1595006040
Natural language processing has made incredible advances through advanced techniques in deep learning. Learn about these powerful models, and find how close (or far away) these approaches are to human-level understanding.
Humans have a lot of senses, and yet our sensory experiences are typically dominated by vision. With that in mind, perhaps it is unsurprising that the vanguard of modern machine learning has been led by computer vision tasks. Likewise, when humans want to communicate or receive information, the most ubiquitous and natural avenue they use is language. Language can be conveyed by spoken and written words, gestures, or some combination of modalities, but for the purposes of this article, we’ll focus on the written word (although many of the lessons here overlap with verbal speech as well).
Over the years we’ve seen the field of natural language processing (aka NLP, not to be confused with that NLP) with deep neural networks follow closely on the heels of progress in deep learning for computer vision. With the advent of pre-trained generalized language models, we now have methods for transfer learning to new tasks with massive pre-trained models like GPT-2, BERT, and ELMO. These and similar models are doing real work in the world, both as a matter of everyday course (translation, transcription, etc.), and discovery at the frontiers of scientific knowledge (e.g. predicting advances in material science from publication text [pdf]).
Mastery of language both foreign and native has long been considered an indicator of learned individuals; an exceptional writer or a person that understands multiple languages with good fluency is held in high esteem, and is expected to be intelligent in other areas as well. Mastering any language to native-level fluency is difficult, imparting an elegant style and/or exceptional clarity even more so. But even typical human proficiency demonstrates an impressive ability to parse complex messages while deciphering substantial coding variations across context, slang, dialects, and the unshakeable confounders of language understanding: sarcasm and satire.
Understanding language remains a hard problem, and despite widespread use in many areas, the challenge of language understanding with machines still presents plenty of unsolved problems. Consider the following ambiguous and strange word or phrase pairs. Ostensibly the members of each pair have the same meaning but undoubtedly convey distinct nuance. For many of us the only nuance may be a disregard for the precision of grammar and language, but refusing to acknowledge common use meanings mostly makes a language model look foolish.
Couldn’t care less= (?)Could care lessIrregardless= (?)RegardlessLiterally= (?)FigurativelyDynamical= (?)Dynamic
Much of the modern success of deep learning has been due to the utility of transfer learning. Transfer learning allows practitioners to leverage a model’s previous training experience to more quickly learn a novel task. With the raw parameter counts and computational requirements of training state of the art deep networks, transfer learning is essential for the accessibility and efficiency of deep learning in practice. If you are already familiar with the concept of transfer learning, skip ahead to the next section to have a look at the succession of deep NLP models over time.
Transfer learning is a process of fine-tuning: rather than training an entire model from scratch, re-training only those parts of the model which are task-specific can save time and energy of both computational and engineering resources. This is the “don’t be a hero” mentality espoused by Andrej Karpathy, Jeremy Howard, and many others in the deep learning community.
Fundamentally, transfer learning involves retaining the low-level, generic components of a model while only re-training those parts of the model that are specialized. It’s also sometimes advantageous to train the entire pre-trained model after only re-initializing a few task-specific layers.
#2020 jun opinions #uncategorized #deep learning #lstm #nlp #trends
1674813120
In this article, we will see how to validate multi step form wizard using jquery. Here, we will learn to validate the multi step form using jquery. First, we create the multi step form using bootstrap. Also, in this example, we are not using any jquery plugin for multi step form wizard.
So, let's see jquery multi step form with validation, how to create multi step form, multi step form wizard with jquery validation, bootstrap 4 multi step form wizard with validation, multi step form bootstrap 5, and jQuery multi step form with validation and next previous navigation.
