How to get started with Canvas animations in Angular

Or how my dreams of writing a game started by animating a square block#

I love playing games. And I love coding too. So, one day, I got thinking, why not use those coding skills to make a game? But it sounds hard. How would one even get started?

With baby steps.

First, we need some 2D graphics. In this case, it’s moving some blocks on the screen. So, in this article, I will show how to draw and animate objects using the HTML5 Canvas and JavaScript. I will also go through some techniques to optimize performance. Who knows, it might come in handy some day.

Introduction#

Apple introduced canvas in 2004 to power applications and the Safari browser. A few years later it was standardized by the WHATWG. It comes with finer grained control over rendering but with the cost of having to manage every detail manually. In other words, it can handle many objects, but we need to code everything in detail.

The canvas has a 2D drawing context used for drawing shapes, text, images, and other objects. First, we choose the color and brush, and then we paint. We can change the brush and color before every new drawing, or we can continue with what we have.

Canvas uses immediate rendering: When we draw, it immediately renders on the screen. But, it is a fire-and-forget system. After we paint something, the canvas forgets about the object and only knows it as pixels. So there is no object that we can move. Instead, we have to draw it again.

Doing animations on Canvas is like making a stop-motion movie. In every frame need to move the objects a little bit to animate them.

Using Canvas#

To get started, we need to add a canvas element in our HTML. We’ll also attach a reference variable to the element so that we’ll be able to refer to it from the component class:

<canvas #canvas width="600" height="300"></canvas>
<>

In the component class, we can then use the @ViewChild() decorator to inject a reference to the canvas.

In Angular 8, a new static flag has been introduced not to break existing applications. Read more about it here. Since I want access to the canvas in the ngOnInit hook I set it to true.

@ViewChild('canvas', { static: true }) 
canvas: ElementRef<HTMLCanvasElement>;
<>

Once the component has initialized, we’ll have access to the Canvas DOM node, as well as its drawing context:

this.ctx = this.canvas.nativeElement.getContext('2d');
<>

Here is the starting code for the component:

import { Component, ViewChild, ElementRef, OnInit } from '@angular/core';

@Component({
  selector: 'app-root',
  template: `
    <canvas #canvas width="600" height="300"></canvas>
    <button (click)="animate()">Play</button>   
  `,
  styles: ['canvas { border-style: solid }']
})
export class AppComponent implements OnInit {
  @ViewChild('canvas', { static: true })
  canvas: ElementRef<HTMLCanvasElement>;  

  private ctx: CanvasRenderingContext2D;

  ngOnInit(): void {
    this.ctx = this.canvas.nativeElement.getContext('2d');
  }

  animate(): void {}
}

#angular #graphics #fun

What is GEEK

Buddha Community

How to get started with Canvas animations in Angular
Shubham Ankit

Shubham Ankit

1657081614

How to Automate Excel with Python | Python Excel Tutorial (OpenPyXL)

How to Automate Excel with Python

In this article, We will show how we can use python to automate Excel . A useful Python library is Openpyxl which we will learn to do Excel Automation

What is OPENPYXL

Openpyxl is a Python library that is used to read from an Excel file or write to an Excel file. Data scientists use Openpyxl for data analysis, data copying, data mining, drawing charts, styling sheets, adding formulas, and more.

Workbook: A spreadsheet is represented as a workbook in openpyxl. A workbook consists of one or more sheets.

Sheet: A sheet is a single page composed of cells for organizing data.

Cell: The intersection of a row and a column is called a cell. Usually represented by A1, B5, etc.

Row: A row is a horizontal line represented by a number (1,2, etc.).

Column: A column is a vertical line represented by a capital letter (A, B, etc.).

Openpyxl can be installed using the pip command and it is recommended to install it in a virtual environment.

pip install openpyxl

CREATE A NEW WORKBOOK

We start by creating a new spreadsheet, which is called a workbook in Openpyxl. We import the workbook module from Openpyxl and use the function Workbook() which creates a new workbook.

from openpyxl
import Workbook
#creates a new workbook
wb = Workbook()
#Gets the first active worksheet
ws = wb.active
#creating new worksheets by using the create_sheet method

ws1 = wb.create_sheet("sheet1", 0) #inserts at first position
ws2 = wb.create_sheet("sheet2") #inserts at last position
ws3 = wb.create_sheet("sheet3", -1) #inserts at penultimate position

#Renaming the sheet
ws.title = "Example"

#save the workbook
wb.save(filename = "example.xlsx")

READING DATA FROM WORKBOOK

We load the file using the function load_Workbook() which takes the filename as an argument. The file must be saved in the same working directory.

