Hanna Norris

Hanna Norris

1651828365

Common IT Outsourcing Challenges Faced by Companies & their Solutions

 

1. Trust Issues with your Outsourcing Partner

Working with a company that is located overseas does bring in some trust issues. And quite frankly, this a very valid concern. Simply because the success of your project would be in the hands of your offshore team.

So, what's the way to find the best IT outsourcing company that has the tech and domain expertise you require, fits your budget, guarantees on-time delivery, and can rely on at every step?

Collaboration with a reliable outsourced development team is the solution.

However, the first thing to do is to clarify what has to be done. Understand your business KPI’s and the reasons for which you are outsourcing IT services. Once you are done, the research work comes into play.

It is a must to perform in-depth research on the offshore development companies, before getting in touch. Though it is not possible to do so for weeks, the best way is to check out some B2B rating platforms for creating a rough list of top outsourcing companies.

As soon as you have the list, it's time to get in touch and make a decision.

Select the Company Based on the following:

The maturity of the company: For how long it has been in the marketplace.

The number of long-term projects it has dealt with and the total number of successful projects.

Evaluate the company’s website carefully. Why will the company make something valuable for you if they are unable to do something good for themselves?

Social media presence of the company on different platforms like Facebook, Instagram, etc.

The knowledge-sharing process and technical skill development within the company. Company’s participation in different events.

Have an overview of the companies ranking & reviews on popularly known platforms like Clutch.Co, TheManifest & Good firms.

Case studies inclusive of the client overview, cooperation history, client issues, challenges, solutions, and technology stack issues.

2. Outsourcing for the First Time

If you are outsourcing for the first time, then it is important to understand the process. It includes defining your product vision, development stages, time to market deadlines, and the need for further maintenance.

After finalizing your outsourcing partner, set up clear and realistic expectations for your offshore development team.

Expect your outsourcing partner to walk you through the entire process during the initial discussion. In fact, it would be advisable to get in touch with your dedicated offshore developers and discuss your requirements in detail.

If your team is clear about your vision, objective & goals, then achieving them becomes easy. It would help them to craft an effective product development strategy and project charter to fulfill your end goals. Also, ask them to stay consistent about the regular project status update, in advance.

On top of that, your team will introduce you to the latest technology and whatever is trending in the industry. In short, they will ensure the adoption of best standards and practices for the development process.

3. Are you Technophobic?

Being clear about the technical requirements is crucial while outsourcing. In case you are not a tech-savvy person, things may become complicated for you. In this case, you can onboard a technical manager on site as a point of contact between your company and the offshore team.

Let's say you are planning to launch a mobile app for your business. In this case (where you don't have knowledge about the required technical stack), approaching a development team will become difficult for you.

Because a lot of technologies exist in the market for building a mobile app. For example, to build a mobile app, you may or may not need to hire;

  1. Front-End Developers with expertise in Javascript frameworks, HTML, CSS, etc.
  2. Back-End Developers with expertise in Java, Kotlin, Swift, ObjectiveC, Dart, Flutter, etc.

If you are aware about the technological requirements of your project, it would become easy for you to hire mobile app developers from an offshore country.

4. The Remote Development Company is either too Big or too Small

The Remote Development Company is either too Big or too Small

Among the common offshoring issues, companies face a challenge in finding the vendor of the right size. Either the remote development company is too small and is unable to scale up or down quickly. Or they are too big that they don’t take mid-size companies too seriously.

For an enterprise, any offshore company that is unable to staff 10-20 individuals is an issue regardless of their expertise. Whereas for any startup, collaborating with a large remote development team can be frustrating and they may not be considered important. Also, they may not get the attention that they actually require.

To address this challenge, you need to find a company with an appropriate size that will take your business objectives seriously. You may also need to choose the right country for outsourcing software requirements.

5. Outsourcing may be Risky

Outsourcing helps different companies to deal with the talent shortage. Working with a third party may be risky but there are ways to mitigate any possible risks.

  • Loss of Control: No one wants to lose control of the project while collaborating with an IT outsourcing company. Manage the project equally and ensure everyone is on the same page. Train your in-house staff to efficiently maintain a relationship with the offshore product engineering team. Also, make sure that your company offers high communication transparency using a reliable tracking system.
  • Data Protection: The security issue is significant when the project involves sensitive data. In that case, it is always good to conduct a background check. The previous clients will tell you how the company dealt with security issues in the past.
  • Unqualified Professionals: A major problem occurs when an offshore software development company makes big promises but gives you a team of unqualified specialists. The major reason for this is, the lesser the salary of the employees is, the higher the revenue of the company. This unprofessional approach may bring poor quality results.

Here, the best measure would be to choose developers based on the interview, and visiting their office in person (if possible).

