Introduction to the Python Deep Learning Library TensorFlow for Beginners

Introduction to the Python Deep Learning Library TensorFlow for Beginners

In this tutorial, we are going to be covering some basics on what TensorFlow is, and how to begin using it.

TensorFlow is a Python library for fast numerical computing created and released by Google.

It is a foundation library that can be used to create Deep Learning models directly or by using wrapper libraries that simplify the process built on top of TensorFlow.

In this post you will discover the TensorFlow library for Deep Learning.

Discover how to develop deep learning models for a range of predictive modeling problems with just a few lines of code in my new book, with 18 step-by-step tutorials and 9 projects.

What is TensorFlow?

TensorFlow is an open source library for fast numerical computing.

It was created and is maintained by Google and released under the Apache 2.0 open source license. The API is nominally for the Python programming language, although there is access to the underlying C++ API.

Unlike other numerical libraries intended for use in Deep Learning like Theano, TensorFlow was designed for use both in research and development and in production systems, not least RankBrain in Google search and the fun DeepDream project.

It can run on single CPU systems, GPUs as well as mobile devices and large scale distributed systems of hundreds of machines.


You may also like: Deep Learning Using TensorFlow


How to Install TensorFlow

Installation of TensorFlow is straightforward if you already have a Python SciPy environment.

TensorFlow works with Python 2.7 and Python 3.3+. You can follow the Download and Setup instructions on the TensorFlow website. Installation is probably simplest via PyPI and specific instructions of the pip command to use for your Linux or Mac OS X platform are on the Download and Setup webpage.

There are also virtualenv and docker images that you can use if you prefer.

To make use of the GPU, only Linux is supported and it requires the Cuda Toolkit.

Your First Examples in TensorFlow

Computation is described in terms of data flow and operations in the structure of a directed graph.

  • Nodes: Nodes perform computation and have zero or more inputs and outputs. Data that moves between nodes are known as tensors, which are multi-dimensional arrays of real values.
  • Edges: The graph defines the flow of data, branching, looping and updates to state. Special edges can be used to synchronize behavior within the graph, for example waiting for computation on a number of inputs to complete.
  • Operation: An operation is a named abstract computation which can take input attributes and produce output attributes. For example, you could define an add or multiply operation.

Computation with TensorFlow

This first example is a modified version of the example on the TensorFlow website. It shows how you can create a session, define constants and perform computation with those constants using the session.

import tensorflow as tf
sess = tf.Session()
a = tf.constant(10)
b = tf.constant(32)
print(sess.run(a+b))

Running this example displays:

42

Linear Regression with TensorFlow

This next example comes from the introduction on the TensorFlow tutorial.

This examples shows how you can define variables (e.g. W and b) as well as variables that are the result of computation (y).

We get some sense of TensorFlow separates the definition and declaration of the computation from the execution in the session and the calls to run.

import tensorflow as tf
import numpy as np

# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but Tensorflow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# Before starting, initialize the variables.  We will 'run' this first.
init = tf.initialize_all_variables()

# Launch the graph.
sess = tf.Session()
sess.run(init)

# Fit the line.
for step in xrange(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))

# Learns best fit is W: [0.1], b: [0.3]

Running this example prints the following output:

(0, array([ 0.2629351], dtype=float32), array([ 0.28697217], dtype=float32))
(20, array([ 0.13929555], dtype=float32), array([ 0.27992988], dtype=float32))
(40, array([ 0.11148042], dtype=float32), array([ 0.2941364], dtype=float32))
(60, array([ 0.10335406], dtype=float32), array([ 0.29828694], dtype=float32))
(80, array([ 0.1009799], dtype=float32), array([ 0.29949954], dtype=float32))
(100, array([ 0.10028629], dtype=float32), array([ 0.2998538], dtype=float32))
(120, array([ 0.10008363], dtype=float32), array([ 0.29995731], dtype=float32))
(140, array([ 0.10002445], dtype=float32), array([ 0.29998752], dtype=float32))
(160, array([ 0.10000713], dtype=float32), array([ 0.29999638], dtype=float32))
(180, array([ 0.10000207], dtype=float32), array([ 0.29999897], dtype=float32))
(200, array([ 0.1000006], dtype=float32), array([ 0.29999971], dtype=float32))

You can learn more about the mechanics of TensorFlow in the Basic Usage guide.

More Deep Learning Models

Your TensorFlow installation comes with a number of Deep Learning models that you can use and experiment with directly.

Firstly, you need to find out where TensorFlow was installed on your system. For example, you can use the following Python script:

python -c 'import os; import inspect; import tensorflow; print(os.path.dirname(inspect.getfile(tensorflow)))'

For example, this could be:

/usr/lib/python2.7/site-packages/tensorflow

Change to this directory and take note of the models subdirectory. Included are a number of deep learning models with tutorial-like comments, such as:

  • Multi-threaded word2vec mini-batched skip-gram model.
  • Multi-threaded word2vec unbatched skip-gram model.
  • CNN for the CIFAR-10 network.
  • Simple, end-to-end, LeNet-5-like convolutional MNIST model example.
  • Sequence-to-sequence model with an attention mechanism.

Also check the examples directory as it contains an example using the MNIST dataset.

There is also an excellent list of tutorials on the main TensorFlow website. They show how to use different network types, different datasets and how to use the framework in various different ways. Finally, there is the TensorFlow playground where you can experiment with small networks right in your web browser.

Summary

In this post you discovered the TensorFlow Python library for deep learning.

You learned that it is a library for fast numerical computation, specifically designed for the types of operations that are required in the development and evaluation of large deep learning models.

Learn More

Deploying a Keras Deep Learning Model as a Web Application in Python

Deep Learning With TensorFlow 2.0

deep-learning tensorflow python

What is Geek Coin

What is GeekCash, Geek Token

Best Visual Studio Code Themes of 2021

Bootstrap 5 Tutorial - Bootstrap 5 Crash Course for Beginners

Nest.JS Tutorial for Beginners

Hello Vue 3: A First Look at Vue 3 and the Composition API

top 30 Python Tips and Tricks for Beginners

In this post, we'll learn top 30 Python Tips and Tricks for Beginners

Introducing Deep Learning with Python: Learn Deep Learning in Python [2021]

Here, we will discuss how deep learning in python works for various applications, including neural networks and computer vision. A new and useful knowledge. It's a pity if you ignore it.

Top Deep Learning Development Services | Hire Deep Learning Developer

Inexture's Deep learning Development Services helps companies to develop Data driven products and solutions. Hire our deep learning developers today to build application that learn and adapt with time.

Deep Learning Tutorial with Python | Deep Learning Full course -2021 | TensorFlow

Great Learning brings you this video on Deep Learning with Python to help you understand this topic and getting started on the journey to learn about it well with the right approach. This video starts by discussing the four popular Python libraries, NumPy, Pandas, Matplotlib and Seaborn. Then we look at a variety of machine learning concepts. Following this, we will understand the topic of deep learning. Finally, we look at neural networks and computer vision! This video teaches Deep Learning with Python and its key concepts with a variety of demonstrations & examples to help you get started on the right foot.

Why Deep Learning is Becoming so Popular? | Deep Learning Tutorial (TensorFlow 2.0, Keras & Python)

This video explains four reasons why deep learning has become so popular in past few years. In this deep learning tutorial python, I will cover following things in this video: Introduction; Data growth; Hardware advancements; Python and opensource ecosystem; Cloud and AI boom