1679036760
In this article, we will learn about 28 Best Spring Boot Interview Questions and Answers. A Java-based, open-source framework to create web applications, Spring Boot has been dominating the web development landscape ever since the official release of Spring Boot 1.0.0 in April 2014.
Because of its ability to simplify the process of developing complex applications, the enterprise-grade Spring Boot framework is today among the most widely used Java-based technologies to build scalable and robust web applications.
If you are appearing for a job interview and looking for a set of spring boot interview questions and answers, you have come to the right place. This document includes a collection of spring boot interview questions and answers for experienced and beginners, which will surely help you secure a dream job. Here we go.
Here are the most frequently asked spring boot interview questions for beginners.
Spring Boot represents a fusion of the lightweight Spring application framework, configuration annotations, and embedded HTTP server.
Made available with an auto-configuration feature, and support for Spring Initializer, Groovy, and Java, Spring Boot reduces Integration Test, Development, and Unit Test time.
It aids the development of fast, responsive, and secure web applications, providing users with a complete configuration and programming model for Java enterprise applications.
Spring Boot, utilizing the core features of the Spring application framework, offers a faster development technique for RESTful or REST architecture-based web services.
By leveraging Spring Boot features, users can experience significant advantages over JAX-RS, including:
Primarily used for developing microservices-based applications, Spring Boot offers the following key features for configuring, developing, and deploying microservices architecture.
The Spring cloud that comes with Spring Boot, includes vast libraries, which is one of the major reasons why most developers prefer the Java-based Spring Boot. In addition, Spring Boot offers superior compatibility with Spring frameworks, and it also provides excellent support for docker containerization, heightening performance, and useability. Some of the most compelling reasons for using Spring Boot include:
Mentioned below are important Spring Boot dependencies that need to be added to a Gradle-based or Maven-based application, to ensure application compatibility with Spring Boot features.
The advantages of Spring Boot are as follows:
Features of Spring Boot
Let us learn how to create a Spring Boot application with Maven. Consider Maven is already installed and configured on your machine. Firstly create a Spring Boot application and to make it simpler create an application with a single main class.
Step-by-step instructions for making a spring boot project.
Step 1: Go to https://start.spring.io and launch Spring Initializr.
Step 2: Specify Project Details - Once all of the details are entered, select the Generate Project button to generate and download a Spring Boot project. Following that, unzip the downloaded zip file and transfer it into your preferred IDE.
Step 3: Next open Eclipse and import the file.
Select File -> Import -> Existing Maven Project in Eclipse. On the next page, navigate to or type in the path to the folder where you extracted the zip file. Maven will take some time to download all the dependencies and initialize the project after you select Finish.
Setting up the CLI: By using SDKMAN, the Spring Boot CLI (Command-Line Interface) can be directly installed!
Employing the CLI: Once the CLI has been installed, you can launch it by typing spring and hitting Enter.
Launch a New project: By using start.spring.io and the init command, you can initiate a new project without leaving the shell.
Using the Embedded Shell: For the BASH and zsh shells, Spring Boot provides command-line completion routines.
Check out the simplest method possible used to create a basic "Hello World!" example. Of course, there are many ways to accomplish that, but we'll choose the simplest one. We'll make use of Spring Initializr. With the selected language, version, and dependencies, that tool will automatically build the base project for us.
Spring Boot Properties files are used to configure its auto-configuration and application properties. Spring Boot has many properties that can be used to configure the behavior of the application. Some of the commonly used properties in Spring Boot include server.port, spring.profiles.active, spring.datasource.url, spring.jpa.show-sql, and many more.
Spring Boot Starters are a set of pre-configured dependencies that can be easily included in your project to quickly get started with common features or technologies. By including a starter in your project, you can quickly get up and running with minimal configuration.
Spring Boot Actuator is a set of features that provide monitoring and management capabilities for your Spring Boot application. Actuator endpoints expose information about your application, such as health status, metrics, and environment variables, that can be used to monitor and manage your application.
Thyme leaf is a popular templating engine used in Spring Boot applications for building dynamic web pages. Moreover, it is humanly readable and developers can use it to create templates that can be rendered in HTML
To use Thymeleaf in a Spring Boot application you should include the thymeleaf-spring-boot-starter dependency in your project.
To connect Spring Boot to a database using JPA, configure the JPA properties in the application.properties or application.yml file.
To connect the Spring Boot to a database using JDBC, configure the JDBC properties in the application.properties or application.yml file.
@RestController is a Spring Boot annotation used to create RESTful web services.
@RequestMapping is a Spring Boot annotation used to map a URL request to a controller method.
Follow the steps mentioned below to create a Spring Boot application using the Spring Starter Project Wizard, you need to follow these steps:
Spring is a framework that provides various modules for building enterprise-level applications.
Spring Boot is a framework that simplifies Spring development by providing a pre-configured environment that enables developers to focus on building the application logic.
The spring boot interview questions for experienced developers deal with the concepts in greater depth and are meant to test the working knowledge of the candidates.
A prominent functionality of Spring Boot, Interceptor uses the annotated class @Component, and it implements the interface HandlerInterceptor.
