Abigail  Cassin

Abigail Cassin


Getting started with TFX on Google Cloud AI Platform

Creating machine learning (ML) models is generally the core focus of many data scientists and engineers around the world. However, they often forget to plan on how they are going to productionize the model once it is built. This is usually not their fault (most of the time) because most of the time, different departments are responsible for different areas of production e.g., the data scientists team are responsible for creating the models and the developer teams are responsible for packaging the model for consumption. This often leads to:

  • Models not being updated regularly because the feedback loop is usually manual i.e. the data collected is given to the data scientist team to evaluate and update the model. The updated model is then given to the developer team. I’ve seen processes like this where it takes at least a couple of weeks!
  • Increase in operational cost in maintaining the model because there are multiple teams looking after the model lifecycle.

#google-cloud-pl #machine-learning #artificial-intelligence #ai

What is GEEK

Buddha Community

Getting started with TFX on Google Cloud AI Platform
Adaline  Kulas

Adaline Kulas


Multi-cloud Spending: 8 Tips To Lower Cost

A multi-cloud approach is nothing but leveraging two or more cloud platforms for meeting the various business requirements of an enterprise. The multi-cloud IT environment incorporates different clouds from multiple vendors and negates the dependence on a single public cloud service provider. Thus enterprises can choose specific services from multiple public clouds and reap the benefits of each.

Given its affordability and agility, most enterprises opt for a multi-cloud approach in cloud computing now. A 2018 survey on the public cloud services market points out that 81% of the respondents use services from two or more providers. Subsequently, the cloud computing services market has reported incredible growth in recent times. The worldwide public cloud services market is all set to reach $500 billion in the next four years, according to IDC.

By choosing multi-cloud solutions strategically, enterprises can optimize the benefits of cloud computing and aim for some key competitive advantages. They can avoid the lengthy and cumbersome processes involved in buying, installing and testing high-priced systems. The IaaS and PaaS solutions have become a windfall for the enterprise’s budget as it does not incur huge up-front capital expenditure.

However, cost optimization is still a challenge while facilitating a multi-cloud environment and a large number of enterprises end up overpaying with or without realizing it. The below-mentioned tips would help you ensure the money is spent wisely on cloud computing services.

  • Deactivate underused or unattached resources

Most organizations tend to get wrong with simple things which turn out to be the root cause for needless spending and resource wastage. The first step to cost optimization in your cloud strategy is to identify underutilized resources that you have been paying for.

Enterprises often continue to pay for resources that have been purchased earlier but are no longer useful. Identifying such unused and unattached resources and deactivating it on a regular basis brings you one step closer to cost optimization. If needed, you can deploy automated cloud management tools that are largely helpful in providing the analytics needed to optimize the cloud spending and cut costs on an ongoing basis.

  • Figure out idle instances

Another key cost optimization strategy is to identify the idle computing instances and consolidate them into fewer instances. An idle computing instance may require a CPU utilization level of 1-5%, but you may be billed by the service provider for 100% for the same instance.

Every enterprise will have such non-production instances that constitute unnecessary storage space and lead to overpaying. Re-evaluating your resource allocations regularly and removing unnecessary storage may help you save money significantly. Resource allocation is not only a matter of CPU and memory but also it is linked to the storage, network, and various other factors.

  • Deploy monitoring mechanisms

The key to efficient cost reduction in cloud computing technology lies in proactive monitoring. A comprehensive view of the cloud usage helps enterprises to monitor and minimize unnecessary spending. You can make use of various mechanisms for monitoring computing demand.

For instance, you can use a heatmap to understand the highs and lows in computing visually. This heat map indicates the start and stop times which in turn lead to reduced costs. You can also deploy automated tools that help organizations to schedule instances to start and stop. By following a heatmap, you can understand whether it is safe to shut down servers on holidays or weekends.

#cloud computing services #all #hybrid cloud #cloud #multi-cloud strategy #cloud spend #multi-cloud spending #multi cloud adoption #why multi cloud #multi cloud trends #multi cloud companies #multi cloud research #multi cloud market

Shubham Ankit

Shubham Ankit


How to Automate Excel with Python | Python Excel Tutorial (OpenPyXL)

How to Automate Excel with Python

In this article, We will show how we can use python to automate Excel . A useful Python library is Openpyxl which we will learn to do Excel Automation


Openpyxl is a Python library that is used to read from an Excel file or write to an Excel file. Data scientists use Openpyxl for data analysis, data copying, data mining, drawing charts, styling sheets, adding formulas, and more.

Workbook: A spreadsheet is represented as a workbook in openpyxl. A workbook consists of one or more sheets.

Sheet: A sheet is a single page composed of cells for organizing data.

Cell: The intersection of a row and a column is called a cell. Usually represented by A1, B5, etc.

Row: A row is a horizontal line represented by a number (1,2, etc.).

Column: A column is a vertical line represented by a capital letter (A, B, etc.).