Add HTML:
<html lang="en">
</head>
<link href="https://fonts.googleapis.com/css?family=Roboto:400,700&display=swap" rel="stylesheet">
</head>
<body>
<div class="main">
<h3>How To Validate Multi Step Form Using jQuery - Websolutionstuff</h3>
<form id="multistep_form">
<!-- progressbar -->
<ul id="progress_header">
<li class="active"></li>
<li></li>
<li></li>
</ul>
<!-- Step 01 -->
<div class="multistep-box">
<div class="title-box">
<h2>Create your account</h2>
</div>
<p>
<input type="text" name="email" placeholder="Email" id="email">
<span id="error-email"></span>
</p>
<p>
<input type="password" name="pass" placeholder="Password" id="pass">
<span id="error-pass"></span>
</p>
<p>
<input type="password" name="cpass" placeholder="Confirm Password" id="cpass">
<span id="error-cpass"></span>
</p>
<p class="nxt-prev-button"><input type="button" name="next" class="fs_next_btn action-button" value="Next" /></p>
</div>
<!-- Step 02 -->
<div class="multistep-box">
<div class="title-box">
<h2>Social Profiles</h2>
</div>
<p>
<input type="text" name="twitter" placeholder="Twitter" id="twitter">
<span id="error-twitter"></span>
</p>
<p>
<input type="text" name="facebook" placeholder="Facebook" id="facebook">
<span id="error-facebook"></span>
</p>
<p>
<input type="text" name="linkedin" placeholder="Linkedin" id="linkedin">
<span id="error-linkedin"></span>
</p>
<p class="nxt-prev-button">
<input type="button" name="previous" class="previous action-button" value="Previous" />
<input type="button" name="next" class="ss_next_btn action-button" value="Next" />
</p>
</div>
<!-- Step 03 -->
<div class="multistep-box">
<div class="title-box">
<h2>Personal Details</h2>
</div>
<p>
<input type="text" name="fname" placeholder="First Name" id="fname">
<span id="error-fname"></span>
</p>
<p>
<input type="text" name="lname" placeholder="Last Name" id="lname">
<span id="error-lname"></span>
</p>
<p>
<input type="text" name="phone" placeholder="Phone" id="phone">
<span id="error-phone"></span>
</p>
<p>
<textarea name="address" placeholder="Address" id="address"></textarea>
<span id="error-address"></span>
</p>
<p class="nxt-prev-button"><input type="button" name="previous" class="previous action-button" value="Previous" />
<input type="submit" name="submit" class="submit_btn ts_next_btn action-button" value="Submit" />
</p>
</div>
</form>
<h1>You are successfully logged in</h1>
</div>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-easing/1.4.0/jquery.easing.js" type="text/javascript"></script>
</body>
</html>
Add CSS:
body {
display: inline-block;
width: 100%;
height: 100vh;
overflow: hidden;
background-image: url("https://img1.akspic.com/image/80377-gadget-numeric_keypad-input_device-electronic_device-space_bar-3840x2160.jpg");
background-repeat: no-repeat;
background-size: cover;
position: relative;
margin: 0;
font-weight: 400;
font-family: 'Roboto', sans-serif;
}
body:before {
content: "";
display: block;
width: 100%;
height: 100%;
background: rgba(0,0,0,0.5);
position: absolute;
left: 0;
right: 0;
top: 0;
bottom: 0;
}
.main {
position: absolute;
left: 0;
right: 0;
top: 30px;
margin: 0 auto;
height: 515px;
}
input:-internal-autofill-selected {
background-color: #fff !important;
}
#multistep_form {
width: 550px;
margin: 0 auto;
text-align: center;
position: relative;
height: 100%;
z-index: 999;
opacity: 1;
visibility: visible;
}
/*progress header*/
#progress_header {
overflow: hidden;
margin: 0 auto 30px;
padding: 0;
}
#progress_header li {
list-style-type: none;
width: 33.33%;
float: left;
position: relative;
font-size: 16px;
font-weight: bold;
font-family: monospace;
color: #fff;
text-transform: uppercase;
}
#progress_header li:after {
width: 35px;
line-height: 35px;
display: block;
font-size: 22px;
color: #888;
font-family: monospace;
background-color: #fff;
border-radius: 100px;
margin: 0 auto;
background-repeat: no-repeat;
font-family: 'Roboto', sans-serif;
}
#progress_header li:nth-child(1):after {