The interface contains 3 main methods, which are:
The preHandle() Method − preHandle() is used for intercepting the request prior to the implementation of the handler. If preHandle() returns a “true” boolean value, developers can continue with handler execution. If preHandle() returns a “false” boolean value, developers should stop the handler execution.
preHandle() implementation looks like:
@Override
public boolean preHandle(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, Object o) throws Exception {
logger.info(" Pre handle ");
if(httpServletRequest.getMethod().equals("GET"))
return true;
else
return false;
}
The postHandle() Method − postHandle() is used for intercepting a request following the implementation of the handler. It allows the manipulation of the ModelAndView Object before users render it.
postHandle() implementation looks like:
@Override
public void postHandle(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, Object o, ModelAndView modelAndView) throws Exception {
logger.info(" Post handle ");
if(modelAndView.getModelMap().containsKey("status")){
String status = (String) modelAndView.getModelMap().get("status");
if(status.equals("SUCCESS!")){
status = "Authentication " + status;
modelAndView.getModelMap().put("status",status);
}
}
}
The afterCompletion() Method − A HandlerInterceptor callback approach, the afterCompletion() method is used when the entire request gets completed.
afterCompletion() looks like:
@Override
public void afterCompletion(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, Object o, Exception e) throws Exception {
logger.info(" After Completion ");
}
}
Swagger is used for clearly detailing and documenting RESTful APIs in a machine-readable and human-readable format, which is easily comprehensible for testers and developers, as well as individuals having little knowledge of source code.
Enabling hassle-free application discovery, development, and integration, Swagger allows API consumers to interact with remote services with minimum implementation logic.
Profiles in the Spring framework enables users to map components and beans to specific profiles, such as the Development (dev) profile, Production (prod) profile, or the Test profile.
In Spring Boot, the annotation @Profile is used to map components and beans to a certain profile.
Developers can also set up profiles using the SpringApplication, for instance, SpringApplication.setAdditionalProfiles("dev");
A Java Persistence API (JPA) implementation, Hibernate facilitates Object-Relational Mapping (ORM), allowing users to store, retrieve, map, and update application data to and from Java objects and relational databases. Hibernate maps the data types in Java to SQL (Structured Query Language) data types, and the classes in java to the database tables, relieving developers from scripting data persistence SQL programs.
A Spring Data sub-project, Spring Data JPA, on the other hand, gives abstraction over the DAL (Data Access Layer) applying JPA and Object–Relational Mapping implementations, such as Hibernate. Spring Data JPA facilitates the smooth implementation of JPA repositories, and it intends to improve the overall implementation of DAL to a great extent.
The traditional Spring @Controller annotation specifies that an annotated class represents a controller. It’s basically a @Component specialization, and it is autodetected via the classpath scanning. The @Controller annotation is used along with the annotated handler methodologies based on @RequestMapping annotations.
Developers use the @RestController annotation to develop RESTful web services, utilizing the Spring Model–View–Controller (MVC). The Spring @RestController maps the request data to specified request handler methods. Once the handler method generates the response body, the @RestController modifies it to XML or JSON response.
When you apply for a web developer job, browse through the spring boot interview questions and answers above to make yourself fully interview-ready. However, if you are looking to upskill, or if you want to learn more about full-stack java development, check out Simplilearn's 100% job-guarantee Full Stack Java Developer course that ensures a starting salary of up to ₹5 lakh per annum.
Offered by the world’s #1 certification provider and online bootcamp, Simplilearn, Post Graduate Program in Full Stack Web Development course includes a cohort-based online program structure with 24x7 assistance, training in 30+ skills and tools, 20 lesson-end and 6 phase-end projects, 250+ hours of high-grade Blended-Learning, 4 industry-aligned capstone projects, and lifetime access to top-quality course content. Enroll now and get certified in just 6 months.
Original article source at: https://www.simplilearn.com
1654075127
Amazon Aurora is a relational database management system (RDBMS) developed by AWS(Amazon Web Services). Aurora gives you the performance and availability of commercial-grade databases with full MySQL and PostgreSQL compatibility. In terms of high performance, Aurora MySQL and Aurora PostgreSQL have shown an increase in throughput of up to 5X over stock MySQL and 3X over stock PostgreSQL respectively on similar hardware. In terms of scalability, Aurora achieves enhancements and innovations in storage and computing, horizontal and vertical functions.
Aurora supports up to 128TB of storage capacity and supports dynamic scaling of storage layer in units of 10GB. In terms of computing, Aurora supports scalable configurations for multiple read replicas. Each region can have an additional 15 Aurora replicas. In addition, Aurora provides multi-primary architecture to support four read/write nodes. Its Serverless architecture allows vertical scaling and reduces typical latency to under a second, while the Global Database enables a single database cluster to span multiple AWS Regions in low latency.
Aurora already provides great scalability with the growth of user data volume. Can it handle more data and support more concurrent access? You may consider using sharding to support the configuration of multiple underlying Aurora clusters. To this end, a series of blogs, including this one, provides you with a reference in choosing between Proxy and JDBC for sharding.
AWS Aurora offers a single relational database. Primary-secondary, multi-primary, and global database, and other forms of hosting architecture can satisfy various architectural scenarios above. However, Aurora doesn’t provide direct support for sharding scenarios, and sharding has a variety of forms, such as vertical and horizontal forms. If we want to further increase data capacity, some problems have to be solved, such as cross-node database Join
, associated query, distributed transactions, SQL sorting, page turning, function calculation, database global primary key, capacity planning, and secondary capacity expansion after sharding.
It is generally accepted that when the capacity of a MySQL table is less than 10 million, the time spent on queries is optimal because at this time the height of its BTREE
index is between 3 and 5. Data sharding can reduce the amount of data in a single table and distribute the read and write loads to different data nodes at the same time. Data sharding can be divided into vertical sharding and horizontal sharding.
1. Advantages of vertical sharding
2. Disadvantages of vertical sharding
Join
can only be implemented by interface aggregation, which will increase the complexity of development.3. Advantages of horizontal sharding
4. Disadvantages of horizontal sharding
Join
is poor.Based on the analysis above, and the available studis on popular sharding middleware, we selected ShardingSphere, an open source product, combined with Amazon Aurora to introduce how the combination of these two products meets various forms of sharding and how to solve the problems brought by sharding.