Openpyxl can be installed using the pip command and it is recommended to install it in a virtual environment.

pip install openpyxl


We start by creating a new spreadsheet, which is called a workbook in Openpyxl. We import the workbook module from Openpyxl and use the function Workbook() which creates a new workbook.

from openpyxl
import Workbook
#creates a new workbook
wb = Workbook()
#Gets the first active worksheet
ws = wb.active
#creating new worksheets by using the create_sheet method

ws1 = wb.create_sheet("sheet1", 0) #inserts at first position
ws2 = wb.create_sheet("sheet2") #inserts at last position
ws3 = wb.create_sheet("sheet3", -1) #inserts at penultimate position

#Renaming the sheet
ws.title = "Example"

#save the workbook
wb.save(filename = "example.xlsx")


We load the file using the function load_Workbook() which takes the filename as an argument. The file must be saved in the same working directory.

#loading a workbook
wb = openpyxl.load_workbook("example.xlsx")




#getting sheet names
result = ['sheet1', 'Sheet', 'sheet3', 'sheet2']

#getting a particular sheet
sheet1 = wb["sheet2"]

#getting sheet title
result = 'sheet2'

#Getting the active sheet
sheetactive = wb.active
result = 'sheet1'




#get a cell from the sheet
sheet1["A1"] <
  Cell 'Sheet1'.A1 >

  #get the cell value
ws["A1"].value 'Segment'

#accessing cell using row and column and assigning a value
d = ws.cell(row = 4, column = 2, value = 10)




#looping through each row and column
for x in range(1, 5):
  for y in range(1, 5):
  print(x, y, ws.cell(row = x, column = y)

#getting the highest row number

#getting the highest column number

There are two functions for iterating through rows and columns.

Iter_rows() => returns the rows
Iter_cols() => returns the columns {
  min_row = 4, max_row = 5, min_col = 2, max_col = 5
} => This can be used to set the boundaries
for any iteration.


#iterating rows
for row in ws.iter_rows(min_row = 2, max_col = 3, max_row = 3):
  for cell in row:
  print(cell) <
  Cell 'Sheet1'.A2 >
  Cell 'Sheet1'.B2 >
  Cell 'Sheet1'.C2 >
  Cell 'Sheet1'.A3 >
  Cell 'Sheet1'.B3 >
  Cell 'Sheet1'.C3 >

  #iterating columns
for col in ws.iter_cols(min_row = 2, max_col = 3, max_row = 3):
  for cell in col:
  print(cell) <
  Cell 'Sheet1'.A2 >
  Cell 'Sheet1'.A3 >
  Cell 'Sheet1'.B2 >
  Cell 'Sheet1'.B3 >
  Cell 'Sheet1'.C2 >
  Cell 'Sheet1'.C3 >

To get all the rows of the worksheet we use the method worksheet.rows and to get all the columns of the worksheet we use the method worksheet.columns. Similarly, to iterate only through the values we use the method worksheet.values.


for row in ws.values:
  for value in row:



Writing to a workbook can be done in many ways such as adding a formula, adding charts, images, updating cell values, inserting rows and columns, etc… We will discuss each of these with an example.




#creates a new workbook
wb = openpyxl.Workbook()

#saving the workbook




#creating a new sheet
ws1 = wb.create_sheet(title = "sheet 2")

#creating a new sheet at index 0
ws2 = wb.create_sheet(index = 0, title = "sheet 0")

#checking the sheet names
wb.sheetnames['sheet 0', 'Sheet', 'sheet 2']

#deleting a sheet
del wb['sheet 0']

#checking sheetnames
wb.sheetnames['Sheet', 'sheet 2']




#checking the sheet value

#adding value to cell
ws['B2'] = 367

#checking value




We often require formulas to be included in our Excel datasheet. We can easily add formulas using the Openpyxl module just like you add values to a cell.

For example:

import openpyxl
from openpyxl
import Workbook

wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']

ws['A9'] = '=SUM(A2:A8)'


The above program will add the formula (=SUM(A2:A8)) in cell A9. The result will be as below.




Two or more cells can be merged to a rectangular area using the method merge_cells(), and similarly, they can be unmerged using the method unmerge_cells().

For example:
Merge cells

#merge cells B2 to C9
ws['B2'] = "Merged cells"

Adding the above code to the previous example will merge cells as below.




#unmerge cells B2 to C9

The above code will unmerge cells from B2 to C9.


