no longer need it:
let workItem = DispatchWorkItem {
// Your async code goes in here
}
// Execute the work item after 1 second
DispatchQueue.main.asyncAfter(deadline: .now() + 1, execute: workItem)
// You can cancel the work item if you no longer need it
workItem.cancel()
➕ While working on a new Swift developer tool (to be open sourced soon 😉), I came up with a pretty neat way of organizing its sequence of operations, by combining their functions into a closure:
internal func +<A, B, C>(lhs: @escaping (A) throws -> B,
rhs: @escaping (B) throws -> C) -> (A) throws -> C {
return { try rhs(lhs($0)) }
}
public func run() throws {
try (determineTarget + build + analyze + output)()
}
If you're familiar with the functional programming world, you might know the above technique as the pipe operator (thanks to Alexey Demedreckiy for pointing this out!)
🗺 Using map()
and flatMap()
on optionals you can chain multiple operations without having to use lengthy if lets
or guards
:
// BEFORE
guard let string = argument(at: 1) else {
return
}
guard let url = URL(string: string) else {
return
}
handle(url)
// AFTER
argument(at: 1).flatMap(URL.init).map(handle)
🚀 Using self-executing closures is a great way to encapsulate lazy property initialization:
class StoreViewController: UIViewController {
private lazy var collectionView: UICollectionView = {
let layout = UICollectionViewFlowLayout()
let view = UICollectionView(frame: self.view.bounds, collectionViewLayout: layout)
view.delegate = self
view.dataSource = self
return view
}()
override func viewDidLoad() {
super.viewDidLoad()
view.addSubview(collectionView)
}
}
⚡️ You can speed up your Swift package tests using the --parallel
flag. For Marathon, the tests execute 3 times faster that way!
swift test --parallel
🛠 Struggling with mocking UserDefaults
in a test? The good news is: you don't need mocking - just create a real instance:
class LoginTests: XCTestCase {
private var userDefaults: UserDefaults!
private var manager: LoginManager!
override func setUp() {
super.setup()
userDefaults = UserDefaults(suiteName: #file)
userDefaults.removePersistentDomain(forName: #file)
manager = LoginManager(userDefaults: userDefaults)
}
}
👍 Using variadic parameters in Swift, you can create some really nice APIs that take a list of objects without having to use an array:
extension Canvas {
func add(_ shapes: Shape...) {
shapes.forEach(add)
}
}
let circle = Circle(center: CGPoint(x: 5, y: 5), radius: 5)
let lineA = Line(start: .zero, end: CGPoint(x: 10, y: 10))
let lineB = Line(start: CGPoint(x: 0, y: 10), end: CGPoint(x: 10, y: 0))
let canvas = Canvas()
canvas.add(circle, lineA, lineB)
canvas.render()
😮 Just like you can refer to a Swift function as a closure, you can do the same thing with enum cases with associated values:
enum UnboxPath {
case key(String)
case keyPath(String)
}
struct UserSchema {
static let name = key("name")
static let age = key("age")
static let posts = key("posts")
private static let key = UnboxPath.key
}
📈 The ===
operator lets you check if two objects are the same instance. Very useful when verifying that an array contains an instance in a test:
protocol InstanceEquatable: class, Equatable {}
extension InstanceEquatable {
static func ==(lhs: Self, rhs: Self) -> Bool {
return lhs === rhs
}
}
extension Enemy: InstanceEquatable {}
func testDestroyingEnemy() {
player.attack(enemy)
XCTAssertTrue(player.destroyedEnemies.contains(enemy))
}
😎 Cool thing about Swift initializers: you can call them using dot syntax and pass them as closures! Perfect for mocking dates in tests.
class Logger {
private let storage: LogStorage
private let dateProvider: () -> Date
init(storage: LogStorage = .init(), dateProvider: @escaping () -> Date = Date.init) {
self.storage = storage
self.dateProvider = dateProvider
}
func log(event: Event) {
storage.store(event: event, date: dateProvider())
}
}
📱 Most of my UI testing logic is now categories on XCUIApplication
. Makes the test cases really easy to read:
func testLoggingInAndOut() {
XCTAssertFalse(app.userIsLoggedIn)
app.launch()
app.login()
XCTAssertTrue(app.userIsLoggedIn)
app.logout()
XCTAssertFalse(app.userIsLoggedIn)
}
func testDisplayingCategories() {
XCTAssertFalse(app.isDisplayingCategories)
app.launch()
app.login()
app.goToCategories()
XCTAssertTrue(app.isDisplayingCategories)
}
🙂 It’s a good idea to avoid “default” cases when switching on Swift enums - it’ll “force you” to update your logic when a new case is added:
enum State {
case loggedIn
case loggedOut
case onboarding
}
func handle(_ state: State) {
switch state {
case .loggedIn:
showMainUI()
case .loggedOut:
showLoginUI()
// Compiler error: Switch must be exhaustive
}
}
💂 It's really cool that you can use Swift's 'guard' statement to exit out of pretty much any scope, not only return from functions:
// You can use the 'guard' statement to...
for string in strings {
// ...continue an iteration
guard shouldProcess(string) else {
continue
}
// ...or break it
guard !shouldBreak(for: string) else {
break
}
// ...or return
guard !shouldReturn(for: string) else {
return
}
// ..or throw an error
guard string.isValid else {
throw StringError.invalid(string)
}
// ...or exit the program
guard !shouldExit(for: string) else {
exit(1)
}
}
❤️ Love how you can pass functions & operators as closures in Swift. For example, it makes the syntax for sorting arrays really nice!
let array = [3, 9, 1, 4, 6, 2]
let sorted = array.sorted(by: <)
🗝 Here's a neat little trick I use to get UserDefault key consistency in Swift (#function expands to the property name in getters/setters). Just remember to write a good suite of tests that'll guard you against bugs when changing property names.
extension UserDefaults {
var onboardingCompleted: Bool {
get { return bool(forKey: #function) }
set { set(newValue, forKey: #function) }
}
}
📛 Want to use a name already taken by the standard library for a nested type? No problem - just use Swift.
to disambiguate:
extension Command {
enum Error: Swift.Error {
case missing
case invalid(String)
}
}
📦 Playing around with using Wrap to implement Equatable
for any type, primarily for testing:
protocol AutoEquatable: Equatable {}
extension AutoEquatable {
static func ==(lhs: Self, rhs: Self) -> Bool {
let lhsData = try! wrap(lhs) as Data
let rhsData = try! wrap(rhs) as Data
return lhsData == rhsData
}
}
📏 One thing that I find really useful in Swift is to use typealiases to reduce the length of method signatures in generic types:
public class PathFinder<Object: PathFinderObject> {
public typealias Map = Object.Map
public typealias Node = Map.Node
public typealias Path = PathFinderPath<Object>
public static func possiblePaths(for object: Object, at rootNode: Node, on map: Map) -> Path.Sequence {
return .init(object: object, rootNode: rootNode, map: map)
}
}
📖 You can reference either the external or internal parameter label when writing Swift docs - and they get parsed the same:
// EITHER:
class Foo {
/**
* - parameter string: A string
*/
func bar(with string: String) {}
}
// OR:
class Foo {
/**
* - parameter with: A string
*/
func bar(with string: String) {}
}
👍 Finding more and more uses for auto closures in Swift. Can enable some pretty nice APIs:
extension Dictionary {
mutating func value(for key: Key, orAdd valueClosure: @autoclosure () -> Value) -> Value {
if let value = self[key] {
return value
}
let value = valueClosure()
self[key] = value
return value
}
}
🚀 I’ve started to become a really big fan of nested types in Swift. Love the additional namespacing it gives you!
public struct Map {
public struct Model {
public let size: Size
public let theme: Theme
public var terrain: [Position : Terrain.Model]
public var units: [Position : Unit.Model]
public var buildings: [Position : Building.Model]
}
public enum Direction {
case up
case right
case down
case left
}
public struct Position {
public var x: Int
public var y: Int
}
public enum Size: String {
case small = "S"
case medium = "M"
case large = "L"
case extraLarge = "XL"
}
}
Author: JohnSundell
Source Code: https://github.com/JohnSundell/SwiftTips
License: MIT license
1661592007
⚠️ This list is no longer being updated. For my latest Swift tips, checkout the "Tips" section on Swift by Sundell.