ShardingSphere is an open source ecosystem including a set of distributed database middleware solutions, including 3 independent products, Sharding-JDBC, Sharding-Proxy & Sharding-Sidecar.
The characteristics of Sharding-JDBC are:
Hybrid Structure Integrating Sharding-JDBC and Applications
Sharding-JDBC’s core concepts
Data node: The smallest unit of a data slice, consisting of a data source name and a data table, such as ds_0.product_order_0.
Actual table: The physical table that really exists in the horizontal sharding database, such as product order tables: product_order_0, product_order_1, and product_order_2.
Logic table: The logical name of the horizontal sharding databases (tables) with the same schema. For instance, the logic table of the order product_order_0, product_order_1, and product_order_2 is product_order.
Binding table: It refers to the primary table and the joiner table with the same sharding rules. For example, product_order table and product_order_item are sharded by order_id, so they are binding tables with each other. Cartesian product correlation will not appear in the multi-tables correlating query, so the query efficiency will increase greatly.
Broadcast table: It refers to tables that exist in all sharding database sources. The schema and data must consist in each database. It can be applied to the small data volume that needs to correlate with big data tables to query, dictionary table and configuration table for example.
Download the example project code locally. In order to ensure the stability of the test code, we choose shardingsphere-example-4.0.0
version.
git clone
https://github.com/apache/shardingsphere-example.git
Project description:
shardingsphere-example
├── example-core
│ ├── config-utility
│ ├── example-api
│ ├── example-raw-jdbc
│ ├── example-spring-jpa #spring+jpa integration-based entity,repository
│ └── example-spring-mybatis
├── sharding-jdbc-example
│ ├── sharding-example
│ │ ├── sharding-raw-jdbc-example
│ │ ├── sharding-spring-boot-jpa-example #integration-based sharding-jdbc functions
│ │ ├── sharding-spring-boot-mybatis-example
│ │ ├── sharding-spring-namespace-jpa-example
│ │ └── sharding-spring-namespace-mybatis-example
│ ├── orchestration-example
│ │ ├── orchestration-raw-jdbc-example
│ │ ├── orchestration-spring-boot-example #integration-based sharding-jdbc governance function
│ │ └── orchestration-spring-namespace-example
│ ├── transaction-example
│ │ ├── transaction-2pc-xa-example #sharding-jdbc sample of two-phase commit for a distributed transaction
│ │ └──transaction-base-seata-example #sharding-jdbc distributed transaction seata sample
│ ├── other-feature-example
│ │ ├── hint-example
│ │ └── encrypt-example
├── sharding-proxy-example
│ └── sharding-proxy-boot-mybatis-example
└── src/resources
└── manual_schema.sql
Configuration file description:
application-master-slave.properties #read/write splitting profile
application-sharding-databases-tables.properties #sharding profile
application-sharding-databases.properties #library split profile only
application-sharding-master-slave.properties #sharding and read/write splitting profile
application-sharding-tables.properties #table split profile
application.properties #spring boot profile
Code logic description:
The following is the entry class of the Spring Boot application below. Execute it to run the project.
The execution logic of demo is as follows:
As business grows, the write and read requests can be split to different database nodes to effectively promote the processing capability of the entire database cluster. Aurora uses a reader/writer endpoint
to meet users' requirements to write and read with strong consistency, and a read-only endpoint
to meet the requirements to read without strong consistency. Aurora's read and write latency is within single-digit milliseconds, much lower than MySQL's binlog
-based logical replication, so there's a lot of loads that can be directed to a read-only endpoint
.
Through the one primary and multiple secondary configuration, query requests can be evenly distributed to multiple data replicas, which further improves the processing capability of the system. Read/write splitting can improve the throughput and availability of system, but it can also lead to data inconsistency. Aurora provides a primary/secondary architecture in a fully managed form, but applications on the upper-layer still need to manage multiple data sources when interacting with Aurora, routing SQL requests to different nodes based on the read/write type of SQL statements and certain routing policies.
ShardingSphere-JDBC provides read/write splitting features and it is integrated with application programs so that the complex configuration between application programs and database clusters can be separated from application programs. Developers can manage the Shard
through configuration files and combine it with ORM frameworks such as Spring JPA and Mybatis to completely separate the duplicated logic from the code, which greatly improves the ability to maintain code and reduces the coupling between code and database.
Create a set of Aurora MySQL read/write splitting clusters. The model is db.r5.2xlarge. Each set of clusters has one write node and two read nodes.
application.properties spring boot
Master profile description:
You need to replace the green ones with your own environment configuration.
# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create-drop
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true
#spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
#Activate master-slave configuration item so that sharding-jdbc can use master-slave profile
spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave
application-master-slave.properties sharding-jdbc
profile description:
spring.shardingsphere.datasource.names=ds_master,ds_slave_0,ds_slave_1
# data souce-master
spring.shardingsphere.datasource.ds_master.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master.password=Your master DB password
spring.shardingsphere.datasource.ds_master.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master.jdbc-url=Your primary DB data sourceurl spring.shardingsphere.datasource.ds_master.username=Your primary DB username
# data source-slave
spring.shardingsphere.datasource.ds_slave_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_slave_0.password= Your slave DB password
spring.shardingsphere.datasource.ds_slave_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_slave_0.jdbc-url=Your slave DB data source url
spring.shardingsphere.datasource.ds_slave_0.username= Your slave DB username
# data source-slave
spring.shardingsphere.datasource.ds_slave_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_slave_1.password= Your slave DB password
spring.shardingsphere.datasource.ds_slave_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_slave_1.jdbc-url= Your slave DB data source url
spring.shardingsphere.datasource.ds_slave_1.username= Your slave DB username
# Routing Policy Configuration
spring.shardingsphere.masterslave.load-balance-algorithm-type=round_robin
spring.shardingsphere.masterslave.name=ds_ms
spring.shardingsphere.masterslave.master-data-source-name=ds_master
spring.shardingsphere.masterslave.slave-data-source-names=ds_slave_0,ds_slave_1
# sharding-jdbc configures the information storage mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log,and you can see the conversion from logical SQL to actual SQL from the print
spring.shardingsphere.props.sql.show=true
As shown in the ShardingSphere-SQL log
figure below, the write SQL is executed on the ds_master
data source.