#loading a workbook
wb = openpyxl.load_workbook("example.xlsx")

 

GETTING SHEETS FROM THE LOADED WORKBOOK

 

#getting sheet names
wb.sheetnames
result = ['sheet1', 'Sheet', 'sheet3', 'sheet2']

#getting a particular sheet
sheet1 = wb["sheet2"]

#getting sheet title
sheet1.title
result = 'sheet2'

#Getting the active sheet
sheetactive = wb.active
result = 'sheet1'

 

ACCESSING CELLS AND CELL VALUES

 

#get a cell from the sheet
sheet1["A1"] <
  Cell 'Sheet1'.A1 >

  #get the cell value
ws["A1"].value 'Segment'

#accessing cell using row and column and assigning a value
d = ws.cell(row = 4, column = 2, value = 10)
d.value
10

 

ITERATING THROUGH ROWS AND COLUMNS

 

#looping through each row and column
for x in range(1, 5):
  for y in range(1, 5):
  print(x, y, ws.cell(row = x, column = y)
    .value)

#getting the highest row number
ws.max_row
701

#getting the highest column number
ws.max_column
19

There are two functions for iterating through rows and columns.

Iter_rows() => returns the rows
Iter_cols() => returns the columns {
  min_row = 4, max_row = 5, min_col = 2, max_col = 5
} => This can be used to set the boundaries
for any iteration.

Example:

#iterating rows
for row in ws.iter_rows(min_row = 2, max_col = 3, max_row = 3):
  for cell in row:
  print(cell) <
  Cell 'Sheet1'.A2 >
  <
  Cell 'Sheet1'.B2 >
  <
  Cell 'Sheet1'.C2 >
  <
  Cell 'Sheet1'.A3 >
  <
  Cell 'Sheet1'.B3 >
  <
  Cell 'Sheet1'.C3 >

  #iterating columns
for col in ws.iter_cols(min_row = 2, max_col = 3, max_row = 3):
  for cell in col:
  print(cell) <
  Cell 'Sheet1'.A2 >
  <
  Cell 'Sheet1'.A3 >
  <
  Cell 'Sheet1'.B2 >
  <
  Cell 'Sheet1'.B3 >
  <
  Cell 'Sheet1'.C2 >
  <
  Cell 'Sheet1'.C3 >

To get all the rows of the worksheet we use the method worksheet.rows and to get all the columns of the worksheet we use the method worksheet.columns. Similarly, to iterate only through the values we use the method worksheet.values.


Example:

for row in ws.values:
  for value in row:
  print(value)

 

WRITING DATA TO AN EXCEL FILE

Writing to a workbook can be done in many ways such as adding a formula, adding charts, images, updating cell values, inserting rows and columns, etc… We will discuss each of these with an example.

 

CREATING AND SAVING A NEW WORKBOOK

 

#creates a new workbook
wb = openpyxl.Workbook()

#saving the workbook
wb.save("new.xlsx")

 

ADDING AND REMOVING SHEETS

 

#creating a new sheet
ws1 = wb.create_sheet(title = "sheet 2")

#creating a new sheet at index 0
ws2 = wb.create_sheet(index = 0, title = "sheet 0")

#checking the sheet names
wb.sheetnames['sheet 0', 'Sheet', 'sheet 2']

#deleting a sheet
del wb['sheet 0']

#checking sheetnames
wb.sheetnames['Sheet', 'sheet 2']

 

ADDING CELL VALUES

 

#checking the sheet value
ws['B2'].value
null

#adding value to cell
ws['B2'] = 367

#checking value
ws['B2'].value
367

 

ADDING FORMULAS

 

We often require formulas to be included in our Excel datasheet. We can easily add formulas using the Openpyxl module just like you add values to a cell.
 

For example:

import openpyxl
from openpyxl
import Workbook

wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']

ws['A9'] = '=SUM(A2:A8)'

wb.save("new2.xlsx")

The above program will add the formula (=SUM(A2:A8)) in cell A9. The result will be as below.

image

 

MERGE/UNMERGE CELLS

Two or more cells can be merged to a rectangular area using the method merge_cells(), and similarly, they can be unmerged using the method unmerge_cells().