6. You are Doubtful About the Confidentiality

You are Doubtful About the Confidentiality

Whenever you outsource, you share confidential information like ideas and concepts. It is natural that you start worrying about the way your offshore partner will be handling security.

To resolve this issue, you have to choose an IT outsourcing company that stays compliant with international security standards. For the same purpose, do the following:

Ask if the company is comfortable in signing up Non-Disclosure Agreement

Ask if the offshore firm has any previous experience of working with sensitive data

And if they have completed any project in the industries similar to the one you work in.

It is also important to include all the necessary clauses regarding the safeguard of the proprietary rights and confidentiality in the service level agreement.

7. You are Afraid of the Legal Complications

Confidentiality, liability, data protection, regulation compliance, and intellectual property right; all these aspects may create certain issues in outsourcing.

As per the engagement model that you choose (whether it is a fixed model, time & material model, dedicated engagement model) the terms will vary. Every model has different legal terms. So, having in-depth knowledge about them is crucial.

Recommended ReadWhat Makes Dedicated Team Model the Right Choice?

Another important aspect to consider here is the country to which you are outsourcing. There are a few IT outsourcing destinations that strive to foster the benefits of IT outsourcing and create a legal environment that helps the company to grow.

On the contrary, others neglect to support the industry and create more issues for outsourcing.

8. Will you Get High-Quality Services at Affordable Prices?

Will you Get High-Quality Services at Affordable Prices?

One of the major reasons to outsource is the expectation of receiving better service from the remote development company. So, do not choose your outsourcing partner on the basis of cheap prices only.

Consider all the industry standards, frameworks, tools, and technologies that your offshore team follows. Find out what mockup tools, delivery process/methodology, tracking system, and quality software metrics they employ. 

Recommended Read: How to Evaluate IT Outsourcing Cost? (For Better ROI)

9. Does the Offshore Company Comply with Rules & Regulations?

Have you wondered why it is so crucial for an IT offshoring company to be certified and comply with international regulations? Well, many outsourcing issues stem from the company’s failure to deal with the requirements.

Hiring the best experts and retaining them smartly are two important things. An outsourcing firm that has the best engineers, do all the possible things to retain them with the help of a sophisticated approach.

This attitude helps them to create a well-structured team that delivers exceptional results.

10. Looking for a Company that Fits your Budget

This is a good question. One reason why companies prefer outsourcing over in-house recruitment is because of the tight budget.

Whenever you are planning for a budget, make sure the company you choose doesn’t set unrealistic goals. To keep the integrity of the final product and make sure the cost remains less, avoid budget-draining mistakes.

However, the wrong choice of cooperation model, changing requirements, and poor management strategies may raise the cost and cause many issues. So, being clear with everything is the right measure to avoid this outsourcing challenge.

Source: 13 Common IT Outsourcing Challenges Faced by Companies & their Solutions

What is GEEK

Buddha Community

Common IT Outsourcing Challenges Faced by Companies & their Solutions
Royce  Reinger

Royce Reinger

1672193100

Face Recognition & Facial Attribute Analysis Library for Python

deepface

Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace, Dlib and SFace.

Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.

Installation  

The easiest way to install deepface is to download it from PyPI. It's going to install the library itself and its prerequisites as well.

$ pip install deepface

DeepFace is also available at Conda. You can alternatively install the package via conda.

$ conda install -c conda-forge deepface

Then you will be able to import the library and use its functionalities.

from deepface import DeepFace

Facial Recognition - Demo

A modern face recognition pipeline consists of 5 common stages: detect, align, normalize, represent and verify. While Deepface handles all these common stages in the background, you don’t need to acquire in-depth knowledge about all the processes behind it. You can just call its verification, find or analysis function with a single line of code.

Face Verification - Demo

This function verifies face pairs as same person or different persons. It expects exact image paths as inputs. Passing numpy or base64 encoded images is also welcome. Then, it is going to return a dictionary and you should check just its verified key.

result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg")

Face recognition - Demo

Face recognition requires applying face verification many times. Herein, deepface has an out-of-the-box find function to handle this action. It's going to look for the identity of input image in the database path and it will return pandas data frame as output.

df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db")

Embeddings

Face recognition models basically represent facial images as multi-dimensional vectors. Sometimes, you need those embedding vectors directly. DeepFace comes with a dedicated representation function.

embedding = DeepFace.represent(img_path = "img.jpg")

This function returns an array as output. The size of the output array would be different based on the model name. For instance, VGG-Face is the default model for deepface and it represents facial images as 2622 dimensional vectors.

assert isinstance(embedding, list)
assert model_name = "VGG-Face" and len(embedding) == 2622

Here, embedding is also plotted with 2622 slots horizontally. Each slot is corresponding to a dimension value in the embedding vector and dimension value is explained in the colorbar on the right. Similar to 2D barcodes, vertical dimension stores no information in the illustration.