As shown in the ShardingSphere-SQL log
figure below, the read SQL is executed on the ds_slave
data source in the form of polling.
[INFO ] 2022-04-02 19:43:39,376 --main-- [ShardingSphere-SQL] Rule Type: master-slave
[INFO ] 2022-04-02 19:43:39,376 --main-- [ShardingSphere-SQL] SQL: select orderentit0_.order_id as order_id1_1_, orderentit0_.address_id as address_2_1_,
orderentit0_.status as status3_1_, orderentit0_.user_id as user_id4_1_ from t_order orderentit0_ ::: DataSources: ds_slave_0
---------------------------- Print OrderItem Data -------------------
Hibernate: select orderiteme1_.order_item_id as order_it1_2_, orderiteme1_.order_id as order_id2_2_, orderiteme1_.status as status3_2_, orderiteme1_.user_id
as user_id4_2_ from t_order orderentit0_ cross join t_order_item orderiteme1_ where orderentit0_.order_id=orderiteme1_.order_id
[INFO ] 2022-04-02 19:43:40,898 --main-- [ShardingSphere-SQL] Rule Type: master-slave
[INFO ] 2022-04-02 19:43:40,898 --main-- [ShardingSphere-SQL] SQL: select orderiteme1_.order_item_id as order_it1_2_, orderiteme1_.order_id as order_id2_2_, orderiteme1_.status as status3_2_,
orderiteme1_.user_id as user_id4_2_ from t_order orderentit0_ cross join t_order_item orderiteme1_ where orderentit0_.order_id=orderiteme1_.order_id ::: DataSources: ds_slave_1
Note: As shown in the figure below, if there are both reads and writes in a transaction, Sharding-JDBC routes both read and write operations to the master library. If the read/write requests are not in the same transaction, the corresponding read requests are distributed to different read nodes according to the routing policy.
@Override
@Transactional // When a transaction is started, both read and write in the transaction go through the master library. When closed, read goes through the slave library and write goes through the master library
public void processSuccess() throws SQLException {
System.out.println("-------------- Process Success Begin ---------------");
List<Long> orderIds = insertData();
printData();
deleteData(orderIds);
printData();
System.out.println("-------------- Process Success Finish --------------");
}
The Aurora database environment adopts the configuration described in Section 2.2.1.
3.2.4.1 Verification process description
Spring-Boot
project2. Perform a failover on Aurora’s console
3. Execute the Rest API
request
4. Repeatedly execute POST
(http://localhost:8088/save-user) until the call to the API failed to write to Aurora and eventually recovered successfully.
5. The following figure shows the process of executing code failover. It takes about 37 seconds from the time when the latest SQL write is successfully performed to the time when the next SQL write is successfully performed. That is, the application can be automatically recovered from Aurora failover, and the recovery time is about 37 seconds.
application.properties spring boot
master profile description
# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create-drop
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true
#spring.profiles.active=sharding-databases
#Activate sharding-tables configuration items
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
# spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave
application-sharding-tables.properties sharding-jdbc
profile description
## configure primary-key policy
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds.t_order_item_$->{0..1}
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.algorithm-expression=t_order_item_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# configure the binding relation of t_order and t_order_item
spring.shardingsphere.sharding.binding-tables[0]=t_order,t_order_item
# configure broadcast tables
spring.shardingsphere.sharding.broadcast-tables=t_address
# sharding-jdbc mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true
1. DDL operation
JPA automatically creates tables for testing. When Sharding-JDBC routing rules are configured, the client
executes DDL, and Sharding-JDBC automatically creates corresponding tables according to the table splitting rules. If t_address
is a broadcast table, create a t_address
because there is only one master instance. Two physical tables t_order_0
and t_order_1
will be created when creating t_order
.
2. Write operation
As shown in the figure below, Logic SQL
inserts a record into t_order
. When Sharding-JDBC is executed, data will be distributed to t_order_0
and t_order_1
according to the table splitting rules.
When t_order
and t_order_item
are bound, the records associated with order_item
and order
are placed on the same physical table.
3. Read operation
As shown in the figure below, perform the join
query operations to order
and order_item
under the binding table, and the physical shard is precisely located based on the binding relationship.
The join
query operations on order
and order_item
under the unbound table will traverse all shards.