One of the things I really love about Swift is how I keep finding interesting ways to use it in various situations, and when I do - I usually share them on Twitter. Here's a collection of all the tips & tricks that I've shared so far. Each entry has a link to the original tweet, if you want to respond with some feedback or question, which is always super welcome! 🚀
Also make sure to check out all of my other Swift content:
🚀 Here are some quick tips to make async tests faster & more stable:
// BEFORE:
class MentionDetectorTests: XCTestCase {
func testDetectingMention() {
let detector = MentionDetector()
let string = "This test was written by @johnsundell."
detector.detectMentions(in: string) { mentions in
XCTAssertEqual(mentions, ["johnsundell"])
}
sleep(2)
}
}
// AFTER:
class MentionDetectorTests: XCTestCase {
func testDetectingMention() {
let detector = MentionDetector()
let string = "This test was written by @johnsundell."
var mentions: [String]?
let expectation = self.expectation(description: #function)
detector.detectMentions(in: string) {
mentions = $0
expectation.fulfill()
}
waitForExpectations(timeout: 10)
XCTAssertEqual(mentions, ["johnsundell"])
}
}
For more on async testing, check out "Unit testing asynchronous Swift code".
✍️ Adding support for the new Apple Pencil double-tap feature is super easy! All you have to do is to create a UIPencilInteraction
, add it to a view, and implement one delegate method. Hopefully all pencil-compatible apps will soon adopt this.
let interaction = UIPencilInteraction()
interaction.delegate = self
view.addInteraction(interaction)
extension ViewController: UIPencilInteractionDelegate {
func pencilInteractionDidTap(_ interaction: UIPencilInteraction) {
// Handle pencil double-tap
}
}
For more on using this and other iPad Pro features, check out "Building iPad Pro features in Swift".
😎 Here's a cool function that combines a value with a function to return a closure that captures that value, so that it can be called without any arguments. Super useful when working with closure-based APIs and we want to use some of our properties without having to capture self
.
func combine<A, B>(_ value: A, with closure: @escaping (A) -> B) -> () -> B {
return { closure(value) }
}
// BEFORE:
class ProductViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
buyButton.handler = { [weak self] in
guard let self = self else {
return
}
self.productManager.startCheckout(for: self.product)
}
}
}
// AFTER:
class ProductViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
buyButton.handler = combine(product, with: productManager.startCheckout)
}
}
💉 When I'm only using a single function from a dependency, I love to inject that function as a closure, instead of having to create a protocol and inject the whole object. Makes dependency injection & testing super simple.
final class ArticleLoader {
typealias Networking = (Endpoint) -> Future<Data>
private let networking: Networking
init(networking: @escaping Networking = URLSession.shared.load) {
self.networking = networking
}
func loadLatest() -> Future<[Article]> {
return networking(.latestArticles).decode()
}
}
For more on this technique, check out "Simple Swift dependency injection with functions".
💥 It's cool that you can easily assign a closure as a custom NSException
handler. This is super useful when building things in Playgrounds - since you can't use breakpoints - so instead of just signal SIGABRT
, you'll get the full exception description if something goes wrong.
NSSetUncaughtExceptionHandler { exception in
print(exception)
}
❤️ I love that in Swift, we can use the type system to make our code so much more self-documenting - one way of doing so is to use type aliases to give the primitive types that we use a more semantic meaning.
extension List.Item {
// Using type aliases, we can give semantic meaning to the
// primitive types that we use, without having to introduce
// wrapper types.
typealias Index = Int
}
extension List {
enum Mutation {
// Our enum cases now become a lot more self-documenting,
// without having to add additional parameter labels to
// explain them.
case add(Item, Item.Index)
case update(Item, Item.Index)
case remove(Item.Index)
}
}
For more on self-documenting code, check out "Writing self-documenting Swift code".
🤯 A little late night prototyping session reveals that protocol constraints can not only be applied to extensions - they can also be added to protocol definitions!
This is awesome, since it lets us easily define specialized protocols based on more generic ones.
protocol Component {
associatedtype Container
func add(to container: Container)
}
// Protocols that inherit from other protocols can include
// constraints to further specialize them.
protocol ViewComponent: Component where Container == UIView {
associatedtype View: UIView
var view: View { get }
}
extension ViewComponent {
func add(to container: UIView) {
container.addSubview(view)
}
}
For more on specializing protocols, check out "Specializing protocols in Swift".
📦 Here's a super handy extension on Swift's Optional
type, which gives us a really nice API for easily unwrapping an optional, or throwing an error in case the value turned out to be nil
:
extension Optional {
func orThrow(_ errorExpression: @autoclosure () -> Error) throws -> Wrapped {
switch self {
case .some(let value):
return value
case .none:
throw errorExpression()
}
}
}
let file = try loadFile(at: path).orThrow(MissingFileError())
For more ways that optionals can be extended, check out "Extending optionals in Swift".
👩🔬 Testing code that uses static APIs can be really tricky, but there's a way that it can often be done - using Swift's first class function capabilities!
Instead of accessing that static API directly, we can inject the function we want to use, which enables us to mock it!
// BEFORE
class FriendsLoader {
func loadFriends(then handler: @escaping (Result<[Friend]>) -> Void) {
Networking.loadData(from: .friends) { result in
...
}
}
}
// AFTER
class FriendsLoader {
typealias Handler<T> = (Result<T>) -> Void
typealias DataLoadingFunction = (Endpoint, @escaping Handler<Data>) -> Void
func loadFriends(using dataLoading: DataLoadingFunction = Networking.loadData,
then handler: @escaping Handler<[Friend]>) {
dataLoading(.friends) { result in
...
}
}
}
// MOCKING IN TESTS
let dataLoading: FriendsLoader.DataLoadingFunction = { _, handler in
handler(.success(mockData))
}
friendsLoader.loadFriends(using: dataLoading) { result in
...
}
🐾 Swift's pattern matching capabilities are so powerful! Two enum cases with associated values can even be matched and handled by the same switch case - which is super useful when handling state changes with similar data.
enum DownloadState {
case inProgress(progress: Double)
case paused(progress: Double)
case cancelled
case finished(Data)
}
func downloadStateDidChange(to state: DownloadState) {
switch state {
case .inProgress(let progress), .paused(let progress):
updateProgressView(with: progress)
case .cancelled:
showCancelledMessage()
case .finished(let data):
process(data)
}
}
🅰 One really nice benefit of Swift multiline string literals - even for single lines of text - is that they don't require quotes to be escaped. Perfect when working with things like HTML, or creating a custom description for an object.
let html = highlighter.highlight("Array<String>")
XCTAssertEqual(html, """
<span class="type">Array</span><<span class="type">String</span>>
""")
💎 While it's very common in functional programming, the reduce
function might be a bit of a hidden gem in Swift. It provides a super useful way to transform a sequence into a single value.
extension Sequence where Element: Equatable {
func numberOfOccurrences(of target: Element) -> Int {
return reduce(0) { result, element in
guard element == target else {
return result
}
return result + 1
}
}
}
You can read more about transforming collections in "Transforming collections in Swift".
📦 When I use Codable in Swift, I want to avoid manual implementations as much as possible, even when there's a mismatch between my code structure and the JSON I'm decoding.
One way that can often be achieved is to use private data containers combined with computed properties.
struct User: Codable {
let name: String
let age: Int
var homeTown: String { return originPlace.name }
private let originPlace: Place
}
private extension User {
struct Place: Codable {
let name: String
}
}
extension User {
struct Container: Codable {
let user: User
}
}
🚢 Instead of using feature branches, I merge almost all of my code directly into master - and then I use feature flags to conditionally enable features when they're ready. That way I can avoid merge conflicts and keep shipping!
extension ListViewController {
func addSearchIfNeeded() {
// Rather than having to keep maintaining a separate
// feature branch for a new feature, we can use a flag
// to conditionally turn it on.
guard FeatureFlags.searchEnabled else {
return
}
let resultsVC = SearchResultsViewController()
let searchVC = UISearchController(
searchResultsController: resultsVC
)
searchVC.searchResultsUpdater = resultsVC
navigationItem.searchController = searchVC
}
}
You can read more about feature flags in "Feature flags in Swift".
💾 Here I'm using tuples to create a lightweight hierarchy for my data, giving me a nice structure without having to introduce any additional types.
struct CodeSegment {
var tokens: (
previous: String?,
current: String
)
var delimiters: (
previous: Character?
next: Character?