To insert an image we import the image function from the module openpyxl.drawing.image. We then load our image and add it to the cell as shown in the below example.


import openpyxl
from openpyxl
import Workbook
from openpyxl.drawing.image
import Image

wb = openpyxl.load_workbook("new1.xlsx")
ws = wb['Sheet']
#loading the image(should be in same folder)
img = Image('logo.png')
ws['A1'] = "Adding image"
#adjusting size
img.height = 130
img.width = 200
#adding img to cell A3

ws.add_image(img, 'A3')





Charts are essential to show a visualization of data. We can create charts from Excel data using the Openpyxl module chart. Different forms of charts such as line charts, bar charts, 3D line charts, etc., can be created. We need to create a reference that contains the data to be used for the chart, which is nothing but a selection of cells (rows and columns). I am using sample data to create a 3D bar chart in the below example:


import openpyxl
from openpyxl
import Workbook
from openpyxl.chart
import BarChart3D, Reference, series

wb = openpyxl.load_workbook("example.xlsx")
ws = wb.active

values = Reference(ws, min_col = 3, min_row = 2, max_col = 3, max_row = 40)
chart = BarChart3D()
ws.add_chart(chart, "E3")


How to Automate Excel with Python with Video Tutorial

Welcome to another video! In this video, We will cover how we can use python to automate Excel. I'll be going over everything from creating workbooks to accessing individual cells and stylizing cells. There is a ton of things that you can do with Excel but I'll just be covering the core/base things in OpenPyXl.

⭐️ Timestamps ⭐️
00:00 | Introduction
02:14 | Installing openpyxl
03:19 | Testing Installation
04:25 | Loading an Existing Workbook
06:46 | Accessing Worksheets
07:37 | Accessing Cell Values
08:58 | Saving Workbooks
09:52 | Creating, Listing and Changing Sheets
11:50 | Creating a New Workbook
12:39 | Adding/Appending Rows
14:26 | Accessing Multiple Cells
20:46 | Merging Cells
22:27 | Inserting and Deleting Rows
23:35 | Inserting and Deleting Columns
24:48 | Copying and Moving Cells
26:06 | Practical Example, Formulas & Cell Styling

📄 Resources 📄
OpenPyXL Docs: https://openpyxl.readthedocs.io/en/stable/ 
Code Written in This Tutorial: https://github.com/techwithtim/ExcelPythonTutorial 
Subscribe: https://www.youtube.com/c/TechWithTim/featured 


Rusty  Shanahan

Rusty Shanahan


Overview of Google Cloud Essentials Quest

If you looking to learn about Google Cloud in depth or in general with or without any prior knowledge in cloud computing, then you should definitely check this quest out, Link.

Google Could Essentials is an introductory level Quest which is useful to learn about the basic fundamentals of Google Cloud. From writing Cloud Shell commands and deploying my first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Let’s see what was the Quest Outline:

  1. A Tour of Qwiklabs and Google Cloud
  2. Creating a Virtual Machine
  3. Getting Started with Cloud Shell & gcloud
  4. Kubernetes Engine: Qwik Start
  5. Set Up Network and HTTP Load Balancers

A Tour of Qwiklabs and Google Cloud was the first hands-on lab which basically gives an overview about Google Cloud. There were few questions to answers that will check your understanding about the topic and the rest was about accessing Google cloud console, projects in cloud console, roles and permissions, Cloud Shell and so on.

**Creating a Virtual Machine **was the second lab to create virtual machine and also connect NGINX web server to it. Compute Engine lets one create virtual machine whose resources live in certain regions or zones. NGINX web server is used as load balancer. The job of a load balancer is to distribute workloads across multiple computing resources. Creating these two along with a question would mark the end of the second lab.

#google-cloud-essentials #google #google-cloud #google-cloud-platform #cloud-computing #cloud

Jessica Smith

Jessica Smith


Google Cloud Platform Hosting Services in USA | SISGAIN

We strive to provide every customer business with google cloud hosting web services and managed series that are entirely personalized around the commercial and development goals of the company in USA. Businesses that work with us will see a marked improvement in efficiency. Managed Google Cloud Platform services from SISGAIN helps organisations leverage this relative newcomer’s big data and machine learning capabilities via our team of approachable experts. From solution design to in-life support we take the operational burden off dev and product development teams. For more information call us at +18444455767 or email us at hello@sisgain.com

#google cloud platform services #google cloud hosting web services #google cloud web hosting #gcp web hosting #google cloud server hosting #google vps hosting

Google Cloud: Caching Cloud Storage content with Cloud CDN

In this Lab, we will configure Cloud Content Delivery Network (Cloud CDN) for a Cloud Storage bucket and verify caching of an image. Cloud CDN uses Google’s globally distributed edge points of presence to cache HTTP(S) load-balanced content close to our users. Caching content at the edges of Google’s network provides faster delivery of content to our users while reducing serving costs.

For an up-to-date list of Google’s Cloud CDN cache sites, see https://cloud.google.com/cdn/docs/locations.

Task 1. Create and populate a Cloud Storage bucket

Cloud CDN content can originate from different types of backends:

  • Compute Engine virtual machine (VM) instance groups
  • Zonal network endpoint groups (NEGs)
  • Internet network endpoint groups (NEGs), for endpoints that are outside of Google Cloud (also known as custom origins)
  • Google Cloud Storage buckets

In this lab, we will configure a Cloud Storage bucket as the backend.

#google-cloud #google-cloud-platform #cloud #cloud storage #cloud cdn