Create two instances on Aurora: ds_0
and ds_1
When the sharding-spring-boot-jpa-example
project is started, tables t_order
, t_order_item
,t_address
will be created on two Aurora instances.
application.properties springboot
master profile description
# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true
# Activate sharding-databases configuration items
spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
#spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave
application-sharding-databases.properties sharding-jdbc
profile description
spring.shardingsphere.datasource.names=ds_0,ds_1
# ds_0
spring.shardingsphere.datasource.ds_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_0.jdbc-url= spring.shardingsphere.datasource.ds_0.username=
spring.shardingsphere.datasource.ds_0.password=
# ds_1
spring.shardingsphere.datasource.ds_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_1.jdbc-url=
spring.shardingsphere.datasource.ds_1.username=
spring.shardingsphere.datasource.ds_1.password=
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=ds_$->{user_id % 2}
spring.shardingsphere.sharding.binding-tables=t_order,t_order_item
spring.shardingsphere.sharding.broadcast-tables=t_address
spring.shardingsphere.sharding.default-data-source-name=ds_0
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=ds_$->{0..1}.t_order
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds_$->{0..1}.t_order_item
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# sharding-jdbc mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true
1. DDL operation
JPA automatically creates tables for testing. When Sharding-JDBC’s library splitting and routing rules are configured, the client
executes DDL, and Sharding-JDBC will automatically create corresponding tables according to table splitting rules. If t_address
is a broadcast table, physical tables will be created on ds_0
and ds_1
. The three tables, t_address
, t_order
and t_order_item
will be created on ds_0
and ds_1
respectively.
2. Write operation
For the broadcast table t_address
, each record written will also be written to the t_address
tables of ds_0
and ds_1
.
The tables t_order
and t_order_item
of the slave library are written on the table in the corresponding instance according to the slave library field and routing policy.
3. Read operation
Query order
is routed to the corresponding Aurora instance according to the routing rules of the slave library .
Query Address
. Since address
is a broadcast table, an instance of address
will be randomly selected and queried from the nodes used.
As shown in the figure below, perform the join
query operations to order
and order_item
under the binding table, and the physical shard is precisely located based on the binding relationship.
As shown in the figure below, create two instances on Aurora: ds_0
and ds_1
When the sharding-spring-boot-jpa-example
project is started, physical tables t_order_01
, t_order_02
, t_order_item_01
,and t_order_item_02
and global table t_address
will be created on two Aurora instances.
application.properties springboot
master profile description
# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true
# Activate sharding-databases-tables configuration items
#spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
spring.profiles.active=sharding-databases-tables
#spring.profiles.active=master-slave
#spring.profiles.active=sharding-master-slave
application-sharding-databases.properties sharding-jdbc
profile description
spring.shardingsphere.datasource.names=ds_0,ds_1
# ds_0
spring.shardingsphere.datasource.ds_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_0.jdbc-url= 306/dev?useSSL=false&characterEncoding=utf-8
spring.shardingsphere.datasource.ds_0.username=
spring.shardingsphere.datasource.ds_0.password=
spring.shardingsphere.datasource.ds_0.max-active=16
# ds_1
spring.shardingsphere.datasource.ds_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_1.jdbc-url=
spring.shardingsphere.datasource.ds_1.username=
spring.shardingsphere.datasource.ds_1.password=
spring.shardingsphere.datasource.ds_1.max-active=16
# default library splitting policy
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=ds_$->{user_id % 2}
spring.shardingsphere.sharding.binding-tables=t_order,t_order_item
spring.shardingsphere.sharding.broadcast-tables=t_address
# Tables that do not meet the library splitting policy are placed on ds_0
spring.shardingsphere.sharding.default-data-source-name=ds_0
# t_order table splitting policy
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=ds_$->{0..1}.t_order_$->{0..1}
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
# t_order_item table splitting policy
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds_$->{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.algorithm-expression=t_order_item_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# sharding-jdbc mdoe
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true
1. DDL operation
JPA automatically creates tables for testing. When Sharding-JDBC’s sharding and routing rules are configured, the client
executes DDL, and Sharding-JDBC will automatically create corresponding tables according to table splitting rules. If t_address
is a broadcast table, t_address
will be created on both ds_0
and ds_1
. The three tables, t_address
, t_order
and t_order_item
will be created on ds_0
and ds_1
respectively.
2. Write operation
For the broadcast table t_address
, each record written will also be written to the t_address
tables of ds_0
and ds_1
.
The tables t_order
and t_order_item
of the sub-library are written to the table on the corresponding instance according to the slave library field and routing policy.
3. Read operation
The read operation is similar to the library split function verification described in section2.4.3.
The following figure shows the physical table of the created database instance.
application.properties spring boot
master profile description
# Jpa automatically creates and drops data tables based on entities
spring.jpa.properties.hibernate.hbm2ddl.auto=create
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect
spring.jpa.properties.hibernate.show_sql=true
# activate sharding-databases-tables configuration items
#spring.profiles.active=sharding-databases
#spring.profiles.active=sharding-tables
#spring.profiles.active=sharding-databases-tables
#spring.profiles.active=master-slave
spring.profiles.active=sharding-master-slave
application-sharding-master-slave.properties sharding-jdbc
profile description
The url, name and password of the database need to be changed to your own database parameters.