Face recognition models - Demo

Deepface is a hybrid face recognition package. It currently wraps many state-of-the-art face recognition models: VGG-Face , Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace, Dlib and SFace. The default configuration uses VGG-Face model.

models = [
  "VGG-Face", 
  "Facenet", 
  "Facenet512", 
  "OpenFace", 
  "DeepFace", 
  "DeepID", 
  "ArcFace", 
  "Dlib", 
  "SFace",
]

#face verification
result = DeepFace.verify(img1_path = "img1.jpg", 
      img2_path = "img2.jpg", 
      model_name = models[1]
)

#face recognition
df = DeepFace.find(img_path = "img1.jpg",
      db_path = "C:/workspace/my_db", 
      model_name = models[1]
)

#embeddings
embedding = DeepFace.represent(img_path = "img.jpg", 
      model_name = models[1]
)

FaceNet, VGG-Face, ArcFace and Dlib are overperforming ones based on experiments. You can find out the scores of those models below on both Labeled Faces in the Wild and YouTube Faces in the Wild data sets declared by its creators.

ModelLFW ScoreYTF Score
Facenet51299.65%-
SFace99.60%-
ArcFace99.41%-
Dlib99.38 %-
Facenet99.20%-
VGG-Face98.78%97.40%
Human-beings97.53%-
OpenFace93.80%-
DeepID-97.05%

Similarity

Face recognition models are regular convolutional neural networks and they are responsible to represent faces as vectors. We expect that a face pair of same person should be more similar than a face pair of different persons.

Similarity could be calculated by different metrics such as Cosine Similarity, Euclidean Distance and L2 form. The default configuration uses cosine similarity.

metrics = ["cosine", "euclidean", "euclidean_l2"]

#face verification
result = DeepFace.verify(img1_path = "img1.jpg", 
          img2_path = "img2.jpg", 
          distance_metric = metrics[1]
)

#face recognition
df = DeepFace.find(img_path = "img1.jpg", 
          db_path = "C:/workspace/my_db", 
          distance_metric = metrics[1]
)

Euclidean L2 form seems to be more stable than cosine and regular Euclidean distance based on experiments.

Facial Attribute Analysis - Demo

Deepface also comes with a strong facial attribute analysis module including age, gender, facial expression (including angry, fear, neutral, sad, disgust, happy and surprise) and race (including asian, white, middle eastern, indian, latino and black) predictions.

obj = DeepFace.analyze(img_path = "img4.jpg", 
        actions = ['age', 'gender', 'race', 'emotion']
)

Age model got ± 4.65 MAE; gender model got 97.44% accuracy, 96.29% precision and 95.05% recall as mentioned in its tutorial.

Face Detectors - Demo

Face detection and alignment are important early stages of a modern face recognition pipeline. Experiments show that just alignment increases the face recognition accuracy almost 1%. OpenCV, SSD, Dlib, MTCNN, RetinaFace and MediaPipe detectors are wrapped in deepface.

All deepface functions accept an optional detector backend input argument. You can switch among those detectors with this argument. OpenCV is the default detector.

backends = [
  'opencv', 
  'ssd', 
  'dlib', 
  'mtcnn', 
  'retinaface', 
  'mediapipe'
]

#face verification
obj = DeepFace.verify(img1_path = "img1.jpg", 
        img2_path = "img2.jpg", 
        detector_backend = backends[4]
)

#face recognition
df = DeepFace.find(img_path = "img.jpg", 
        db_path = "my_db", 
        detector_backend = backends[4]
)

#embeddings
embedding = DeepFace.represent(img_path = "img.jpg", 
        detector_backend = backends[4]
)

#facial analysis
demography = DeepFace.analyze(img_path = "img4.jpg", 
        detector_backend = backends[4]
)

#face detection and alignment
face = DeepFace.detectFace(img_path = "img.jpg", 
        target_size = (224, 224), 
        detector_backend = backends[4]
)

Face recognition models are actually CNN models and they expect standard sized inputs. So, resizing is required before representation. To avoid deformation, deepface adds black padding pixels according to the target size argument after detection and alignment.

RetinaFace and MTCNN seem to overperform in detection and alignment stages but they are much slower. If the speed of your pipeline is more important, then you should use opencv or ssd. On the other hand, if you consider the accuracy, then you should use retinaface or mtcnn.

The performance of RetinaFace is very satisfactory even in the crowd as seen in the following illustration. Besides, it comes with an incredible facial landmark detection performance. Highlighted red points show some facial landmarks such as eyes, nose and mouth. That's why, alignment score of RetinaFace is high as well.