)
}
handle(segment.tokens.current)
You can read more about tuples in "Using tuples as lightweight types in Swift"
3️⃣ Whenever I have 3 properties or local variables that share the same prefix, I usually try to extract them into their own method or type. That way I can avoid massive types & methods, and also increase readability, without falling into a "premature optimization" trap.
Before
public func generate() throws {
let contentFolder = try folder.subfolder(named: "content")
let articleFolder = try contentFolder.subfolder(named: "posts")
let articleProcessor = ContentProcessor(folder: articleFolder)
let articles = try articleProcessor.process()
...
}
After
public func generate() throws {
let contentFolder = try folder.subfolder(named: "content")
let articles = try processArticles(in: contentFolder)
...
}
private func processArticles(in folder: Folder) throws -> [ContentItem] {
let folder = try folder.subfolder(named: "posts")
let processor = ContentProcessor(folder: folder)
return try processor.process()
}
👨🔧 Here's two extensions that I always add to the Encodable
& Decodable
protocols, which for me really make the Codable API nicer to use. By using type inference for decoding, a lot of boilerplate can be removed when the compiler is already able to infer the resulting type.
extension Encodable {
func encoded() throws -> Data {
return try JSONEncoder().encode(self)
}
}
extension Data {
func decoded<T: Decodable>() throws -> T {
return try JSONDecoder().decode(T.self, from: self)
}
}
let data = try user.encoded()
// By using a generic type in the decoded() method, the
// compiler can often infer the type we want to decode
// from the current context.
try userDidLogin(data.decoded())
// And if not, we can always supply the type, still making
// the call site read very nicely.
let otherUser = try data.decoded() as User
📦 UserDefaults
is a lot more powerful than what it first might seem like. Not only can it store more complex values (like dates & dictionaries) and parse command line arguments - it also enables easy sharing of settings & lightweight data between apps in the same App Group.
let sharedDefaults = UserDefaults(suiteName: "my-app-group")!
let useDarkMode = sharedDefaults.bool(forKey: "dark-mode")
// This value is put into the shared suite.
sharedDefaults.set(true, forKey: "dark-mode")
// If you want to treat the shared settings as read-only (and add
// local overrides on top of them), you can simply add the shared
// suite to the standard UserDefaults.
let combinedDefaults = UserDefaults.standard
combinedDefaults.addSuite(named: "my-app-group")
// This value is a local override, not added to the shared suite.
combinedDefaults.set(true, forKey: "app-specific-override")
🎨 By overriding layerClass
you can tell UIKit what CALayer
class to use for a UIView
's backing layer. That way you can reduce the amount of layers, and don't have to do any manual layout.
final class GradientView: UIView {
override class var layerClass: AnyClass { return CAGradientLayer.self }
var colors: (start: UIColor, end: UIColor)? {
didSet { updateLayer() }
}
private func updateLayer() {
let layer = self.layer as! CAGradientLayer
layer.colors = colors.map { [$0.start.cgColor, $0.end.cgColor] }
}
}
✅ That the compiler now automatically synthesizes Equatable conformances is such a huge upgrade for Swift! And the cool thing is that it works for all kinds of types - even for enums with associated values! Especially useful when using enums for verification in unit tests.
struct Article: Equatable {
let title: String
let text: String
}
struct User: Equatable {
let name: String
let age: Int
}
extension Navigator {
enum Destination: Equatable {
case profile(User)
case article(Article)
}
}
func testNavigatingToArticle() {
let article = Article(title: "Title", text: "Text")
controller.select(article)
XCTAssertEqual(navigator.destinations, [.article(article)])
}
🤝 Associated types can have defaults in Swift - which is super useful for types that are not easily inferred (for example when they're not used for a specific instance method or property).
protocol Identifiable {
associatedtype RawIdentifier: Codable = String
var id: Identifier<Self> { get }
}
struct User: Identifiable {
let id: Identifier<User>
let name: String
}
struct Group: Identifiable {
typealias RawIdentifier = Int
let id: Identifier<Group>
let name: String
}
🆔 If you want to avoid using plain strings as identifiers (which can increase both type safety & readability), it's really easy to create a custom Identifier type that feels just like a native Swift type, thanks to protocols!
More on this topic in "Type-safe identifiers in Swift".
struct Identifier: Hashable {
let string: String
}
extension Identifier: ExpressibleByStringLiteral {
init(stringLiteral value: String) {
string = value
}
}
extension Identifier: CustomStringConvertible {
var description: String {
return string
}
}
extension Identifier: Codable {
init(from decoder: Decoder) throws {
let container = try decoder.singleValueContainer()
string = try container.decode(String.self)
}
func encode(to encoder: Encoder) throws {
var container = encoder.singleValueContainer()
try container.encode(string)
}
}
struct Article: Codable {
let id: Identifier
let title: String
}
let article = Article(id: "my-article", title: "Hello world!")
🙌 A really cool thing about using tuples to model the internal state of a Swift type, is that you can unwrap an optional tuple's members directly into local variables.
Very useful in order to group multiple optional values together for easy unwrapping & handling.
class ImageTransformer {
private var queue = [(image: UIImage, transform: Transform)]()
private func processNext() {
// When unwrapping an optional tuple, you can assign the members
// directly to local variables.
guard let (image, transform) = queue.first else {
return
}
let context = Context()
context.draw(image)
context.apply(transform)
...
}
}
❤️ I love to structure my code using extensions in Swift. One big benefit of doing so when it comes to struct initializers, is that defining a convenience initializer doesn't remove the default one the compiler generates - best of both worlds!
struct Article {
let date: Date
var title: String
var text: String
var comments: [Comment]
}
extension Article {
init(title: String, text: String) {
self.init(date: Date(), title: title, text: text, comments: [])
}
}
let articleA = Article(title: "Best Cupcake Recipe", text: "...")
let articleB = Article(
date: Date(),
title: "Best Cupcake Recipe",
text: "...",
comments: [
Comment(user: currentUser, text: "Yep, can confirm!")
]
)
🏈 A big benefit of using throwing functions for synchronous Swift APIs is that the caller can decide whether they want to treat the return value as optional (try?
) or required (try
).
func loadFile(named name: String) throws -> File {
guard let url = urlForFile(named: name) else {
throw File.Error.missing
}
do {
let data = try Data(contentsOf: url)
return File(url: url, data: data)
} catch {
throw File.Error.invalidData(error)
}
}
let requiredFile = try loadFile(named: "AppConfig.json")
let optionalFile = try? loadFile(named: "UserSettings.json")
🐝 Types that are nested in generics automatically inherit their parent's generic types - which is super useful when defining accessory types (for things like states or outcomes).
struct Task<Input, Output> {
typealias Closure = (Input) throws -> Output
let closure: Closure
}
extension Task {
enum Result {
case success(Output)
case failure(Error)
}
}
🤖 Now that the Swift compiler automatically synthesizes Equatable & Hashable conformances for value types, it's easier than ever to setup model structures with nested types that are all Equatable
/Hashable
!
typealias Value = Hashable & Codable
struct User: Value {
var name: String
var age: Int
var lastLoginDate: Date?
var settings: Settings
}
extension User {
struct Settings: Value {
var itemsPerPage: Int
var theme: Theme
}
}
extension User.Settings {
enum Theme: String, Value {
case light
case dark
}
}
You can read more about using nested types in Swift here.
🎉 Swift 4.1 is here! One of the key features it brings is conditional conformances, which lets you have a type only conform to a protocol under certain constraints.
protocol UnboxTransformable {
associatedtype RawValue
static func transform(_ value: RawValue) throws -> Self?
}
extension Array: UnboxTransformable where Element: UnboxTransformable {
typealias RawValue = [Element.RawValue]
static func transform(_ value: RawValue) throws -> [Element]? {
return try value.compactMap(Element.transform)
}
}
I also have an article with lots of more info on conditional conformances here. Paul Hudson also has a great overview of all Swift 4.1 features here.
🕵️♀️ A cool thing about Swift type aliases is that they can be generic! Combine that with tuples and you can easily define simple generic types.
typealias Pair<T> = (T, T)
extension Game {
func calculateScore(for players: Pair<Player>) -> Int {
...
}
}
You can read more about using tuples as lightweight types here.
☑️ A really cool "hidden" feature of UserDefaults is that it contains any arguments that were passed to the app at launch!