For example:
Merge cells

#merge cells B2 to C9
ws.merge_cells('B2:C9')
ws['B2'] = "Merged cells"

Adding the above code to the previous example will merge cells as below.

image

UNMERGE CELLS

 

#unmerge cells B2 to C9
ws.unmerge_cells('B2:C9')

The above code will unmerge cells from B2 to C9.

INSERTING AN IMAGE

To insert an image we import the image function from the module openpyxl.drawing.image. We then load our image and add it to the cell as shown in the below example.

Example:

import openpyxl
from openpyxl
import Workbook
from openpyxl.drawing.image
import Image

wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
#loading the image(should be in same folder)
img = Image('logo.png')
ws['A1'] = "Adding image"
#adjusting size
img.height = 130
img.width = 200
#adding img to cell A3

ws.add_image(img, 'A3')

wb.save("new2.xlsx")

Result:

image

CREATING CHARTS

Charts are essential to show a visualization of data. We can create charts from Excel data using the Openpyxl module chart. Different forms of charts such as line charts, bar charts, 3D line charts, etc., can be created. We need to create a reference that contains the data to be used for the chart, which is nothing but a selection of cells (rows and columns). I am using sample data to create a 3D bar chart in the below example:

Example

import openpyxl
from openpyxl
import Workbook
from openpyxl.chart
import BarChart3D, Reference, series

wb = openpyxl.load_workbook("example.xlsx")
ws = wb.active

values = Reference(ws, min_col = 3, min_row = 2, max_col = 3, max_row = 40)
chart = BarChart3D()
chart.add_data(values)
ws.add_chart(chart, "E3")
wb.save("MyChart.xlsx")

Result
image


How to Automate Excel with Python with Video Tutorial

Welcome to another video! In this video, We will cover how we can use python to automate Excel. I'll be going over everything from creating workbooks to accessing individual cells and stylizing cells. There is a ton of things that you can do with Excel but I'll just be covering the core/base things in OpenPyXl.

⭐️ Timestamps ⭐️
00:00 | Introduction
02:14 | Installing openpyxl
03:19 | Testing Installation
04:25 | Loading an Existing Workbook
06:46 | Accessing Worksheets
07:37 | Accessing Cell Values
08:58 | Saving Workbooks
09:52 | Creating, Listing and Changing Sheets
11:50 | Creating a New Workbook
12:39 | Adding/Appending Rows
14:26 | Accessing Multiple Cells
20:46 | Merging Cells
22:27 | Inserting and Deleting Rows
23:35 | Inserting and Deleting Columns
24:48 | Copying and Moving Cells
26:06 | Practical Example, Formulas & Cell Styling

📄 Resources 📄
OpenPyXL Docs: https://openpyxl.readthedocs.io/en/stable/ 
Code Written in This Tutorial: https://github.com/techwithtim/ExcelPythonTutorial 
Subscribe: https://www.youtube.com/c/TechWithTim/featured 

#python 

Christa  Stehr

Christa Stehr

1598940617

Install Angular - Angular Environment Setup Process

Angular is a TypeScript based framework that works in synchronization with HTML, CSS, and JavaScript. To work with angular, domain knowledge of these 3 is required.

  1. Installing Node.js and npm
  2. Installing Angular CLI
  3. Creating workspace
  4. Deploying your First App

In this article, you will get to know about the Angular Environment setup process. After reading this article, you will be able to install, setup, create, and launch your own application in Angular. So let’s start!!!

Angular environment setup

Install Angular in Easy Steps

For Installing Angular on your Machine, there are 2 prerequisites:

  • Node.js
  • npm Package Manager
Node.js

First you need to have Node.js installed as Angular require current, active LTS or maintenance LTS version of Node.js

Download and Install Node.js version suitable for your machine’s operating system.