You can find out more about RetinaFace on this repo.

Real Time Analysis - Demo

You can run deepface for real time videos as well. Stream function will access your webcam and apply both face recognition and facial attribute analysis. The function starts to analyze a frame if it can focus a face sequentially 5 frames. Then, it shows results 5 seconds.

DeepFace.stream(db_path = "C:/User/Sefik/Desktop/database")

Even though face recognition is based on one-shot learning, you can use multiple face pictures of a person as well. You should rearrange your directory structure as illustrated below.

user
├── database
│   ├── Alice
│   │   ├── Alice1.jpg
│   │   ├── Alice2.jpg
│   ├── Bob
│   │   ├── Bob.jpg

API - Demo

Deepface serves an API as well. You can clone /api/api.py and pass it to python command as an argument. This will get a rest service up. In this way, you can call deepface from an external system such as mobile app or web.

python api.py

Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Service endpoints will be http://127.0.0.1:5000/verify for face recognition, http://127.0.0.1:5000/analyze for facial attribute analysis, and http://127.0.0.1:5000/represent for vector representation. You should pass input images as base64 encoded string in this case. Here, you can find a postman project.

Command Line Interface

DeepFace comes with a command line interface as well. You are able to access its functions in command line as shown below. The command deepface expects the function name as 1st argument and function arguments thereafter.

#face verification
$ deepface verify -img1_path tests/dataset/img1.jpg -img2_path tests/dataset/img2.jpg

#facial analysis
$ deepface analyze -img_path tests/dataset/img1.jpg

Tech Stack - Vlog, Tutorial

Face recognition models represent facial images as vector embeddings. The idea behind facial recognition is that vectors should be more similar for same person than different persons. The question is that where and how to store facial embeddings in a large scale system. Tech stack is vast to store vector embeddings. To determine the right tool, you should consider your task such as face verification or face recognition, priority such as speed or confidence, and also data size.

Contribution 

Pull requests are welcome! You should run the unit tests locally by running test/unit_tests.py. Once a PR sent, GitHub test workflow will be run automatically and unit test results will be available in GitHub actions before approval.

Support

There are many ways to support a project - starring⭐️ the GitHub repo is just one 🙏

You can also support this work on Patreon

 

Citation

Please cite deepface in your publications if it helps your research. Here are its BibTex entries:

If you use deepface for facial recogntion purposes, please cite the this publication.

@inproceedings{serengil2020lightface,
  title        = {LightFace: A Hybrid Deep Face Recognition Framework},
  author       = {Serengil, Sefik Ilkin and Ozpinar, Alper},
  booktitle    = {2020 Innovations in Intelligent Systems and Applications Conference (ASYU)},
  pages        = {23-27},
  year         = {2020},
  doi          = {10.1109/ASYU50717.2020.9259802},
  url          = {https://doi.org/10.1109/ASYU50717.2020.9259802},
  organization = {IEEE}
}

If you use deepface for facial attribute analysis purposes such as age, gender, emotion or ethnicity prediction, please cite the this publication.

@inproceedings{serengil2021lightface,
  title        = {HyperExtended LightFace: A Facial Attribute Analysis Framework},
  author       = {Serengil, Sefik Ilkin and Ozpinar, Alper},
  booktitle    = {2021 International Conference on Engineering and Emerging Technologies (ICEET)},
  pages        = {1-4},
  year         = {2021},
  doi          = {10.1109/ICEET53442.2021.9659697},
  url          = {https://doi.org/10.1109/ICEET53442.2021.9659697},
  organization = {IEEE}
}

Also, if you use deepface in your GitHub projects, please add deepface in the requirements.txt.

Download Details:

Author: Serengil
Source Code: https://github.com/serengil/deepface 
License: MIT license

#machinelearning #python #deeplearning 

A Lightweight Face Recognition and Facial Attribute Analysis

deepface

Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib.

Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.

Installation

The easiest way to install deepface is to download it from PyPI. It's going to install the library itself and its prerequisites as well. The library is mainly based on TensorFlow and Keras.

pip install deepface

Then you will be able to import the library and use its functionalities.

from deepface import DeepFace

Facial Recognition - Demo

A modern face recognition pipeline consists of 5 common stages: detect, align, normalize, represent and verify. While Deepface handles all these common stages in the background, you don’t need to acquire in-depth knowledge about all the processes behind it. You can just call its verification, find or analysis function with a single line of code.