Super useful both in Swift command line tools & scripts, but also to temporarily override a value when debugging iOS apps.
let defaults = UserDefaults.standard
let query = defaults.string(forKey: "query")
let resultCount = defaults.integer(forKey: "results")
👏 Swift's &
operator is awesome! Not only can you use it to compose protocols, you can compose other types too! Very useful if you want to hide concrete types & implementation details.
protocol LoadableFromURL {
func load(from url: URL)
}
class ContentViewController: UIViewController, LoadableFromURL {
func load(from url: URL) {
...
}
}
class ViewControllerFactory {
func makeContentViewController() -> UIViewController & LoadableFromURL {
return ContentViewController()
}
}
🤗 When capturing values in mocks, using an array (instead of just a single value) makes it easy to verify that only a certain number of values were passed.
Perfect for protecting against "over-calling" something.
class UserManagerTests: XCTestCase {
func testObserversCalledWhenUserFirstLogsIn() {
let manager = UserManager()
let observer = ObserverMock()
manager.addObserver(observer)
// First login, observers should be notified
let user = User(id: 123, name: "John")
manager.userDidLogin(user)
XCTAssertEqual(observer.users, [user])
// If the same user logs in again, observers shouldn't be notified
manager.userDidLogin(user)
XCTAssertEqual(observer.users, [user])
}
}
private extension UserManagerTests {
class ObserverMock: UserManagerObserver {
private(set) var users = [User]()
func userDidChange(to user: User) {
users.append(user)
}
}
}
👋 When writing tests, you don't always need to create mocks - you can create stubs using real instances of things like errors, URLs & UserDefaults.
Here's how to do that for some common tasks/object types in Swift:
// Create errors using NSError (#function can be used to reference the name of the test)
let error = NSError(domain: #function, code: 1, userInfo: nil)
// Create non-optional URLs using file paths
let url = URL(fileURLWithPath: "Some/URL")
// Reference the test bundle using Bundle(for:)
let bundle = Bundle(for: type(of: self))
// Create an explicit UserDefaults object (instead of having to use a mock)
let userDefaults = UserDefaults(suiteName: #function)
// Create queues to control/await concurrent operations
let queue = DispatchQueue(label: #function)
For when you actually do need mocking, check out "Mocking in Swift".
⏱ I've started using "then" as an external parameter label for completion handlers. Makes the call site read really nicely (Because I do ❤️ conversational API design) regardless of whether trailing closure syntax is used or not.
protocol DataLoader {
// Adding type aliases to protocols can be a great way to
// reduce verbosity for parameter types.
typealias Handler = (Result<Data>) -> Void
associatedtype Endpoint
func loadData(from endpoint: Endpoint, then handler: @escaping Handler)
}
loader.loadData(from: .messages) { result in
...
}
loader.loadData(from: .messages, then: { result in
...
})
😴 Combining lazily evaluated sequences with builder pattern-like properties can lead to some pretty sweet APIs for configurable sequences in Swift.
Also useful for queries & other things you "build up" and then execute.
// Extension adding builder pattern-like properties that return
// a new sequence value with the given configuration applied
extension FileSequence {
var recursive: FileSequence {
var sequence = self
sequence.isRecursive = true
return sequence
}
var includingHidden: FileSequence {
var sequence = self
sequence.includeHidden = true
return sequence
}
}
// BEFORE
let files = folder.makeFileSequence(recursive: true, includeHidden: true)
// AFTER
let files = folder.files.recursive.includingHidden
Want an intro to lazy sequences? Check out "Swift sequences: The art of being lazy".
My top 3 tips for faster & more stable UI tests:
📱 Reset the app's state at the beginning of every test.
🆔 Use accessibility identifiers instead of UI strings.
⏱ Use expectations instead of waiting time.
func testOpeningArticle() {
// Launch the app with an argument that tells it to reset its state
let app = XCUIApplication()
app.launchArguments.append("--uitesting")
app.launch()
// Check that the app is displaying an activity indicator
let activityIndicator = app.activityIndicator.element
XCTAssertTrue(activityIndicator.exists)
// Wait for the loading indicator to disappear = content is ready
expectation(for: NSPredicate(format: "exists == 0"),
evaluatedWith: activityIndicator)
// Use a generous timeout in case the network is slow
waitForExpectations(timeout: 10)
// Tap the cell for the first article
app.tables.cells["Article.0"].tap()
// Assert that a label with the accessibility identifier "Article.Title" exists
let label = app.staticTexts["Article.Title"]
XCTAssertTrue(label.exists)
}
📋 It's super easy to access the contents of the clipboard from a Swift script. A big benefit of Swift scripting is being able to use Cocoa's powerful APIs for Mac apps.
import Cocoa
let clipboard = NSPasteboard.general.string(forType: .string)
🎯 Using Swift tuples for view state can be a super nice way to group multiple properties together and render them reactively using the layout system.
By using a tuple we don't have to either introduce a new type or make our view model-aware.
class TextView: UIView {
var state: (title: String?, text: String?) {
// By telling UIKit that our view needs layout and binding our
// state in layoutSubviews, we can react to state changes without
// doing unnecessary layout work.
didSet { setNeedsLayout() }
}
private let titleLabel = UILabel()
private let textLabel = UILabel()
override func layoutSubviews() {
super.layoutSubviews()
titleLabel.text = state.title
textLabel.text = state.text
...
}
}
⚾️ Swift tests can throw, which is super useful in order to avoid complicated logic or force unwrapping. By making errors conform to LocalizedError
, you can also get a nice error message in Xcode if there's a failure.
class ImageCacheTests: XCTestCase {
func testCachingAndLoadingImage() throws {
let bundle = Bundle(for: type(of: self))
let cache = ImageCache(bundle: bundle)
// Bonus tip: You can easily load images from your test
// bundle using this UIImage initializer
let image = try require(UIImage(named: "sample", in: bundle, compatibleWith: nil))
try cache.cache(image, forKey: "key")
let cachedImage = try cache.image(forKey: "key")
XCTAssertEqual(image, cachedImage)
}
}
enum ImageCacheError {
case emptyKey
case dataConversionFailed
}
// When using throwing tests, making your errors conform to
// LocalizedError will render a much nicer error message in
// Xcode (per default only the error code is shown).
extension ImageCacheError: LocalizedError {
var errorDescription: String? {
switch self {
case .emptyKey:
return "An empty key was given"
case .dataConversionFailed:
return "Failed to convert the given image to Data"
}
}
}
For more information, and the implementation of the require
method used above, check out "Avoiding force unwrapping in Swift unit tests".
✍️ Unlike static
properties, class
properties can be overridden by subclasses (however, they can't be stored, only computed).
class TableViewCell: UITableViewCell {
class var preferredHeight: CGFloat { return 60 }
}
class TallTableViewCell: TableViewCell {
override class var preferredHeight: CGFloat { return 100 }
}
👨🎨 Creating extensions with static factory methods can be a great alternative to subclassing in Swift, especially for things like setting up UIViews, CALayers or other kinds of styling.
It also lets you remove a lot of styling & setup from your view controllers.
extension UILabel {
static func makeForTitle() -> UILabel {
let label = UILabel()
label.font = .boldSystemFont(ofSize: 24)
label.textColor = .darkGray
label.adjustsFontSizeToFitWidth = true
label.minimumScaleFactor = 0.75
return label
}
static func makeForText() -> UILabel {
let label = UILabel()
label.font = .systemFont(ofSize: 16)
label.textColor = .black
label.numberOfLines = 0
return label
}
}
class ArticleViewController: UIViewController {
lazy var titleLabel = UILabel.makeForTitle()
lazy var textLabel = UILabel.makeForText()
}
🧒 An awesome thing about child view controllers is that they're automatically resized to match their parent, making them a super nice solution for things like loading & error views.
class ListViewController: UIViewController {
func loadItems() {
let loadingViewController = LoadingViewController()
add(loadingViewController)
dataLoader.loadItems { [weak self] result in
loadingViewController.remove()
self?.handle(result)
}
}
}
For more about child view controller (including the add
and remove
methods used above), check out "Using child view controllers as plugins in Swift".
🤐 Using the zip function in Swift you can easily combine two sequences. Super useful when using two sequences to do some work, since zip takes care of all the bounds-checking.
func render(titles: [String]) {
for (label, text) in zip(titleLabels, titles) {
print(text)
label.text = text
}
}
🎛 The awesome thing about option sets in Swift is that they can automatically either be passed as a single member or as a set. Even cooler is that you can easily define your own option sets as well, perfect for options and other non-exclusive values.