content: "1";
}
#progress_header li:nth-child(2):after {
content: "2";
}
#progress_header li:nth-child(3):after {
content: "3";
}
#progress_header li:before {
content: '';
width: 100%;
height: 5px;
background: #fff;
position: absolute;
left: -50%;
top: 50%;
z-index: -1;
}
#progress_header li:first-child:before {
content: none;
}
#progress_header li.active:before,
#progress_header li.active:after {
background-image: linear-gradient(to right top, #35e8c3, #36edbb, #3df2b2, #4af7a7, #59fb9b) !important;
color: #fff !important;
transition: all 0.5s;
}
/*title*/
.title-box {
width: 100%;
margin: 0 0 30px 0;
}
.title-box h2 {
font-size: 22px;
text-transform: uppercase;
color: #2C3E50;
margin: 0;
font-family: cursive;
display: inline-block;
position: relative;
padding: 0 0 10px 0;
font-family: 'Roboto', sans-serif;
}
.title-box h2:before {
content: "";
background: #6ddc8b;
width: 70px;
height: 2px;
position: absolute;
bottom: 0;
left: 0;
right: 0;
margin: 0 auto;
display: block;
}
.title-box h2:after {
content: "";
background: #6ddc8b;
width: 50px;
height: 2px;
position: absolute;
bottom: -5px;
left: 0;
right: 0;
margin: 0 auto;
display: block;
}
/*Input and Button*/
.multistep-box {
background: white;
border: 0 none;
border-radius: 3px;
box-shadow: 1px 1px 55px 3px rgba(255, 255, 255, 0.4);
padding: 30px 30px;
box-sizing: border-box;
width: 80%;
margin: 0 10%;
position: absolute;
}
.multistep-box:not(:first-of-type) {
display: none;
}
.multistep-box p {
margin: 0 0 12px 0;
text-align: left;
}
.multistep-box span {
font-size: 12px;
color: #FF0000;
}
input, textarea {
padding: 15px;
border: 1px solid #ccc;
border-radius: 3px;
margin: 0;
width: 100%;
box-sizing: border-box;
font-family: 'Roboto', sans-serif;
color: #2C3E50;
font-size: 13px;
transition: all 0.5s;
outline: none;
}
input:focus, textarea:focus {
box-shadow: inset 0px 0px 50px 2px rgb(0,0,0,0.1);
}
input.box_error, textarea.box_error {
border-color: #FF0000;
box-shadow: inset 0px 0px 50px 2px rgb(255,0,0,0.1);
}
input.box_error:focus, textarea.box_error:focus {
box-shadow: inset 0px 0px 50px 2px rgb(255,0,0,0.1);
}
p.nxt-prev-button {
margin: 25px 0 0 0;
text-align: center;
}
.action-button {
width: 100px;
font-weight: bold;
color: white;
border: 0 none;
border-radius: 1px;
cursor: pointer;
padding: 10px 5px;
margin: 0 5px;
background-image: linear-gradient(to right top, #35e8c3, #36edbb, #3df2b2, #4af7a7, #59fb9b);
transition: all 0.5s;
}
.action-button:hover,
.action-button:focus {
box-shadow: 0 0 0 2px white, 0 0 0 3px #6ce199;
}
.form_submited #multistep_form {
opacity: 0;
visibility: hidden;
}
.form_submited h1 {
-webkit-background-clip: text;
transform: translate(0%, 0%);
-webkit-transform: translate(0%, 0%);
transition: all 0.3s ease;
opacity: 1;
visibility: visible;
}
h1 {
margin: 0;
text-align: center;
font-size: 90px;
background-image: linear-gradient(to right top, #35e8c3, #36edbb, #3df2b2, #4af7a7, #59fb9b) !important;
background-image: linear-gradient(to right top, #35e8c3, #36edbb, #3df2b2, #4af7a7, #59fb9b) !important;
color: transparent;
-webkit-background-clip: text;
-webkit-background-clip: text;
transform: translate(0%, -80%);
-webkit-transform: translate(0%, -80%);
transition: all 0.3s ease;
opacity: 0;
visibility: hidden;
position: absolute;
left: 0;
right: 0;
margin: 0 auto;
text-align: center;
top: 50%;
}
h3{
color:#fff;
text-align:center;
margin-bottom:20px;
}
Add jQuery:
var current_slide, next_slide, previous_slide;
var left, opacity, scale;
var animation;
var error = false;
// email validation
$("#email").keyup(function() {
var emailReg = /^([\w-\.]+@([\w-]+\.)+[\w-]{2,4})?$/;
if (!emailReg.test($("#email").val())) {
$("#error-email").text('Please enter an Email addres.');
$("#email").addClass("box_error");
error = true;
} else {
$("#error-email").text('');
error = false;
$("#email").removeClass("box_error");
}
});
// password validation
$("#pass").keyup(function() {