spring.shardingsphere.datasource.names=ds_master_0,ds_master_1,ds_master_0_slave_0,ds_master_0_slave_1,ds_master_1_slave_0,ds_master_1_slave_1
spring.shardingsphere.datasource.ds_master_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_0.jdbc-url= spring.shardingsphere.datasource.ds_master_0.username=
spring.shardingsphere.datasource.ds_master_0.password=
spring.shardingsphere.datasource.ds_master_0.max-active=16
spring.shardingsphere.datasource.ds_master_0_slave_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_0_slave_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_0_slave_0.jdbc-url= spring.shardingsphere.datasource.ds_master_0_slave_0.username=
spring.shardingsphere.datasource.ds_master_0_slave_0.password=
spring.shardingsphere.datasource.ds_master_0_slave_0.max-active=16
spring.shardingsphere.datasource.ds_master_0_slave_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_0_slave_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_0_slave_1.jdbc-url= spring.shardingsphere.datasource.ds_master_0_slave_1.username=
spring.shardingsphere.datasource.ds_master_0_slave_1.password=
spring.shardingsphere.datasource.ds_master_0_slave_1.max-active=16
spring.shardingsphere.datasource.ds_master_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_1.jdbc-url=
spring.shardingsphere.datasource.ds_master_1.username=
spring.shardingsphere.datasource.ds_master_1.password=
spring.shardingsphere.datasource.ds_master_1.max-active=16
spring.shardingsphere.datasource.ds_master_1_slave_0.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_1_slave_0.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_1_slave_0.jdbc-url=
spring.shardingsphere.datasource.ds_master_1_slave_0.username=
spring.shardingsphere.datasource.ds_master_1_slave_0.password=
spring.shardingsphere.datasource.ds_master_1_slave_0.max-active=16
spring.shardingsphere.datasource.ds_master_1_slave_1.type=com.zaxxer.hikari.HikariDataSource
spring.shardingsphere.datasource.ds_master_1_slave_1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.ds_master_1_slave_1.jdbc-url= spring.shardingsphere.datasource.ds_master_1_slave_1.username=admin
spring.shardingsphere.datasource.ds_master_1_slave_1.password=
spring.shardingsphere.datasource.ds_master_1_slave_1.max-active=16
spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=user_id
spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=ds_$->{user_id % 2}
spring.shardingsphere.sharding.binding-tables=t_order,t_order_item
spring.shardingsphere.sharding.broadcast-tables=t_address
spring.shardingsphere.sharding.default-data-source-name=ds_master_0
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=ds_$->{0..1}.t_order_$->{0..1}
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression=t_order_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123
spring.shardingsphere.sharding.tables.t_order_item.actual-data-nodes=ds_$->{0..1}.t_order_item_$->{0..1}
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order_item.table-strategy.inline.algorithm-expression=t_order_item_$->{order_id % 2}
spring.shardingsphere.sharding.tables.t_order_item.key-generator.column=order_item_id
spring.shardingsphere.sharding.tables.t_order_item.key-generator.type=SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order_item.key-generator.props.worker.id=123
# master/slave data source and slave data source configuration
spring.shardingsphere.sharding.master-slave-rules.ds_0.master-data-source-name=ds_master_0
spring.shardingsphere.sharding.master-slave-rules.ds_0.slave-data-source-names=ds_master_0_slave_0, ds_master_0_slave_1
spring.shardingsphere.sharding.master-slave-rules.ds_1.master-data-source-name=ds_master_1
spring.shardingsphere.sharding.master-slave-rules.ds_1.slave-data-source-names=ds_master_1_slave_0, ds_master_1_slave_1
# sharding-jdbc mode
spring.shardingsphere.mode.type=Memory
# start shardingsphere log
spring.shardingsphere.props.sql.show=true
1. DDL operation
JPA automatically creates tables for testing. When Sharding-JDBC’s library splitting and routing rules are configured, the client
executes DDL, and Sharding-JDBC will automatically create corresponding tables according to table splitting rules. If t_address
is a broadcast table, t_address
will be created on both ds_0
and ds_1
. The three tables, t_address
, t_order
and t_order_item
will be created on ds_0
and ds_1
respectively.
2. Write operation
For the broadcast table t_address
, each record written will also be written to the t_address
tables of ds_0
and ds_1
.
The tables t_order
and t_order_item
of the slave library are written to the table on the corresponding instance according to the slave library field and routing policy.
3. Read operation
The join
query operations on order
and order_item
under the binding table are shown below.
3. Conclusion
As an open source product focusing on database enhancement, ShardingSphere is pretty good in terms of its community activitiy, product maturity and documentation richness.
Among its products, ShardingSphere-JDBC is a sharding solution based on the client-side, which supports all sharding scenarios. And there’s no need to introduce an intermediate layer like Proxy, so the complexity of operation and maintenance is reduced. Its latency is theoretically lower than Proxy due to the lack of intermediate layer. In addition, ShardingSphere-JDBC can support a variety of relational databases based on SQL standards such as MySQL/PostgreSQL/Oracle/SQL Server, etc.
However, due to the integration of Sharding-JDBC with the application program, it only supports Java language for now, and is strongly dependent on the application programs. Nevertheless, Sharding-JDBC separates all sharding configuration from the application program, which brings relatively small changes when switching to other middleware.
In conclusion, Sharding-JDBC is a good choice if you use a Java-based system and have to to interconnect with different relational databases — and don’t want to bother with introducing an intermediate layer.
Author
Sun Jinhua
A senior solution architect at AWS, Sun is responsible for the design and consult on cloud architecture. for providing customers with cloud-related design and consulting services. Before joining AWS, he ran his own business, specializing in building e-commerce platforms and designing the overall architecture for e-commerce platforms of automotive companies. He worked in a global leading communication equipment company as a senior engineer, responsible for the development and architecture design of multiple subsystems of LTE equipment system. He has rich experience in architecture design with high concurrency and high availability system, microservice architecture design, database, middleware, IOT etc.
1623718560
offers powerful features for the rapid development of deployment-ready applications. It is the most used and best java framework for the development of scalable microservices and web applications.
If you want to become a domain expert, you have come to the right place. We have curated some the most repeatedly asked spring boot interview questions and answers to help you ace the interview.