Npm Package Manager

Angular, Angular CLI and Angular applications are dependent on npm packages. By installing Node.js, you have automatically installed the npm Package manager which will be the base for installing angular in your system. To check the presence of npm client and Angular version check of npm client, run this command:

  1. npm -v

Installing Angular CLI

  • Open Terminal/Command Prompt
  • To install Angular CLI, run the below command:
  1. npm install -g @angular/cli

installing angular CLI

· After executing the command, Angular CLI will get installed within some time. You can check it using the following command

  1. ng --version

Workspace Creation

Now as your Angular CLI is installed, you need to create a workspace to work upon your application. Methods for it are:

  • Using CLI
  • Using Visual Studio Code
1. Using CLI

To create a workspace:

  • Navigate to the desired directory where you want to create your workspace using cd command in the Terminal/Command prompt
  • Then in the directory write this command on your terminal and provide the name of the app which you want to create. In my case I have mentioned DataFlair:
  1. Ng new YourAppName

create angular workspace

  • After running this command, it will prompt you to select from various options about the CSS and other functionalities.

angular CSS options

  • To leave everything to default, simply press the Enter or the Return key.

angular setup

#angular tutorials #angular cli install #angular environment setup #angular version check #download angular #install angular #install angular cli

Monty  Boehm

Monty Boehm

1659453850

Twitter.jl: Julia Package to Access Twitter API

Twitter.jl

A Julia package for interacting with the Twitter API.

Twitter.jl is a Julia package to work with the Twitter API v1.1. Currently, only the REST API methods are supported; streaming API endpoints aren't implemented at this time.

All functions have required arguments for those parameters required by Twitter and an options keyword argument to provide a Dict{String, String} of optional parameters Twitter API documentation. Most function calls will return either a Dict or an Array <: TwitterType. Bad requests will return the response code from the API (403, 404, etc).

DataFrame methods are defined for functions returning composite types: Tweets, Places, Lists, and Users.

Authentication

Before one can make use of this package, you must create an application on the Twitter's Developer Platform.

Once your application is approved, you can access your dashboard/portal to grab your authentication credentials from the "Details" tab of the application.

Note that you will also want to ensure that your App has Read / Write OAuth access in order to post tweets. You can find out more about this on Stack Overflow.

Installation

To install this package, enter ] on the REPL to bring up Julia's package manager. Then add the package:

julia> ]
(v1.7) pkg> add Twitter

Tip: Press Ctrl+C to return to the julia> prompt.

Usage

To run Twitter.jl, enter the following command in your Julia REPL

julia> using Twitter

Then the a global variable has to be declared with the twitterauth function. This function holds the consumer_key(API Key), consumer_secret(API Key Secret), oauth_token(Access Token), and oauth_secret(Access Token Secret) respectively.

twitterauth("6nOtpXmf...", # API Key
            "sES5Zlj096S...", # API Key Secret
            "98689850-Hj...", # Access Token
            "UroqCVpWKIt...") # Access Token Secret
  • Ensure you put your credentials in an env file to avoid pushing your secrets to the public 🙀.

Note: This package does not currently support OAuth authentication.

Code examples

See runtests.jl for example function calls.

using Twitter, Test
using JSON, OAuth

# set debugging
ENV["JULIA_DEBUG"]=Twitter

twitterauth(ENV["CONSUMER_KEY"], ENV["CONSUMER_SECRET"], ENV["ACCESS_TOKEN"], ENV["ACCESS_TOKEN_SECRET"])

#get_mentions_timeline
mentions_timeline_default = get_mentions_timeline()
tw = mentions_timeline_default[1]
tw_df = DataFrame(mentions_timeline_default)
@test 0 <= length(mentions_timeline_default) <= 20
@test typeof(mentions_timeline_default) == Vector{Tweets}
@test typeof(tw) == Tweets
@test size(tw_df)[2] == 30

#get_user_timeline
user_timeline_default = get_user_timeline(screen_name = "randyzwitch")
@test typeof(user_timeline_default) == Vector{Tweets}

#get_home_timeline
home_timeline_default = get_home_timeline()
@test typeof(home_timeline_default) == Vector{Tweets}

#get_single_tweet_id
get_tweet_by_id = get_single_tweet_id(id = "434685122671939584")
@test typeof(get_tweet_by_id) == Tweets

#get_search_tweets
duke_tweets = get_search_tweets(q = "#Duke", count = 200)
@test typeof(duke_tweets) <: Dict

#test sending/deleting direct messages
#commenting out because Twitter API changed. Come back to fix
# send_dm = post_direct_messages_send(text = "Testing from Julia, this might disappear later $(time())", screen_name = "randyzwitch")
# get_single_dm = get_direct_messages_show(id = send_dm.id)
# destroy = post_direct_messages_destroy(id = send_dm.id)
# @test typeof(send_dm) == Tweets
# @test typeof(get_single_dm) == Tweets
# @test typeof(destroy) == Tweets