// Option sets are awesome, because you can easily pass them
// both using dot syntax and array literal syntax, like when
// using the UIView animation API:
UIView.animate(withDuration: 0.3,
delay: 0,
options: .allowUserInteraction,
animations: animations)
UIView.animate(withDuration: 0.3,
delay: 0,
options: [.allowUserInteraction, .layoutSubviews],
animations: animations)
// The cool thing is that you can easily define your own option
// sets as well, by defining a struct that has an Int rawValue,
// that will be used as a bit mask.
extension Cache {
struct Options: OptionSet {
static let saveToDisk = Options(rawValue: 1)
static let clearOnMemoryWarning = Options(rawValue: 1 << 1)
static let clearDaily = Options(rawValue: 1 << 2)
let rawValue: Int
}
}
// We can now use Cache.Options just like UIViewAnimationOptions:
Cache(options: .saveToDisk)
Cache(options: [.saveToDisk, .clearDaily])
🙌 Using the where
clause when designing protocol-oriented APIs in Swift can let your implementations (or others' if it's open source) have a lot more freedom, especially when it comes to collections.
See "Using generic type constraints in Swift 4" for more info.
public protocol PathFinderMap {
associatedtype Node
// Using the 'where' clause for associated types, we can
// ensure that a type meets certain requirements (in this
// case that it's a sequence with Node elements).
associatedtype NodeSequence: Sequence where NodeSequence.Element == Node
// Instead of using a concrete type (like [Node]) here, we
// give implementors of this protocol more freedom while
// still meeting our requirements. For example, one
// implementation might use Set<Node>.
func neighbors(of node: Node) -> NodeSequence
}
👨🍳 Combine first class functions in Swift with the fact that Dictionary elements are (Key, Value) tuples and you can build yourself some pretty awesome functional chains when iterating over a Dictionary.
func makeActor(at coordinate: Coordinate, for building: Building) -> Actor {
let actor = Actor()
actor.position = coordinate.point
actor.animation = building.animation
return actor
}
func render(_ buildings: [Coordinate : Building]) {
buildings.map(makeActor).forEach(add)
}
😎 In Swift, you can call any instance method as a static function and it will return a closure representing that method. This is how running tests using SPM on Linux works.
More about this topic in my blog post "First class functions in Swift".
// This produces a '() -> Void' closure which is a reference to the
// given view's 'removeFromSuperview' method.
let closure = UIView.removeFromSuperview(view)
// We can now call it just like we would any other closure, and it
// will run 'view.removeFromSuperview()'
closure()
// This is how running tests using the Swift Package Manager on Linux
// works, you return your test functions as closures:
extension UserManagerTests {
static var allTests = [
("testLoggingIn", testLoggingIn),
("testLoggingOut", testLoggingOut),
("testUserPermissions", testUserPermissions)
]
}
👏 One really nice benefit of dropping suffixes from method names (and just using verbs, when possible) is that it becomes super easy to support both single and multiple arguments, and it works really well semantically.
extension UIView {
func add(_ subviews: UIView...) {
subviews.forEach(addSubview)
}
}
view.add(button)
view.add(label)
// By dropping the "Subview" suffix from the method name, both
// single and multiple arguments work really well semantically.
view.add(button, label)
👽 Using the AnyObject
(or class
) constraint on protocols is not only useful when defining delegates (or other weak references), but also when you always want instances to be mutable without copying.
// By constraining a protocol with 'AnyObject' it can only be adopted
// by classes, which means all instances will always be mutable, and
// that it's the original instance (not a copy) that will be mutated.
protocol DataContainer: AnyObject {
var data: Data? { get set }
}
class UserSettingsManager {
private var settings: Settings
private let dataContainer: DataContainer
// Since DataContainer is a protocol, we an easily mock it in
// tests if we use dependency injection
init(settings: Settings, dataContainer: DataContainer) {
self.settings = settings
self.dataContainer = dataContainer
}
func saveSettings() throws {
let data = try settings.serialize()
// We can now assign properties on an instance of our protocol
// because the compiler knows it's always going to be a class
dataContainer.data = data
}
}
🍣 Even if you define a custom raw value for a string-based enum in Swift, the full case name will be used in string interpolation.
Super useful when using separate raw values for JSON, while still wanting to use the full case name in other contexts.
extension Building {
// This enum has custom raw values that are used when decoding
// a value, for example from JSON.
enum Kind: String {
case castle = "C"
case town = "T"
case barracks = "B"
case goldMine = "G"
case camp = "CA"
case blacksmith = "BL"
}
var animation: Animation {
return Animation(
// When used in string interpolation, the full case name is still used.
// For 'castle' this will be 'buildings/castle'.
name: "buildings/\(kind)",
frameCount: frameCount,
frameDuration: frameDuration
)
}
}
👨🔬 Continuing to experiment with expressive ways of comparing a value with a list of candidates in Swift. Adding an extension on Equatable is probably my favorite approach so far.
extension Equatable {
func isAny(of candidates: Self...) -> Bool {
return candidates.contains(self)
}
}
let isHorizontal = direction.isAny(of: .left, .right)
See tip #35 for my previous experiment.
📐 A really interesting side-effect of a UIView
's bounds
being its rect within its own coordinate system is that transforms don't affect it at all. That's why it's usually a better fit than frame
when doing layout calculations of subviews.
let view = UIView()
view.frame.size = CGSize(width: 100, height: 100)
view.transform = CGAffineTransform(scaleX: 2, y: 2)
print(view.frame) // (-50.0, -50.0, 200.0, 200.0)
print(view.bounds) // (0.0, 0.0, 100.0, 100.0)
👏 It's awesome that many UIKit APIs with completion handlers and other optional parameters import into Swift with default arguments (even though they are written in Objective-C). Getting rid of all those nil arguments is so nice!
// BEFORE: All parameters are specified, just like in Objective-C
viewController.present(modalViewController, animated: true, completion: nil)
modalViewController.dismiss(animated: true, completion: nil)
viewController.transition(from: loadingViewController,
to: contentViewController,
duration: 0.3,
options: [],
animations: animations,
completion: nil)
// AFTER: Since many UIKit APIs with completion handlers and other
// optional parameters import into Swift with default arguments,
// we can make our calls shorter
viewController.present(modalViewController, animated: true)
modalViewController.dismiss(animated: true)
viewController.transition(from: loadingViewController,
to: contentViewController,
duration: 0.3,
animations: animations)
✂️ Avoiding Massive View Controllers is all about finding the right levels of abstraction and splitting things up.
My personal rule of thumb is that as soon as I have 3 methods or properties that have the same prefix, I break them out into their own type.
// BEFORE
class LoginViewController: UIViewController {
private lazy var signUpLabel = UILabel()
private lazy var signUpImageView = UIImageView()
private lazy var signUpButton = UIButton()
}
// AFTER
class LoginViewController: UIViewController {
private lazy var signUpView = SignUpView()
}
class SignUpView: UIView {
private lazy var label = UILabel()
private lazy var imageView = UIImageView()
private lazy var button = UIButton()
}
❤️ I love the fact that optionals are enums in Swift - it makes it so easy to extend them with convenience APIs for certain types. Especially useful when doing things like data validation on optional values.
func validateTextFields() -> Bool {
guard !usernameTextField.text.isNilOrEmpty else {
return false
}
...
return true
}
// Since all optionals are actual enum values in Swift, we can easily
// extend them for certain types, to add our own convenience APIs
extension Optional where Wrapped == String {
var isNilOrEmpty: Bool {
switch self {
case let string?:
return string.isEmpty
case nil:
return true
}
}
}
// Since strings are now Collections in Swift 4, you can even
// add this property to all optional collections:
extension Optional where Wrapped: Collection {
var isNilOrEmpty: Bool {
switch self {
case let collection?:
return collection.isEmpty
case nil:
return true
}
}
}
🗺 Using the where
keyword can be a super nice way to quickly apply a filter in a for
-loop in Swift. You can of course use map
, filter
and forEach
, or guard
, but for simple loops I think this is very expressive and nice.