Face Verification - Demo

This function verifies face pairs as same person or different persons. It expects exact image paths as inputs. Passing numpy or based64 encoded images is also welcome. Then, it is going to return a dictionary and you should check just its verified key.

result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg")

Face recognition - Demo

Face recognition requires applying face verification many times. Herein, deepface has an out-of-the-box find function to handle this action. It's going to look for the identity of input image in the database path and it will return pandas data frame as output.

df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db")

Face recognition models - Demo

Deepface is a hybrid face recognition package. It currently wraps many state-of-the-art face recognition models: VGG-Face , Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib. The default configuration uses VGG-Face model.

models = ["VGG-Face", "Facenet", "Facenet512", "OpenFace", "DeepFace", "DeepID", "ArcFace", "Dlib"]

#face verification
result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", model_name = models[1])

#face recognition
df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", model_name = models[1])

FaceNet, VGG-Face, ArcFace and Dlib are overperforming ones based on experiments. You can find out the scores of those models below on both Labeled Faces in the Wild and YouTube Faces in the Wild data sets declared by its creators.

ModelLFW ScoreYTF Score
Facenet51299.65%-
ArcFace99.41%-
Dlib99.38 %-
Facenet99.20%-
VGG-Face98.78%97.40%
Human-beings97.53%-
OpenFace93.80%-
DeepID-97.05%

Similarity

Face recognition models are regular convolutional neural networks and they are responsible to represent faces as vectors. We expect that a face pair of same person should be more similar than a face pair of different persons.

Similarity could be calculated by different metrics such as Cosine Similarity, Euclidean Distance and L2 form. The default configuration uses cosine similarity.

metrics = ["cosine", "euclidean", "euclidean_l2"]

#face verification
result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", distance_metric = metrics[1])

#face recognition
df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", distance_metric = metrics[1])

Euclidean L2 form seems to be more stable than cosine and regular Euclidean distance based on experiments.

Facial Attribute Analysis - Demo

Deepface also comes with a strong facial attribute analysis module including age, gender, facial expression (including angry, fear, neutral, sad, disgust, happy and surprise) and race (including asian, white, middle eastern, indian, latino and black) predictions.

obj = DeepFace.analyze(img_path = "img4.jpg", actions = ['age', 'gender', 'race', 'emotion'])

Age model got ± 4.65 MAE; gender model got 97.44% accuracy, 96.29% precision and 95.05% recall as mentioned in its tutorial.

Streaming and Real Time Analysis - Demo

You can run deepface for real time videos as well. Stream function will access your webcam and apply both face recognition and facial attribute analysis. The function starts to analyze a frame if it can focus a face sequantially 5 frames. Then, it shows results 5 seconds.

DeepFace.stream(db_path = "C:/User/Sefik/Desktop/database")

Even though face recognition is based on one-shot learning, you can use multiple face pictures of a person as well. You should rearrange your directory structure as illustrated below.

user
├── database
│   ├── Alice
│   │   ├── Alice1.jpg
│   │   ├── Alice2.jpg
│   ├── Bob
│   │   ├── Bob.jpg

Face Detectors - Demo

Face detection and alignment are important early stages of a modern face recognition pipeline. Experiments show that just alignment increases the face recognition accuracy almost 1%. OpenCV, SSD, Dlib, MTCNN and RetinaFace detectors are wrapped in deepface.

All deepface functions accept an optional detector backend input argument. You can switch among those detectors with this argument. OpenCV is the default detector.

backends = ['opencv', 'ssd', 'dlib', 'mtcnn', 'retinaface']

#face verification
obj = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", detector_backend = backends[4])

#face recognition
df = DeepFace.find(img_path = "img.jpg", db_path = "my_db", detector_backend = backends[4])

#facial analysis
demography = DeepFace.analyze(img_path = "img4.jpg", detector_backend = backends[4])

#face detection and alignment
face = DeepFace.detectFace(img_path = "img.jpg", target_size = (224, 224), detector_backend = backends[4])

Face recognition models are actually CNN models and they expect standard sized inputs. So, resizing is required before representation. To avoid deformation, deepface adds black padding pixels according to the target size argument after detection and alignment.

RetinaFace and MTCNN seem to overperform in detection and alignment stages but they are much slower. If the speed of your pipeline is more important, then you should use opencv or ssd. On the other hand, if you consider the accuracy, then you should use retinaface or mtcnn.

The performance of RetinaFace is very satisfactory even in the crowd as seen in the following illustration. Besides, it comes with an incredible facial landmark detection performance. Highlighted red points show some facial landmarks such as eyes, nose and mouth. That's why, alignment score of RetinaFace is high as well.

You can find out more about RetinaFace on this repo.

API - Demo

Deepface serves an API as well. You can clone /api/api.py and pass it to python command as an argument. This will get a rest service up. In this way, you can call deepface from an external system such as mobile app or web.

python api.py

Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Service endpoints will be http://127.0.0.1:5000/verify for face recognition, http://127.0.0.1:5000/analyze for facial attribute analysis, and http://127.0.0.1:5000/represent for vector representation. You should pass input images as base64 encoded string in this case. Here, you can find a postman project.