#full stack development #interview question answer #spring boot interview questions answer #top spring boot interview questions #top 10 critical spring boot interview questions #answers
1595098800
Android Interview Questions and Answers from Beginner to Advanced level
DataFlair is committed to provide you all the resources to make you an android professional. We started with android tutorials along with practicals, then we published Real-time android projects along with source code. Now, we come up with frequently asked android interview questions, which will help you in showing expertise in your next interview.
Android – one of the hottest technologies, which is having a bright future. Get ready to crack your next interview with the following android interview questions. These interview questions start with basic and cover deep concepts along with advanced topics.
1. What is Android?
Android is an open-source mobile operating system that is based on the modified versions of Linux kernel. Though it was mainly designed for smartphones, now it is being used for Tablets, Televisions, Smartwatches, and other Android wearables.
2. Who is the inventor of Android Technology?
The inventors of Android Technology are- Andry Rubin, Nick Sears, and Rich Miner.
3. What is the latest version of Android?
The latest version of Android is Android 10.0, known as Android Q. The upcoming major Android release is Android 11, which is the 18th version of Android. [Note: Keep checking the versions, it is as of June 2020.]
4. How many Android versions can you recall right now?
Till now, there are 17 versions of Android, which have their names in alphabetical order. The 18th version of Android is also going to come later this year. The versions of Android are here:
5. Explain the Android Architecture with its components.
This is a popular android developer interview question
Android Architecture consists of 5 components that are-
a. Linux Kernel: It is the foundation of the Android Architecture that resides at the lowest level. It provides the level of abstraction for hardware devices and upper layer components. Linux Kernel also provides various important hardware drivers that act as software interfaces for hardwares like camera, bluetooth, etc.
b. Native Libraries: These are the libraries for Android that are written in C/C++. These libraries are useful to build many core services like ART and HAL. It provides support for core features.
c. Android Runtime: It is an Android Runtime Environment. Android Operating System uses it during the execution of the app. It performs the translation of the application bytecode into the native instructions. The runtime environment of the device then executes these native instructions.
d. Application Framework: Application Framework provides many java classes and interfaces for app development. And it also provides various high-level services. This complete Application framework makes use of Java.
e. Applications: This is the topmost layer of Android Architecture. It provides applications for the end-user, so they can use the android device and compute the tasks.
6. What are the services that the Application framework provides?
The Android application framework has the following key services-
a. Activity Manager: It uses testing and debugging methods.
b. Content provider: It provides the data from application to other layers.
c. Resource Manager: This provides users access to resources.
d. Notification Manager: This gives notification to the users regarding actions taking place in the background.
e. View System: It is the base class for widgets, and it is also responsible for event handling.
7. What are the important features of Linux Kernel?
The important features of the Linux Kernel are as follows:
a. Power Management: Linux Kernel does power management to enhance and improve the battery life of the device.
b. Memory Management: It is useful for the maximum utilization of the available memory of the device.
c. Device Management: It includes managing all the hardware device drivers. It maximizes the utilization of the available resources.
d. Security: It ensures that no application has any such permission that it affects any other application in order to maintain security.
e. Multi-tasking: Multi-tasking provides the users the ease of doing multiple tasks at the same time.
8. What are the building blocks of an Android Application?
This is a popular android interview question for freshers.
The main components of any Android application are- Activity, Services, Content Provider, and Broadcast Receiver. You can understand them as follows:
a. Activity- It is a class that acts as the entry point representing a single screen to the user. It is like a window to show the user interface.
b. Services- Services are the longest-running component that runs in the background.
c. Content Provider- The content provider is an essential component that allows apps to share data between themselves.
d. Broadcast receivers- Broadcast receiver is another most crucial application component. It helps the apps to receive and respond to broadcast messages from the system or some other application.
9. What are the important components of Android Application?
The Components of Android application are listed below:
10. What are the widgets?
Widgets are the variations of Broadcast receivers. They are an important part of home screen customization. They often display some data and also allow users to perform actions on them. Mostly they display the app icon on the screen.
11. Can you name some types of widgets?
Mentioned below are the types of widgets-
a. Informative Widgets: These widgets show some important information. Like, the clock widget or a weather widget.
b. Collective Widgets: They are the collection of some types of elements. For example, a music widget that lets us change, skip, or forward the song.
c. Control Widgets: These widgets help us control the actions within the application through it. Like an email widget that helps check the recent mails.
d. Hybrid Widgets: Hybrid widgets are those that consist of at least two or more types of widgets.
12. What are Intents?
Intents are an important part of Android Applications. They enable communication between components of the same application as well as separate applications. The Intent signals the Android system about a certain event that has occurred.
13. Explain the types of intents briefly?
Intent is of three types that are-
a. Implicit Intents: Implicit intents are those in which there is no description of the component name but only the action.
b. Explicit Intents: In explicit intents, the target component is present by declaring the name of the component.
c. Pending Intents: These are those intents that act as a shield over the Intent objects. It covers the intent objects and grants permission to the external app components to access them.
14. What is a View?
A view is an important building block that helps in designing the user interface of the application. It can be a rectangular box or a circular shape, for example, Text View, Edit Text, Buttons, etc. Views occupy a certain area of the screen, and it is also responsible for event handling. A view is the superclass of all the graphical user interface components.
15. What do you understand by View Group?
It is the subclass of the ViewClass. It gives an invisible container to hold layouts or views. You can understand view groups as special views that are capable of holding other views, that are Child View.
16. What do you understand about Shared Preferences?
It is a simple mechanism for data storage in Android. In this, there is no need to create files, and using APIs, it stores the data in XML files. It stores the data in the pair of key-values. SharedPreferences class lets the user save the values and retrieve them when required. Using SharedPreferences we can save primitive data like- boolean, float, integer, string and long.