var pass = $("#pass").val();
var cpass = $("#cpass").val();
if (pass != '') {
$("#error-pass").text('');
error = false;
$("#pass").removeClass("box_error");
}
if (pass != cpass && cpass != '') {
$("#error-cpass").text('Password and Confirm Password is not matched.');
error = true;
} else {
$("#error-cpass").text('');
error = false;
}
});
// confirm password validation
$("#cpass").keyup(function() {
var pass = $("#pass").val();
var cpass = $("#cpass").val();
if (pass != cpass) {
$("#error-cpass").text('Please enter the same Password as above.');
$("#cpass").addClass("box_error");
error = true;
} else {
$("#error-cpass").text('');
error = false;
$("#cpass").removeClass("box_error");
}
});
// twitter
$("#twitter").keyup(function() {
var twitterReg = /https?:\/\/twitter\.com\/(#!\/)?[a-z0-9_]+$/;
if (!twitterReg.test($("#twitter").val())) {
$("#error-twitter").text('Twitter link is not valid.');
$("#twitter").addClass("box_error");
error = true;
} else {
$("#error-twitter").text('');
error = false;
$("#twitter").removeClass("box_error");
}
});
// facebook
$("#facebook").keyup(function() {
var facebookReg = /^(https?:\/\/)?(www\.)?facebook.com\/[a-zA-Z0-9(\.\?)?]/;
if (!facebookReg.test($("#facebook").val())) {
$("#error-facebook").text('Facebook link is not valid.');
$("#facebook").addClass("box_error");
error = true;
} else {
$("#error-facebook").text('');
error = false;
$("#facebook").removeClass("box_error");
}
});
// linkedin
$("#linkedin").keyup(function() {
var linkedinReg = /(ftp|http|https):\/\/?(?:www\.)?linkedin.com(\w+:{0,1}\w*@)?(\S+)(:([0-9])+)?(\/|\/([\w#!:.?+=&%@!\-\/]))?/;
if (!linkedinReg.test($("#linkedin").val())) {
$("#error-linkedin").text('Linkedin link is not valid.');
$("#linkedin").addClass("box_error");
error = true;
} else {
$("#error-linkedin").text('');
error = false;
$("#linkedin").removeClass("box_error");
}
});
// first name
$("#fname").keyup(function() {
var fname = $("#fname").val();
if (fname == '') {
$("#error-fname").text('Enter your First name.');
$("#fname").addClass("box_error");
error = true;
} else {
$("#error-fname").text('');
error = false;
}
if ((fname.length <= 2) || (fname.length > 20)) {
$("#error-fname").text("User length must be between 2 and 20 Characters.");
$("#fname").addClass("box_error");
error = true;
}
if (!isNaN(fname)) {
$("#error-fname").text("Only Characters are allowed.");
$("#fname").addClass("box_error");
error = true;
} else {
$("#fname").removeClass("box_error");
}
});
// last name
$("#lname").keyup(function() {
var lname = $("#lname").val();
if (lname != lname) {
$("#error-lname").text('Enter your Last name.');
$("#lname").addClass("box_error");
error = true;
} else {
$("#error-lname").text('');
error = false;
}
if ((lname.length <= 2) || (lname.length > 20)) {
$("#error-lname").text("User length must be between 2 and 20 Characters.");
$("#lname").addClass("box_error");
error = true;
}
if (!isNaN(lname)) {
$("#error-lname").text("Only Characters are allowed.");
$("#lname").addClass("box_error");
error = true;
} else {
$("#lname").removeClass("box_error");
}
});
// phone
$("#phone").keyup(function() {
var phone = $("#phone").val();
if (phone != phone) {
$("#error-phone").text('Enter your Phone number.');
$("#phone").addClass("box_error");
error = true;
} else {
$("#error-phone").text('');
error = false;
}
if (phone.length != 10) {
$("#error-phone").text("Mobile number must be of 10 Digits only.");
$("#phone").addClass("box_error");
error = true;
} else {
$("#phone").removeClass("box_error");
}
});
// address
$("#address").keyup(function() {
var address = $("#address").val();
if (address != address) {
$("#error-address").text('Enter your Address.');
$("#address").addClass("box_error");
error = true;
} else {
$("#error-address").text('');
error = false;
$("#address").removeClass("box_error");
}
});
// first step validation
$(".fs_next_btn").click(function() {
// email
if ($("#email").val() == '') {