func archiveMarkedPosts() {
for post in posts where post.isMarked {
archive(post)
}
}
func healAllies() {
for player in players where player.isAllied(to: currentPlayer) {
player.heal()
}
}
👻 Variable shadowing can be super useful in Swift, especially when you want to create a local copy of a parameter value in order to use it as state within a closure.
init(repeatMode: RepeatMode, closure: @escaping () -> UpdateOutcome) {
// Shadow the argument with a local, mutable copy
var repeatMode = repeatMode
self.closure = {
// With shadowing, there's no risk of accidentially
// referring to the immutable version
switch repeatMode {
case .forever:
break
case .times(let count):
guard count > 0 else {
return .finished
}
// We can now capture the mutable version and use
// it for state in a closure
repeatMode = .times(count - 1)
}
return closure()
}
}
✒️ Dot syntax is one of my favorite features of Swift. What's really cool is that it's not only for enums, any static method or property can be used with dot syntax - even initializers! Perfect for convenience APIs and default parameters.
public enum RepeatMode {
case times(Int)
case forever
}
public extension RepeatMode {
static var never: RepeatMode {
return .times(0)
}
static var once: RepeatMode {
return .times(1)
}
}
view.perform(animation, repeated: .once)
// To make default parameters more compact, you can even use init with dot syntax
class ImageLoader {
init(cache: Cache = .init(), decoder: ImageDecoder = .init()) {
...
}
}
🚀 One really cool aspect of Swift having first class functions is that you can pass any function (or even initializer) as a closure, and even call it with a tuple containing its parameters!
// This function lets us treat any "normal" function or method as
// a closure and run it with a tuple that contains its parameters
func call<Input, Output>(_ function: (Input) -> Output, with input: Input) -> Output {
return function(input)
}
class ViewFactory {
func makeHeaderView() -> HeaderView {
// We can now pass an initializer as a closure, and a tuple
// containing its parameters
return call(HeaderView.init, with: loadTextStyles())
}
private func loadTextStyles() -> (font: UIFont, color: UIColor) {
return (theme.font, theme.textColor)
}
}
class HeaderView {
init(font: UIFont, textColor: UIColor) {
...
}
}
💉 If you've been struggling to test code that uses static APIs, here's a technique you can use to enable static dependency injection without having to modify any call sites:
// Before: Almost impossible to test due to the use of singletons
class Analytics {
static func log(_ event: Event) {
Database.shared.save(event)
let dictionary = event.serialize()
NetworkManager.shared.post(dictionary, to: eventURL)
}
}
// After: Much easier to test, since we can inject mocks as arguments
class Analytics {
static func log(_ event: Event,
database: Database = .shared,
networkManager: NetworkManager = .shared) {
database.save(event)
let dictionary = event.serialize()
networkManager.post(dictionary, to: eventURL)
}
}
🎉 In Swift 4, type inference works for lazy properties and you don't need to explicitly refer to self
!
// Swift 3
class PurchaseView: UIView {
private lazy var buyButton: UIButton = self.makeBuyButton()
private func makeBuyButton() -> UIButton {
let button = UIButton()
button.setTitle("Buy", for: .normal)
button.setTitleColor(.blue, for: .normal)
return button
}
}
// Swift 4
class PurchaseView: UIView {
private lazy var buyButton = makeBuyButton()
private func makeBuyButton() -> UIButton {
let button = UIButton()
button.setTitle("Buy", for: .normal)
button.setTitleColor(.blue, for: .normal)
return button
}
}
😎 You can turn any Swift Error
into an NSError
, which is super useful when pattern matching with a code 👍. Also, switching on optionals is pretty cool!
let task = urlSession.dataTask(with: url) { data, _, error in
switch error {
case .some(let error as NSError) where error.code == NSURLErrorNotConnectedToInternet:
presenter.showOfflineView()
case .some(let error):
presenter.showGenericErrorView()
case .none:
presenter.renderContent(from: data)
}
}
task.resume()
Also make sure to check out Kostas Kremizas' tip about how you can pattern match directly against a member of URLError
.
🖥 Here's an easy way to make iOS model code that uses UIImage
macOS compatible - like me and Gui Rambo discussed on the Swift by Sundell Podcast.
// Either put this in a separate file that you only include in your macOS target or wrap the code in #if os(macOS) / #endif
import Cocoa
// Step 1: Typealias UIImage to NSImage
typealias UIImage = NSImage
// Step 2: You might want to add these APIs that UIImage has but NSImage doesn't.
extension NSImage {
var cgImage: CGImage? {
var proposedRect = CGRect(origin: .zero, size: size)
return cgImage(forProposedRect: &proposedRect,
context: nil,
hints: nil)
}
convenience init?(named name: String) {
self.init(named: Name(name))
}
}
// Step 3: Profit - you can now make your model code that uses UIImage cross-platform!
struct User {
let name: String
let profileImage: UIImage
}
🤖 You can easily define a protocol-oriented API that can only be mutated internally, by using an internal protocol that extends a public one.
// Declare a public protocol that acts as your immutable API
public protocol ModelHolder {
associatedtype Model
var model: Model { get }
}
// Declare an extended, internal protocol that provides a mutable API
internal protocol MutableModelHolder: ModelHolder {
var model: Model { get set }
}
// You can now implement the requirements using 'public internal(set)'
public class UserHolder: MutableModelHolder {
public internal(set) var model: User
internal init(model: User) {
self.model = model
}
}
🎛 You can switch on a set using array literals as cases in Swift! Can be really useful to avoid many if
/else if
statements.
class RoadTile: Tile {
var connectedDirections = Set<Direction>()
func render() {
switch connectedDirections {
case [.up, .down]:
image = UIImage(named: "road-vertical")
case [.left, .right]:
image = UIImage(named: "road-horizontal")
default:
image = UIImage(named: "road")
}
}
}
🌍 When caching localized content in an app, it's a good idea to add the current locale to all keys, to prevent bugs when switching languages.
func cache(_ content: Content, forKey key: String) throws {
let data = try wrap(content) as Data
let key = localize(key: key)
try storage.store(data, forKey: key)
}
func loadCachedContent(forKey key: String) -> Content? {
let key = localize(key: key)
let data = storage.loadData(forKey: key)
return data.flatMap { try? unbox(data: $0) }
}
private func localize(key: String) -> String {
return key + "-" + Bundle.main.preferredLocalizations[0]
}
🚳 Here's an easy way to setup a test to avoid accidental retain cycles with object relationships (like weak delegates & observers) in Swift:
func testDelegateNotRetained() {
// Assign the delegate (weak) and also retain it using a local var
var delegate: Delegate? = DelegateMock()
controller.delegate = delegate
XCTAssertNotNil(controller.delegate)
// Release the local var, which should also release the weak reference
delegate = nil
XCTAssertNil(controller.delegate)
}
👨🔬 Playing around with an expressive way to check if a value matches any of a list of candidates in Swift:
// Instead of multiple conditions like this:
if string == "One" || string == "Two" || string == "Three" {
}
// You can now do:
if string == any(of: "One", "Two", "Three") {
}
You can find a gist with the implementation here.
👪 APIs in a Swift extension automatically inherit its access control level, making it a neat way to organize public, internal & private APIs.
public extension Animation {
init(textureNamed textureName: String) {
frames = [Texture(name: textureName)]
}
init(texturesNamed textureNames: [String], frameDuration: TimeInterval = 1) {
frames = textureNames.map(Texture.init)
self.frameDuration = frameDuration
}
init(image: Image) {
frames = [Texture(image: image)]
}
}
internal extension Animation {
func loadFrameImages() -> [Image] {
return frames.map { $0.loadImageIfNeeded() }
}
}
🗺 Using map
you can transform an optional value into an optional Result
type by simply passing in the enum case.
enum Result<Value> {
case value(Value)
case error(Error)
}
class Promise<Value> {
private var result: Result<Value>?
init(value: Value? = nil) {
result = value.map(Result.value)
}
}
👌 It's so nice that you can assign directly to self
in struct
initializers in Swift. Very useful when adding conformance to protocols.
extension Bool: AnswerConvertible {
public init(input: String) throws {
switch input.lowercased() {
case "y", "yes", "👍":
self = true
default:
self = false
}
}
}
☎️ Defining Swift closures as inline functions enables you to recursively call them, which is super useful in things like custom sequences.
class Database {
func records(matching query: Query) -> AnySequence<Record> {
var recordIterator = loadRecords().makeIterator()
func iterate() -> Record? {
guard let nextRecord = recordIterator.next() else {
return nil
}
guard nextRecord.matches(query) else {
// Since the closure is an inline function, it can be recursively called,
// in this case in order to advance to the next item.
return iterate()
}
return nextRecord
}
// AnySequence/AnyIterator are part of the standard library and provide an easy way
// to define custom sequences using closures.
return AnySequence { AnyIterator(iterate) }
}
}
Rob Napier points out that using the above might cause crashes if used on a large databaset, since Swift has no guaranteed Tail Call Optimization (TCO).