17. What is a Notification?
A notification is just like a message that shows up outside the Application UI to provide reminders to the users. They remind the user about a message received, or some other timely information from the app.
18. Give names of Notification types.
There are three types of notifications namely-
a. Toast Notification- This notification is the one that fades away sometime after it pops up.
b. Status Notification- This notification stays till the user takes some action on it.
c. Dialog Notification- This notification is the result of an Active Activity.
19. What are fragments?
A fragment is a part of the complete user interface. These are present in Activity, and an activity can have one or more fragments at the same time. We can reuse a fragment in multiple activities as well.
20. What are the types of fragments?
There are three types of fragments that are: Single Fragment, List Fragment, Fragment Transactions.
21. What are Layout XML files?
Layout XML files contain the structure for the user interface of the application. The XML file also contains various different layouts and views, and they also specify various GUI components that are there in Activity or fragments.
22. What are Resources in Android Application?
The resources in Android Apps defines images, texts, strings, colors, etc. Everything in resources directory is referenced in the source code of the app so that we can use them.
23. Can you develop Android Apps with languages other than Java? If so, name some.
Yes, there are many languages that we can work with, for the development of Android Applications. To name some, I would say Java, Python, C, C++, Kotlin, C#, Corona/LUA.
24. What are the states of the Activity Lifecycle?
Activity lifecycle has the following four stages-
a. Running State: As soon as the activity starts, it is the first state.
b. Paused State: When some other activity starts without closing the previous one, the running activity turns into the Paused state.
c. Resume State: When the activity opens again after being in pause state, it comes into the Resume State.
d. Stopped State: When the user closes the application or stops using it, the activity goes to the Stopped state.
25. What are some methods of Activity?
The methods of Activity are as follows:
26. How can you launch an activity in Android?
We launch an activity using Intents. For this we need to use intent as follows:
27. What is the service lifecycle?
There are two states of a service that are-
a. Started State: This is when the service starts its execution. A Services come in start state only through the startService() method.
b. Bounded State: A service is in the bounded state when it calls the method bindService().
28. What are some methods of Services?
The methods of service are as follows-
29. What are the types of Broadcast?
Broadcasts are of two types that are-
a. Ordered Broadcast: Ordered broadcasts are Synchronous and work in a proper order. It decides the order by using the priority assigned to the broadcasts.
b. Normal Broadcast: These are asynchronous and unordered. They are more efficient as they run unorderly and all at once. But, they lack full utilization of the results.
30. What are useful impotent folders in Android?
The impotent folders in an Android application are-
31. What are the important files for Android Application when working on Android Studio?
This is an important android studio interview question
There are following three files that we need to work on for an application to work-
a. The AndroidManifest.xml file: It has all the information about the application.
b. The MainActivity.java file: It is the app file that actually gets converted to the dalvik executable and runs the application. It is written in java.
c. The Activity_main.xml file: It is the layout file that is available in the res/layout directory. It is another mostly used file while developing the application.
32. Which database do you use for Android Application development?
The database that we use for Android Applications is SQLite. It is because SQLite is lightweight and specially developed for Android Apps. SQLite works the same way as SQL using the same commands.
33. Tell us some features of Android OS.
The best features of Android include-
34. Why did you learn Android development?
Learning Android Studio is a good idea because of the following-
35. What are the different ways of storage supported in Android?
The various storage ways supported in Android are as follows:
36. What are layouts?
Layout is nothing but arrangements of elements on the device screen. These elements can be images, tests, videos, anything. They basically define the structure of the Android user interface to make it user friendly.
37. How many layout types are there?
The type of layouts used in Android Apps are as follows:
38. What is an APK?
An APK stands for Android Package that is a file format of Android Applications. Android OS uses this package for the distribution and installation of the Android Application.
39. What is an Android Manifest file?
The manifest file describes all the essential information about the project application for build tools, Android operating system, and google play. This file is a must for every Android project that we develop, and it is present in the root of the project source set.
#android tutorials #android basic interview questions #android basic questions #android developer interview questions #android interview question and answer #android interview questions #android interview questions for experienced #android interview questions for fresher
1620815880
40 Spring questions and answers to prepare for your next interview.
The Spring framework makes J2EE (Java 2 Platform Enterprise Edition) development easier and is used to create testable, high performing, reusable code. Spring is commonly applied in the information technologies and financial sector due to its modularity and dependency injection features.
Financial technology is an exciting and evolving field for developers who want to work at companies like MIT, Accenture, or Visa, which prefer Spring over Java EE. These companies are looking for developers like you with Spring Framework experience to help digitize their enterprise needs.
But, how do you know if you’re ready for an interview? And how do you prepare?
Today, we’ll go through a study guide of the top 40 Spring interview questions to make sure you’re ready to ace your Spring Framework interview.
Here’s what we’ll cover today:
#spring boot #j2ee #spring framework #interview questions #enterprise java #interview preparation #coding interview question #enterprise java beans #java beans #spring boot framework
1619674080
Even today, C++ is as popular as it was back in the 80s. This general-purpose, compiled, and multi-paradigm (object-oriented, procedural, and functional) programming language plays a crucial role in the IT industry, particularly in software development.
Developers worldwide use C++ to build systems software, database software, embedded software, enterprise applications, GUI-based applications, compilers, advanced computation & graphics, operating systems, browsers, games, cloud systems, etc. Naturally, C++ is still a highly relevant programming language.
In this post, we’ve created a list of 21 C++ interview questions that you should know if you aspire to build a career in Software Development. These C++ interview questions and answers will help you break the ice on the subject!
#full stack development #c interview questions #c interview questions and answers #interview questions and answers