#creating/destroying friendships
add_friend = post_friendships_create(screen_name = "kyrieirving")

unfollow = post_friendships_destroy(screen_name = "kyrieirving")
unfollow_df = DataFrame(unfollow)
@test typeof(add_friend) == Users
@test typeof(unfollow) == Users
@test size(unfollow_df)[2] == 40

# create a cursor for follower ids
follow_cursor_test = get_followers_ids(screen_name = "twitter", count = 10_000)
@test length(follow_cursor_test["ids"]) == 10_000

# create a cursor for friend ids - use barackobama because he follows a lot of accounts!
friend_cursor_test = get_friends_ids(screen_name = "BarackObama", count = 10_000)
@test length(friend_cursor_test["ids"]) == 10_000

# create a test for home timelines
home_t = get_home_timeline(count = 2)
@test length(home_t) > 1

# TEST of cursoring functionality on user timelines
user_t = get_user_timeline(screen_name = "stefanjwojcik", count = 400)
@test length(user_t) == 400
# get the minimum ID of the tweets returned (the earliest)
minid = minimum(x.id for x in user_t);

# now iterate until you hit that tweet: should return 399
# WARNING: current versions of julia cannot use keywords in macros? read here: https://github.com/JuliaLang/julia/pull/29261
# eventually replace since_id = minid
tweets_since = get_user_timeline(screen_name = "stefanjwojcik", count = 400, since_id = 1001808621053898752, include_rts=1)

@test length(tweets_since)>=399

# testing get_mentions_timeline
mentions = get_mentions_timeline(screen_name = "stefanjwojcik", count = 300) 
@test length(mentions) >= 50 #sometimes API doesn't return number requested (twitter API specifies count is the max returned, may be much lower)
@test Tweets<:typeof(mentions[1])

# testing retweets_of_me
my_rts = get_retweets_of_me(count = 300)
@test Tweets<:typeof(my_rts[1])

Want to contribute?

Contributions are welcome! Kindly refer to the contribution guidelines.

Linux: Build Status 

CodeCov: codecov

Author: Randyzwitch
Source Code: https://github.com/randyzwitch/Twitter.jl 
License: View license

#julia #api #twitter 

Clara  Gutmann

Clara Gutmann

1598712540

Angular HttpClient Module | Angular Http GET, POST Example

Angular 9 HttpClient is an inbuilt module that helps us to send network requests to any server. Angular HttpClientModule is used to send GET, POST, PUT, PATCH, and DELETE requests. Angular can consume REST API using the Angular HttpClient module. The latest version of the Angular framework is  Angular 9.

If you are new to Angular 9, then check out my  Angular 9 Tutorial in this blog. Most front-end applications communicate with the backend services over an HTTP protocol. Modern browsers support the two different APIs for making HTTP requests.

  1. XMLHttpRequest interface and the
  2. fetch() API.

We will use XMLHttpRequest for Angular application.

#angular #angular httpclient #angular http #post #get

Shawn  Durgan

Shawn Durgan

1593140880

How to get started with Canvas animations in Angular

Using Canvas

To get started, we need to add a canvas element in our HTML. We’ll also attach a reference variable to the element so that we’ll be able to refer to it from the component class:

<canvas #canvas width="600" height="300"></canvas>

In the component class, we can then use the @ViewChild() decorator to inject a reference to the canvas.

In Angular 8, a new static flag has been introduced not to break existing applications. Read more about it here. Since I want access to the canvas in the ngOnInit hook I set it to true.

@ViewChild('canvas', { static: true }) 
canvas: ElementRef<HTMLCanvasElement>;

Once the component has initialized, we’ll have access to the Canvas DOM node, as well as its drawing context:

this.ctx = this.canvas.nativeElement.getContext('2d');

Here is the starting code for the component:

import { Component, ViewChild, ElementRef, OnInit } from '@angular/core';

@Component({
  selector: 'app-root',
  template: `
    <canvas #canvas width="600" height="300"></canvas>
    <button (click)="animate()">Play</button>   
  `,
  styles: ['canvas { border-style: solid }']
})
export class AppComponent implements OnInit {
  @ViewChild('canvas', { static: true })
  canvas: ElementRef<HTMLCanvasElement>;  

  private ctx: CanvasRenderingContext2D;

  ngOnInit(): void {
    this.ctx = this.canvas.nativeElement.getContext('2d');
  }

  animate(): void {}
}

#angular #graphics #fun #canvas