Slava Pestov also points out that another benefit of inline functions vs closures is that they can have their own generic parameter list.
🏖 Using lazy properties in Swift, you can pass self
to required Objective-C dependencies without having to use force-unwrapped optionals.
class DataLoader: NSObject {
lazy var urlSession: URLSession = self.makeURLSession()
private func makeURLSession() -> URLSession {
return URLSession(configuration: .default, delegate: self, delegateQueue: .main)
}
}
class Renderer {
lazy var displayLink: CADisplayLink = self.makeDisplayLink()
private func makeDisplayLink() -> CADisplayLink {
return CADisplayLink(target: self, selector: #selector(screenDidRefresh))
}
}
👓 If you have a property in Swift that needs to be weak
or lazy
, you can still make it readonly by using private(set)
.
class Node {
private(set) weak var parent: Node?
private(set) lazy var children = [Node]()
func add(child: Node) {
children.append(child)
child.parent = self
}
}
🌏 Tired of using URL(string: "url")!
for static URLs? Make URL
conform to ExpressibleByStringLiteral
and you can now simply use "url"
instead.
extension URL: ExpressibleByStringLiteral {
// By using 'StaticString' we disable string interpolation, for safety
public init(stringLiteral value: StaticString) {
self = URL(string: "\(value)").require(hint: "Invalid URL string literal: \(value)")
}
}
// We can now define URLs using static string literals 🎉
let url: URL = "https://www.swiftbysundell.com"
let task = URLSession.shared.dataTask(with: "https://www.swiftbysundell.com")
// In Swift 3 or earlier, you also have to implement 2 additional initializers
extension URL {
public init(extendedGraphemeClusterLiteral value: StaticString) {
self.init(stringLiteral: value)
}
public init(unicodeScalarLiteral value: StaticString) {
self.init(stringLiteral: value)
}
}
To find the extension that adds the require()
method on Optional
that I use above, check out Require.
✚ I'm always careful with operator overloading, but for manipulating things like sizes, points & frames I find them super useful.
extension CGSize {
static func *(lhs: CGSize, rhs: CGFloat) -> CGSize {
return CGSize(width: lhs.width * rhs, height: lhs.height * rhs)
}
}
button.frame.size = image.size * 2
If you like the above idea, check out CGOperators, which contains math operator overloads for all Core Graphics' vector types.
🔗 You can use closure types in generic constraints in Swift. Enables nice APIs for handling sequences of closures.
extension Sequence where Element == () -> Void {
func callAll() {
forEach { $0() }
}
}
extension Sequence where Element == () -> String {
func joinedResults(separator: String) -> String {
return map { $0() }.joined(separator: separator)
}
}
callbacks.callAll()
let names = nameProviders.joinedResults(separator: ", ")
(If you're using Swift 3, you have to change Element
to Iterator.Element
)
🎉 Using associated enum values is a super nice way to encapsulate mutually exclusive state info (and avoiding state-specific optionals).
// BEFORE: Lots of state-specific, optional properties
class Player {
var isWaitingForMatchMaking: Bool
var invitingUser: User?
var numberOfLives: Int
var playerDefeatedBy: Player?
var roundDefeatedIn: Int?
}
// AFTER: All state-specific information is encapsulated in enum cases
class Player {
enum State {
case waitingForMatchMaking
case waitingForInviteResponse(from: User)
case active(numberOfLives: Int)
case defeated(by: Player, roundNumber: Int)
}
var state: State
}
👍 I really like using enums for all async result types, even boolean ones. Self-documenting, and makes the call site a lot nicer to read too!
protocol PushNotificationService {
// Before
func enablePushNotifications(completionHandler: @escaping (Bool) -> Void)
// After
func enablePushNotifications(completionHandler: @escaping (PushNotificationStatus) -> Void)
}
enum PushNotificationStatus {
case enabled
case disabled
}
service.enablePushNotifications { status in
if status == .enabled {
enableNotificationsButton.removeFromSuperview()
}
}
🏃 Want to work on your async code in a Swift Playground? Just set needsIndefiniteExecution
to true to keep it running:
import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true
DispatchQueue.main.asyncAfter(deadline: .now() + 3) {
let greeting = "Hello after 3 seconds"
print(greeting)
}
To stop the playground from executing, simply call PlaygroundPage.current.finishExecution()
.
💦 Avoid memory leaks when accidentially refering to self
in closures by overriding it locally with a weak reference:
Swift >= 4.2
dataLoader.loadData(from: url) { [weak self] result in
guard let self = self else {
return
}
self.cache(result)
...
Swift < 4.2
dataLoader.loadData(from: url) { [weak self] result in
guard let `self` = self else {
return
}
self.cache(result)
...
Note that the reason the above currently works is because of a compiler bug (which I hope gets turned into a properly supported feature soon).
🕓 Using dispatch work items you can easily cancel a delayed asynchronous GCD task if you no longer need it:
let workItem = DispatchWorkItem {
// Your async code goes in here
}
// Execute the work item after 1 second
DispatchQueue.main.asyncAfter(deadline: .now() + 1, execute: workItem)
// You can cancel the work item if you no longer need it
workItem.cancel()
➕ While working on a new Swift developer tool (to be open sourced soon 😉), I came up with a pretty neat way of organizing its sequence of operations, by combining their functions into a closure:
internal func +<A, B, C>(lhs: @escaping (A) throws -> B,
rhs: @escaping (B) throws -> C) -> (A) throws -> C {
return { try rhs(lhs($0)) }
}
public func run() throws {
try (determineTarget + build + analyze + output)()
}
If you're familiar with the functional programming world, you might know the above technique as the pipe operator (thanks to Alexey Demedreckiy for pointing this out!)
🗺 Using map()
and flatMap()
on optionals you can chain multiple operations without having to use lengthy if lets
or guards
:
// BEFORE
guard let string = argument(at: 1) else {
return
}
guard let url = URL(string: string) else {
return
}
handle(url)
// AFTER
argument(at: 1).flatMap(URL.init).map(handle)
🚀 Using self-executing closures is a great way to encapsulate lazy property initialization:
class StoreViewController: UIViewController {
private lazy var collectionView: UICollectionView = {
let layout = UICollectionViewFlowLayout()
let view = UICollectionView(frame: self.view.bounds, collectionViewLayout: layout)
view.delegate = self
view.dataSource = self
return view
}()
override func viewDidLoad() {
super.viewDidLoad()
view.addSubview(collectionView)
}
}
⚡️ You can speed up your Swift package tests using the --parallel
flag. For Marathon, the tests execute 3 times faster that way!
swift test --parallel
🛠 Struggling with mocking UserDefaults
in a test? The good news is: you don't need mocking - just create a real instance:
class LoginTests: XCTestCase {
private var userDefaults: UserDefaults!
private var manager: LoginManager!
override func setUp() {
super.setup()
userDefaults = UserDefaults(suiteName: #file)
userDefaults.removePersistentDomain(forName: #file)
manager = LoginManager(userDefaults: userDefaults)
}
}
👍 Using variadic parameters in Swift, you can create some really nice APIs that take a list of objects without having to use an array:
extension Canvas {
func add(_ shapes: Shape...) {
shapes.forEach(add)
}
}
let circle = Circle(center: CGPoint(x: 5, y: 5), radius: 5)
let lineA = Line(start: .zero, end: CGPoint(x: 10, y: 10))
let lineB = Line(start: CGPoint(x: 0, y: 10), end: CGPoint(x: 10, y: 0))
let canvas = Canvas()
canvas.add(circle, lineA, lineB)
canvas.render()
😮 Just like you can refer to a Swift function as a closure, you can do the same thing with enum cases with associated values:
enum UnboxPath {
case key(String)
case keyPath(String)
}
struct UserSchema {
static let name = key("name")
static let age = key("age")
static let posts = key("posts")
private static let key = UnboxPath.key
}
📈 The ===
operator lets you check if two objects are the same instance. Very useful when verifying that an array contains an instance in a test:
protocol InstanceEquatable: class, Equatable {}
extension InstanceEquatable {
static func ==(lhs: Self, rhs: Self) -> Bool {
return lhs === rhs
}
}
extension Enemy: InstanceEquatable {}
func testDestroyingEnemy() {
player.attack(enemy)
XCTAssertTrue(player.destroyedEnemies.contains(enemy))
}
😎 Cool thing about Swift initializers: you can call them using dot syntax and pass them as closures! Perfect for mocking dates in tests.