Tech Stack - Vlog, Tutorial

Face recognition models represent facial images as vector embeddings. The idea behind facial recognition is that vectors should be more similar for same person than different persons. The question is that where and how to store facial embeddings in a large scale system. Herein, deepface offers a represention function to find vector embeddings from facial images.

embedding = DeepFace.represent(img_path = "img.jpg", model_name = 'Facenet')

Tech stack is vast to store vector embeddings. To determine the right tool, you should consider your task such as face verification or face recognition, priority such as speed or confidence, and also data size.

Contribution

Pull requests are welcome. You should run the unit tests locally by running test/unit_tests.py. Please share the unit test result logs in the PR. Deepface is currently compatible with TF 1 and 2 versions. Change requests should satisfy those requirements both.

Support

There are many ways to support a project - starring⭐️ the GitHub repo is just one 🙏

You can also support this work on Patreon

 

Citation

Please cite deepface in your publications if it helps your research. Here are its BibTeX entries:

@inproceedings{serengil2020lightface,
  title        = {LightFace: A Hybrid Deep Face Recognition Framework},
  author       = {Serengil, Sefik Ilkin and Ozpinar, Alper},
  booktitle    = {2020 Innovations in Intelligent Systems and Applications Conference (ASYU)},
  pages        = {23-27},
  year         = {2020},
  doi          = {10.1109/ASYU50717.2020.9259802},
  url          = {https://doi.org/10.1109/ASYU50717.2020.9259802},
  organization = {IEEE}
}
@inproceedings{serengil2021lightface,
  title        = {HyperExtended LightFace: A Facial Attribute Analysis Framework},
  author       = {Serengil, Sefik Ilkin and Ozpinar, Alper},
  booktitle    = {2021 International Conference on Engineering and Emerging Technologies (ICEET)},
  pages        = {1-4},
  year         = {2021},
  doi          = {10.1109/ICEET53442.2021.9659697},
  url.         = {https://doi.org/10.1109/ICEET53442.2021.9659697},
  organization = {IEEE}
}

Also, if you use deepface in your GitHub projects, please add deepface in the requirements.txt.

Author: Serengil
Source Code: https://github.com/serengil/deepface 
License: MIT License

#python #machine-learning 

Dominic  Feeney

Dominic Feeney

1648217849

Deepface: A Face Recognition and Facial Attribute Analysis for Python

deepface

Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib.

Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.

Installation

The easiest way to install deepface is to download it from PyPI. It's going to install the library itself and its prerequisites as well. The library is mainly powered by TensorFlow and Keras.

pip install deepface

Then you will be able to import the library and use its functionalities.

from deepface import DeepFace

Facial Recognition - Demo

A modern face recognition pipeline consists of 5 common stages: detect, align, normalize, represent and verify. While Deepface handles all these common stages in the background, you don’t need to acquire in-depth knowledge about all the processes behind it. You can just call its verification, find or analysis function with a single line of code.

Face Verification - Demo

This function verifies face pairs as same person or different persons. It expects exact image paths as inputs. Passing numpy or based64 encoded images is also welcome. Then, it is going to return a dictionary and you should check just its verified key.

result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg")

Face recognition - Demo

Face recognition requires applying face verification many times. Herein, deepface has an out-of-the-box find function to handle this action. It's going to look for the identity of input image in the database path and it will return pandas data frame as output.

df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db")

Face recognition models - Demo

Deepface is a hybrid face recognition package. It currently wraps many state-of-the-art face recognition models: VGG-Face , Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib. The default configuration uses VGG-Face model.

models = ["VGG-Face", "Facenet", "Facenet512", "OpenFace", "DeepFace", "DeepID", "ArcFace", "Dlib"]

#face verification
result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", model_name = models[1])

#face recognition
df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", model_name = models[1])

FaceNet, VGG-Face, ArcFace and Dlib are overperforming ones based on experiments. You can find out the scores of those models below on both Labeled Faces in the Wild and YouTube Faces in the Wild data sets declared by its creators.

ModelLFW ScoreYTF Score
Facenet51299.65%-
ArcFace99.41%-
Dlib99.38 %-
Facenet99.20%-
VGG-Face98.78%97.40%
Human-beings97.53%-
OpenFace93.80%-
DeepID-97.05%

Similarity

Face recognition models are regular convolutional neural networks and they are responsible to represent faces as vectors. We expect that a face pair of same person should be more similar than a face pair of different persons.