$("#error-email").text('Please enter an email address.');
$("#email").addClass("box_error");
error = true;
} else {
var emailReg = /^([\w-\.]+@([\w-]+\.)+[\w-]{2,4})?$/;
if (!emailReg.test($("#email").val())) {
$("#error-email").text('Please insert a valid email address.');
error = true;
} else {
$("#error-email").text('');
$("#email").removeClass("box_error");
}
}
// password
if ($("#pass").val() == '') {
$("#error-pass").text('Please enter a password.');
$("#pass").addClass("box_error");
error = true;
}
if ($("#cpass").val() == '') {
$("#error-cpass").text('Please enter a Confirm password.');
$("#cpass").addClass("box_error");
error = true;
} else {
var pass = $("#pass").val();
var cpass = $("#cpass").val();
if (pass != cpass) {
$("#error-cpass").text('Please enter the same password as above.');
error = true;
} else {
$("#error-cpass").text('');
$("#pass").removeClass("box_error");
$("#cpass").removeClass("box_error");
}
}
// animation
if (!error) {
if (animation) return false;
animation = true;
current_slide = $(this).parent().parent();
next_slide = $(this).parent().parent().next();
$("#progress_header li").eq($(".multistep-box").index(next_slide)).addClass("active");
next_slide.show();
current_slide.animate({
opacity: 0
}, {
step: function(now, mx) {
scale = 1 - (1 - now) * 0.2;
left = (now * 50) + "%";
opacity = 1 - now;
current_slide.css({
'transform': 'scale(' + scale + ')'
});
next_slide.css({
'left': left,
'opacity': opacity
});
},
duration: 800,
complete: function() {
current_slide.hide();
animation = false;
},
easing: 'easeInOutBack'
});
}
});
// second step validation
$(".ss_next_btn").click(function() {
// twitter
if ($("#twitter").val() == '') {
$("#error-twitter").text('twitter link is required.');
$("#twitter").addClass("box_error");
error = true;
} else {
var twitterReg = /https?:\/\/twitter\.com\/(#!\/)?[a-z0-9_]+$/;
if (!twitterReg.test($("#twitter").val())) {
$("#error-twitter").text('Twitter link is not valid.');
error = true;
} else {
$("#error-twitter").text('');
$("#twitter").removeClass("box_error");
}
}
// facebook
if ($("#facebook").val() == '') {
$("#error-facebook").text('Facebook link is required.');
$("#facebook").addClass("box_error");
error = true;
} else {
var facebookReg = /^(https?:\/\/)?(www\.)?facebook.com\/[a-zA-Z0-9(\.\?)?]/;
if (!facebookReg.test($("#facebook").val())) {
$("#error-facebook").text('Facebook link is not valid.');
error = true;
$("#facebook").addClass("box_error");
} else {
$("#error-facebook").text('');
}
}
// linkedin
if ($("#linkedin").val() == '') {
$("#error-linkedin").text('Linkedin link is required.');
$("#linkedin").addClass("box_error");
error = true;
} else {
var linkedinReg = /(ftp|http|https):\/\/?(?:www\.)?linkedin.com(\w+:{0,1}\w*@)?(\S+)(:([0-9])+)?(\/|\/([\w#!:.?+=&%@!\-\/]))?/;
if (!linkedinReg.test($("#linkedin").val())) {
$("#error-linkedin").text('Linkedin link is not valid.');
error = true;
} else {
$("#error-linkedin").text('');
$("#linkedin").removeClass("box_error");
}
}
if (!error) {
if (animation) return false;
animation = true;
current_slide = $(this).parent().parent();
next_slide = $(this).parent().parent().next();
$("#progress_header li").eq($(".multistep-box").index(next_slide)).addClass("active");
next_slide.show();
current_slide.animate({
opacity: 0
}, {
step: function(now, mx) {
scale = 1 - (1 - now) * 0.2;
left = (now * 50) + "%";
opacity = 1 - now;
current_slide.css({
'transform': 'scale(' + scale + ')'
});
next_slide.css({
'left': left,
'opacity': opacity
});
},
duration: 800,
complete: function() {
current_slide.hide();
animation = false;
},
easing: 'easeInOutBack'
});
}
});
// third step validation
$(".ts_next_btn").click(function() {
// first name
if ($("#fname").val() == '') {
$("#error-fname").text('Enter your First name.');
$("#fname").addClass("box_error");
error = true;
} else {
var fname = $("#fname").val();
if (fname != fname) {
$("#error-fname").text('First name is required.');