class Logger {
private let storage: LogStorage
private let dateProvider: () -> Date
init(storage: LogStorage = .init(), dateProvider: @escaping () -> Date = Date.init) {
self.storage = storage
self.dateProvider = dateProvider
}
func log(event: Event) {
storage.store(event: event, date: dateProvider())
}
}
📱 Most of my UI testing logic is now categories on XCUIApplication
. Makes the test cases really easy to read:
func testLoggingInAndOut() {
XCTAssertFalse(app.userIsLoggedIn)
app.launch()
app.login()
XCTAssertTrue(app.userIsLoggedIn)
app.logout()
XCTAssertFalse(app.userIsLoggedIn)
}
func testDisplayingCategories() {
XCTAssertFalse(app.isDisplayingCategories)
app.launch()
app.login()
app.goToCategories()
XCTAssertTrue(app.isDisplayingCategories)
}
🙂 It’s a good idea to avoid “default” cases when switching on Swift enums - it’ll “force you” to update your logic when a new case is added:
enum State {
case loggedIn
case loggedOut
case onboarding
}
func handle(_ state: State) {
switch state {
case .loggedIn:
showMainUI()
case .loggedOut:
showLoginUI()
// Compiler error: Switch must be exhaustive
}
}
💂 It's really cool that you can use Swift's 'guard' statement to exit out of pretty much any scope, not only return from functions:
// You can use the 'guard' statement to...
for string in strings {
// ...continue an iteration
guard shouldProcess(string) else {
continue
}
// ...or break it
guard !shouldBreak(for: string) else {
break
}
// ...or return
guard !shouldReturn(for: string) else {
return
}
// ..or throw an error
guard string.isValid else {
throw StringError.invalid(string)
}
// ...or exit the program
guard !shouldExit(for: string) else {
exit(1)
}
}
❤️ Love how you can pass functions & operators as closures in Swift. For example, it makes the syntax for sorting arrays really nice!
let array = [3, 9, 1, 4, 6, 2]
let sorted = array.sorted(by: <)
🗝 Here's a neat little trick I use to get UserDefault key consistency in Swift (#function expands to the property name in getters/setters). Just remember to write a good suite of tests that'll guard you against bugs when changing property names.
extension UserDefaults {
var onboardingCompleted: Bool {
get { return bool(forKey: #function) }
set { set(newValue, forKey: #function) }
}
}
📛 Want to use a name already taken by the standard library for a nested type? No problem - just use Swift.
to disambiguate:
extension Command {
enum Error: Swift.Error {
case missing
case invalid(String)
}
}
📦 Playing around with using Wrap to implement Equatable
for any type, primarily for testing:
protocol AutoEquatable: Equatable {}
extension AutoEquatable {
static func ==(lhs: Self, rhs: Self) -> Bool {
let lhsData = try! wrap(lhs) as Data
let rhsData = try! wrap(rhs) as Data
return lhsData == rhsData
}
}
📏 One thing that I find really useful in Swift is to use typealiases to reduce the length of method signatures in generic types:
public class PathFinder<Object: PathFinderObject> {
public typealias Map = Object.Map
public typealias Node = Map.Node
public typealias Path = PathFinderPath<Object>
public static func possiblePaths(for object: Object, at rootNode: Node, on map: Map) -> Path.Sequence {
return .init(object: object, rootNode: rootNode, map: map)
}
}
📖 You can reference either the external or internal parameter label when writing Swift docs - and they get parsed the same:
// EITHER:
class Foo {
/**
* - parameter string: A string
*/
func bar(with string: String) {}
}
// OR:
class Foo {
/**
* - parameter with: A string
*/
func bar(with string: String) {}
}
👍 Finding more and more uses for auto closures in Swift. Can enable some pretty nice APIs:
extension Dictionary {
mutating func value(for key: Key, orAdd valueClosure: @autoclosure () -> Value) -> Value {
if let value = self[key] {
return value
}
let value = valueClosure()
self[key] = value
return value
}
}
🚀 I’ve started to become a really big fan of nested types in Swift. Love the additional namespacing it gives you!
public struct Map {
public struct Model {
public let size: Size
public let theme: Theme
public var terrain: [Position : Terrain.Model]
public var units: [Position : Unit.Model]
public var buildings: [Position : Building.Model]
}
public enum Direction {
case up
case right
case down
case left
}
public struct Position {
public var x: Int
public var y: Int
}
public enum Size: String {
case small = "S"
case medium = "M"
case large = "L"
case extraLarge = "XL"
}
}
Author: JohnSundell
Source code: https://github.com/JohnSundell/SwiftTips
License: MIT license
#swift
1588558380
Functional programming has become a really hot topic in the JavaScript world. Just a few years ago, few JavaScript programmers even knew what functional programming is, but every large application codebase I’ve seen in the past 3 years makes heavy use of functional programming ideas.
Functional programming (often abbreviated FP) is the process of building software by composing pure functions, avoiding shared state, mutable data, and side-effects. Functional programming is declarative rather than imperative, and application state flows through pure functions. Contrast with object oriented programming, where application state is usually shared and colocated with methods in objects.
Functional programming is a programming paradigm, meaning that it is a way of thinking about software construction based on some fundamental, defining principles (listed above). Other examples of programming paradigms include object oriented programming and procedural programming.
Functional code tends to be more concise, more predictable, and easier to test than imperative or object oriented code — but if you’re unfamiliar with it and the common patterns associated with it, functional code can also seem a lot more dense, and the related literature can be impenetrable to newcomers.
If you start googling functional programming terms, you’re going to quickly hit a brick wall of academic lingo that can be very intimidating for beginners. To say it has a learning curve is a serious understatement. But if you’ve been programming in JavaScript for a while, chances are good that you’ve used a lot of functional programming concepts & utilities in your real software.
Don’t let all the new words scare you away. It’s a lot easier than it sounds.
The hardest part is wrapping your head around all the unfamiliar vocabulary. There are a lot of ideas in the innocent looking definition above which all need to be understood before you can begin to grasp the meaning of functional programming:
In other words, if you want to know what functional programming means in practice, you have to start with an understanding of those core concepts.
A pure function is a function which:
Pure functions have lots of properties that are important in functional programming, including referential transparency (you can replace a function call with its resulting value without changing the meaning of the program).
Function composition is the process of combining two or more functions in order to produce a new function or perform some computation. For example, the composition f . g
(the dot means “composed with”) is equivalent to f(g(x))
in JavaScript. Understanding function composition is an important step towards understanding how software is constructed using the functional programming.
#javascript #interview-questions #functional #programming #web-development
1596848280
In this post, I will explain why declarative code is better than imperative code.
Then I will list some techniques to convert imperative JavaScript to a declarative one in common situations, defining key terms along the way.
First, let’s define what declarative and imperative mean.
Declarative code is one that highlights the intent of what it’s doing.
It favors the “what” over the “how”.
In other words, the exact implementations actually doing the work (aka the “how”) are hidden in order to convey what that work actually is (aka the “what”).
At the opposite, imperative code is one that favors the “how” over the “what”.
Let’s see an example:
The snippet below perform two things: it computes the square of x
, then check if the result is even or not.
// imperative way
const x = 5;
const xSquared = x * x;
let isEven;
if (xSquared % 2 === 0) {
isEven = true;
} else {
isEven = false;
}
view raw
block1.js hosted with ❤ by GitHub
Here, we can see that we finally get isEven
after several steps that we must follow in order.
These steps describe “how” we arrive to know if the square of x
is even, but that’s not obvious.
If you take a non-programmer and show him this, he might have a hard time deciphering it.
Now let’s see another snippet where I introduce a magic isSquareEven
function that performs the two same things than the previous one.
#functional-programming #javascript #javascript-tips #programming #declarative-programming #function