Similarity could be calculated by different metrics such as Cosine Similarity, Euclidean Distance and L2 form. The default configuration uses cosine similarity.

metrics = ["cosine", "euclidean", "euclidean_l2"]

#face verification
result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", distance_metric = metrics[1])

#face recognition
df = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db", distance_metric = metrics[1])

Euclidean L2 form seems to be more stable than cosine and regular Euclidean distance based on experiments.

Facial Attribute Analysis - Demo

Deepface also comes with a strong facial attribute analysis module including age, gender, facial expression (including angry, fear, neutral, sad, disgust, happy and surprise) and race (including asian, white, middle eastern, indian, latino and black) predictions.

obj = DeepFace.analyze(img_path = "img4.jpg", actions = ['age', 'gender', 'race', 'emotion'])

Age model got ± 4.65 MAE; gender model got 97.44% accuracy, 96.29% precision and 95.05% recall as mentioned in its tutorial.

Streaming and Real Time Analysis - Demo

You can run deepface for real time videos as well. Stream function will access your webcam and apply both face recognition and facial attribute analysis. The function starts to analyze a frame if it can focus a face sequantially 5 frames. Then, it shows results 5 seconds.

DeepFace.stream(db_path = "C:/User/Sefik/Desktop/database")

Even though face recognition is based on one-shot learning, you can use multiple face pictures of a person as well. You should rearrange your directory structure as illustrated below.

user
├── database
│   ├── Alice
│   │   ├── Alice1.jpg
│   │   ├── Alice2.jpg
│   ├── Bob
│   │   ├── Bob.jpg

Face Detectors - Demo

Face detection and alignment are important early stages of a modern face recognition pipeline. Experiments show that just alignment increases the face recognition accuracy almost 1%. OpenCV, SSD, Dlib, MTCNN, RetinaFace and MediaPipe detectors are wrapped in deepface.

All deepface functions accept an optional detector backend input argument. You can switch among those detectors with this argument. OpenCV is the default detector.

backends = ['opencv', 'ssd', 'dlib', 'mtcnn', 'retinaface', 'mediapipe']

#face verification
obj = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg", detector_backend = backends[4])

#face recognition
df = DeepFace.find(img_path = "img.jpg", db_path = "my_db", detector_backend = backends[4])

#facial analysis
demography = DeepFace.analyze(img_path = "img4.jpg", detector_backend = backends[4])

#face detection and alignment
face = DeepFace.detectFace(img_path = "img.jpg", target_size = (224, 224), detector_backend = backends[4])

Face recognition models are actually CNN models and they expect standard sized inputs. So, resizing is required before representation. To avoid deformation, deepface adds black padding pixels according to the target size argument after detection and alignment.

RetinaFace and MTCNN seem to overperform in detection and alignment stages but they are much slower. If the speed of your pipeline is more important, then you should use opencv or ssd. On the other hand, if you consider the accuracy, then you should use retinaface or mtcnn.

The performance of RetinaFace is very satisfactory even in the crowd as seen in the following illustration. Besides, it comes with an incredible facial landmark detection performance. Highlighted red points show some facial landmarks such as eyes, nose and mouth. That's why, alignment score of RetinaFace is high as well.

You can find out more about RetinaFace on this repo.

API - Demo

Deepface serves an API as well. You can clone /api/api.py and pass it to python command as an argument. This will get a rest service up. In this way, you can call deepface from an external system such as mobile app or web.

python api.py

Face recognition, facial attribute analysis and vector representation functions are covered in the API. You are expected to call these functions as http post methods. Service endpoints will be http://127.0.0.1:5000/verify for face recognition, http://127.0.0.1:5000/analyze for facial attribute analysis, and http://127.0.0.1:5000/represent for vector representation. You should pass input images as base64 encoded string in this case. Here, you can find a postman project.

Tech Stack - Vlog, Tutorial

Face recognition models represent facial images as vector embeddings. The idea behind facial recognition is that vectors should be more similar for same person than different persons. The question is that where and how to store facial embeddings in a large scale system. Herein, deepface offers a represention function to find vector embeddings from facial images.

embedding = DeepFace.represent(img_path = "img.jpg", model_name = 'Facenet')

Tech stack is vast to store vector embeddings. To determine the right tool, you should consider your task such as face verification or face recognition, priority such as speed or confidence, and also data size.

Contribution

Pull requests are welcome. You should run the unit tests locally by running test/unit_tests.py. Please share the unit test result logs in the PR. Deepface is currently compatible with TF 1 and 2 versions. Change requests should satisfy those requirements both.