error = true;
} else {
$("#error-fname").text('');
error = false;
$("#fname").removeClass("box_error");
}
if ((fname.length <= 2) || (fname.length > 20)) {
$("#error-fname").text("User length must be between 2 and 20 Characters.");
error = true;
}
if (!isNaN(fname)) {
$("#error-fname").text("Only Characters are allowed.");
error = true;
} else {
$("#fname").removeClass("box_error");
}
}
// last name
if ($("#lname").val() == '') {
$("#error-lname").text('Enter your Last name.');
$("#lname").addClass("box_error");
error = true;
} else {
var lname = $("#lname").val();
if (lname != lname) {
$("#error-lname").text('Last name is required.');
error = true;
} else {
$("#error-lname").text('');
error = false;
}
if ((lname.length <= 2) || (lname.length > 20)) {
$("#error-lname").text("User length must be between 2 and 20 Characters.");
error = true;
}
if (!isNaN(lname)) {
$("#error-lname").text("Only Characters are allowed.");
error = true;
} else {
$("#lname").removeClass("box_error");
}
}
// phone
if ($("#phone").val() == '') {
$("#error-phone").text('Enter your Phone number.');
$("#phone").addClass("box_error");
error = true;
} else {
var phone = $("#phone").val();
if (phone != phone) {
$("#error-phone").text('Phone number is required.');
error = true;
} else {
$("#error-phone").text('');
error = false;
}
if (phone.length != 10) {
$("#error-phone").text("Mobile number must be of 10 Digits only.");
error = true;
} else {
$("#phone").removeClass("box_error");
}
}
// address
if ($("#address").val() == '') {
$("#error-address").text('Enter your Address.');
$("#address").addClass("box_error");
error = true;
} else {
var address = $("#address").val();
if (address != address) {
$("#error-address").text('Address is required.');
error = true;
} else {
$("#error-address").text('');
$("#address").removeClass("box_error");
error = false;
}
}
if (!error) {
if (animation) return false;
animation = true;
current_slide = $(this).parent().parent();
next_slide = $(this).parent().parent().next();
$("#progress_header li").eq($(".multistep-box").index(next_slide)).addClass("active");
next_slide.show();
current_slide.animate({
opacity: 0
}, {
step: function(now, mx) {
scale = 1 - (1 - now) * 0.2;
left = (now * 50) + "%";
opacity = 1 - now;
current_slide.css({
'transform': 'scale(' + scale + ')'
});
next_slide.css({
'left': left,
'opacity': opacity
});
},
duration: 800,
complete: function() {
current_slide.hide();
animation = false;
},
easing: 'easeInOutBack'
});
}
});
// previous
$(".previous").click(function() {
if (animation) return false;
animation = true;
current_slide = $(this).parent().parent();
previous_slide = $(this).parent().parent().prev();
$("#progress_header li").eq($(".multistep-box").index(current_slide)).removeClass("active");
previous_slide.show();
current_slide.animate({
opacity: 0
}, {
step: function(now, mx) {
scale = 0.8 + (1 - now) * 0.2;
left = ((1 - now) * 50) + "%";
opacity = 1 - now;
current_slide.css({
'left': left
});
previous_slide.css({
'transform': 'scale(' + scale + ')',
'opacity': opacity
});
},
duration: 800,
complete: function() {
current_slide.hide();
animation = false;
},
easing: 'easeInOutBack'
});
});
$(".submit_btn").click(function() {
if (!error){
$(".main").addClass("form_submited");
}
return false;
})
Output:
Original article source at: https://websolutionstuff.com/
1595414880
Humans have a lot of senses, and yet our sensory experiences are typically dominated by vision. With that in mind, perhaps it is unsurprising that the vanguard of modern machine learning has been led by computer vision tasks. Likewise, when humans want to communicate or receive information, the most ubiquitous and natural avenue they use is language. Language can be conveyed by spoken and written words, gestures, or some combination of modalities, but for the purposes of this article we’ll focus on the written word (although many of the lessons here overlap with verbal speech as well).
Over the years we’ve seen the field of natural language processing (aka NLP, not to be confused with that NLP) with deep neural networks follow closely on the heels of progress in deep learning for computer vision. With the advent of pre-trained generalized language models, we now have methods for transfer learning to new tasks with massive pre-trained models like GPT-2, BERT, and ELMO. These and similar models are doing real work in the world, both as a matter of everyday course (translation, transcription, etc.), and discovery at the frontiers of scientific knowledge (e.g. predicting advances in material science from publication text [pdf]).
Mastery of language both foreign and native has long been considered an indicator of learned individuals; an exceptional writer or a person that understands multiple languages with good fluency is held in high-esteem, and is expected to be intelligent in other areas as well. Mastering any language to native-level fluency is difficult, imparting an elegant style and/or exceptional clarity even more so. But even typical human proficiency demonstrates an impressive ability to parse complex messages while deciphering substantial coding variations across context, slang, dialects, and the unshakeable confounders of language understanding: sarcasm and satire.
Understanding language remains a hard problem, and despite widespread use in many areas, the challenge of language understanding with machines still presents plenty of unsolved problems. Consider the following ambiguous and strange word or phrase pairs. Ostensibly the members of each pair have the same meaning, but undoubtedly convey distinct nuance. For many of us the only nuance may be a disregard for precision of grammar and language, but refusing to acknowledge common use meanings mostly makes a language model look foolish.
Couldn’t care less = (?)Could care less
Irregardless= (?)Regardless
Literally = (?)Figuratively
Dynamical= (?)Dynamic
Much of the modern success of deep learning has been due to the utility of transfer learning. Transfer learning allows practitioners to leverage a model’s previous training experience to more quickly learn a novel task. With the raw parameter counts and computational requirements of training state of the art deep networks, transfer learning is essential for the accessibility and efficiency of deep learning in practice. If you are already familiar with the concept of transfer learning, skip ahead to the next section to have a look at the succession of deep NLP models over time.
Transfer learning is a process of fine-tuning: rather than training an entire model from scratch, re-training only those parts of the model which are task-specific can save time and energy of both computational and engineering resources. This is the “don’t be a hero” mentality espoused by Andrej Karpathy, Jeremy Howard, and many others in the deep learning community.
Fundamentally, transfer learning involves retaining the low-level, generic components of a model while only re-training those parts of the model that are specialized. It’s also sometimes advantageous to train the entire pre-trained model after only re-initializing a few task-specific layers.
A deep neural network can typically be separated into two sections: an encoder, or feature extractor, that learns to recognize low-level features, and a decoder which transforms those features to a desired output. This cartoon example is based on a simplified network for processing images, with the encoder made up of convolutional layers and the decoder consisting of a few fully connected layers, but the same concept can easily be applied to natural language processing as well.
In deep learning models there is often a distinction between the encoder, a stack of layers that mainly learns to extract low-level features, and the decoder, the portion of the model that transforms the feature output from the encoder into classifications, pixel segmentations, next-time-step predictions, and so on. Taking a pre-trained model and initializing and re-training a new decoder can achieve state-of-the-art performance in far less training time. This is because lower-level layers tend to learn the most generic features, characteristics like edges, points, and ripples in images (i.e. Gabor filters in image models). In practice, choosing the cutoff between encoder and decoder is more art than science, but see Yosinki et al. 2014 where researchers quantified the transferability of features at different layers.
#artificial-intelligence #deep-learning #ai #neural-networks #deep learning
1621440840
In deep learning with Keras, you don’t have to code a lot, but there are a few steps on which you need to step over slowly so that in the near future, you can create your models. The flow of modelling is to load data, define the Keras model, compile the Keras model, fit the Keras model, evaluate it, tie everything together, and make the predictions out of it.
But at times, you might find it confusing because of not having a good hold on the fundamentals of deep learning. Before starting your new deep learning with Keras project, make sure to go through this ultimate guide which will help you in revising the fundamentals of deep learning with Keras.
In the field of Artificial Intelligence, deep learning has become a buzzword which always finds its way in various conversations. When it comes to imparting intelligence to the machines, it has been since many years that we used Machine Learning (ML).
But, considering the current period, due to its supremacy in predictions, deep learning with Keras has become more liked and famous as compared to the old and traditional ML techniques.
Machine learning has a subset in which the Artificial Neural Networks (ANN) is trained with a large amount of data. This subset is nothing but deep learning. Since a deep learning algorithm learns from experience, it performs the task repeatedly; every time it tweaks it a little intending to improve the outcome.
It is termed as ‘deep learning’ because the neural networks have many deep layers which enables learning. Deep learning can solve any problem in which thinking is required to figure out the problem.
There are many APIs, frameworks, and libraries available to get started with deep learning. But here’s why deep learning with Keras is beneficial. Keras is a high-level neural network application programming interface (API) which runs on the top of TensorFlow – which is an end-to-end machine learning platform and is an open-source. Not just Tensorflow, but also CNTK, Theano, PlaidML, etc.
It helps in commoditizing artificial intelligence (AI) and deep learning. The coding in Keras is portable, it means that using Keras you can implement a neural network while using Theano as a backend and then subsequently run it on Tensorflow by specifying the backend. Also further, it is not mandatory rather, not needed at all to change the code.
If you are wondering why deep learning is an important term in Artificial Intelligence or if you are lagging motivation to start learning deep learning with Keras, this google trends snap shows how people’s interest in deep learning has been growing steadily worldwide for the last few years.
#deep learning #deep learning with neural network #neural network
1598313600
There has been hype about artificial intelligence, machine learning, and neural networks for quite a while now. I have been working on these things for over a year now so I would like to share some of my knowledge and give my point of view on Neural networks. This will not be a math-heavy introduction because I just want to build the idea here.
I will start from the neural network and then I will explain every component of a neural network. If you feel like something is not right or need any help with any of this, Feel free to contact me, I will be happy to help.
Let’s assume we want to solve a problem where you are given some set of images and you have to build an automated system that can categories each of those images to its correct label.
The problem looks simple but how do we come with some logic using raw pixel values and target labels. We can try comparing pixels and edges but we won’t be able to come with some idea which can do this task effectively or say the accuracy of 90% or more.
When we have this kind of problem where we have high dimensional data like Images and we don’t know the relationship between Input(Images) and the Output(Labels), In this kind of scenario we should use Neural Networks.ư
Artificial neural networks, usually simply called neural networks, are computing systems vaguely inspired by the biological neural networks that constitute animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain
#artificial-intelligence #gradient-descent #artificial-neural-network #deep-learning #neural-networks #deep learning
1626106680
Forward propagation is an important part of neural networks. Its not as hard as it sounds ;-)
This is part 2 in my series on neural networks. You are welcome to start at part 1 or skip to part 5 if you just want the code.
So, to perform gradient descent or cost optimisation, we need to write a cost function which performs:
In this article, we are dealing with (1) forward propagation.
In figure 1, we can see our network diagram with much of the details removed. We will focus on one unit in level 2 and one unit in level 3. This understanding can then be copied to all units. (ps. one unit is one of the circles below)
Our goal in forward prop is to calculate A1, Z2, A2, Z3 & A3
Just so we can visualise the X features, see figure 2 and for some more info on the data, see part 1.
As it turns out, this is quite an important topic for gradient descent. If you have not dealt with gradient descent, then check this article first. We can see above that we need 2 sets of weights. (signified by ø). We often still calls these weights theta and they mean the same thing.
We need one set of thetas for level 2 and a 2nd set for level 3. Each theta is a matrix and is size(L) * size(L-1). Thus for above:
Theta1 = 6x4 matrix
Theta2 = 7x7 matrix
We have to now guess at which initial thetas should be our starting point. Here, epsilon comes to the rescue and below is the matlab code to easily generate some random small numbers for our initial weights.
function weights = initializeWeights(inSize, outSize)
epsilon = 0.12;
weights = rand(outSize, 1 + inSize) * 2 * epsilon - epsilon;
end
After running above function with our sizes for each theta as mentioned above, we will get some good small random initial values as in figure 3
. For figure 1 above, the weights we mention would refer to rows 1 in below matrix’s.
Now, that we have our initial weights, we can go ahead and run gradient descent. However, this needs a cost function to help calculate the cost and gradients as it goes along. Before we can calculate the costs, we need to perform forward propagation to calculate our A1, Z2, A2, Z3 and A3 as per figure 1.
#machine-learning #machine-intelligence #neural-network-algorithm #neural-networks #networks