Support

There are many ways to support a project - starring⭐️ the GitHub repo is just one 🙏

You can also support this work on Patreon

 

Citation

Please cite deepface in your publications if it helps your research. Here are BibTeX entries:

@inproceedings{serengil2020lightface,
  title        = {LightFace: A Hybrid Deep Face Recognition Framework},
  author       = {Serengil, Sefik Ilkin and Ozpinar, Alper},
  booktitle    = {2020 Innovations in Intelligent Systems and Applications Conference (ASYU)},
  pages        = {23-27},
  year         = {2020},
  doi          = {10.1109/ASYU50717.2020.9259802},
  url          = {https://doi.org/10.1109/ASYU50717.2020.9259802},
  organization = {IEEE}
}
@inproceedings{serengil2021lightface,
  title        = {HyperExtended LightFace: A Facial Attribute Analysis Framework},
  author       = {Serengil, Sefik Ilkin and Ozpinar, Alper},
  booktitle    = {2021 International Conference on Engineering and Emerging Technologies (ICEET)},
  pages        = {1-4},
  year         = {2021},
  doi          = {10.1109/ICEET53442.2021.9659697},
  url          = {https://doi.org/10.1109/ICEET53442.2021.9659697},
  organization = {IEEE}
}

Also, if you use deepface in your GitHub projects, please add deepface in the requirements.txt.

Download Details:
Author: serengil
Source Code: https://github.com/serengil/deepface
License: MIT License

#tensorflow  #python #machinelearning 

Outsourcing Services | IT, KPO, BPO Services | DK Business Patron

DK Business Patron is one of the most regarded and respected outsourcing companies in India, which has also done many notable work across the world. Following their tradition of always being one step ahead, they have launched an outsourcing division in the UK. This launch will be crucial in the company’s success ahead.

Having such decent notoriety in the market, the group at DK business Patron is continually attempting to bring out more, depending on the current needs and situation. Their responsiveness and the method of directing business is the mystery of their prosperity.

Every organization is looking for ways to reduce their operational cost so that the money required here can be put for better use. For this, outsourcing services come handy. This is the reason for the increased popularity of outsourcing companies, as they maximize the profit of the organizations at a minimum cost. The associations that will connect with DK business Patron will have various advantages as they ensure the most minimal use as per the business standards with guaranteed best quality.

The overseas clients were increasing as a result of the exceptional trust of clients in the company and its responsive behaviour towards business. It became necessary for an outsourcing division in a top demanding country like the UK.

An outsourcing company in the UK will help the company have better relations with the clients and respond to their demands more effectively and precisely. They will have direct admittance to their clients.

For sometimes, DK Business Patron is launching fresh divisions of its outsourcing services to meet the requirements and demands of the market. This launch of an outsourcing company in the UK will help the company achieve new heights abroad.

According to the information, this launch is meant to be the banner conveyor to advance their laudable services and commendable work overseas. With this launch of the UK division, DK Business Patron will not set foot into a developed country, but they are also introducing many additional services, which will be provided only from the UK division. The main services provided will be engineering services, creative design, healthcare BPO, software development services, mortgage services, transcription services, and web analytics. These additions of new services will display the goodwill of the company to the overseas clients and will be a major game-changer for the future of the organization.

Notwithstanding the newly introduced services, outsourced services to the UK will also have basic services like call center services, data entry services, finance and accounting services, research and analysis services, and many more will also be offered by this division. Moreover, the profoundly prepared and learned group of DK business Patron comprises experts that will handle all core business process support and non-core business process support services in the perfect manner using their highly professional work understanding and expertise in the business world.

Taking a gander at the numerous explanations behind moving operations of outsourcing services in the UK and representing the estimable help profile that DK business Patron has over the world, the new division in the UK is relied upon to make an imprint for the association in the global fragment more strongly than it did previously. This is also because there was already a lot of outsourcing services to the UK done by the company.

Having a division separately overseas, especially in a country like the UK, where there is so much demand, will help the company to attract more clients and enhance their network. This is the main reason for outsourcing to the UK. DK Business Patron is known as leaders in the market as they grab opportunities before others could even think of it.

Concerning the enhancements that DK business Patron has been continually making as in the past, more of the same developments are expected in near future. The gifted group at DK business Patron is continually busy with bringing to their customers capable and expert specialists to keep up to the expectations of their overseas clients and provide them with the best in the industry.

Seeing the innovations and continuous development of the company, the market is waiting for their next announcement.

#reasons for outsourcing #outsource services to uk #outsourcing division in the uk #outsourcing company #outsourcing company in the uk #outsourced services

Latest Technology Solution Development - WebClues Infotech

Latest IT Tech Solution Development Company

The technology in the IT sector is rapidly growing with everything in the world moving online to make users life easy with it. This development in technology has allowed critical industries to also move online with technologies like blockchain, Artificial intelligence, Cloud Computing, Big Data Service, etc.

Want to use the latest technologies in IT for your business?

WebClues Infotech with its policy to train employees with the latest technologies like Blockchain, Wearables app, Chatbot app, AI and many more is the leader in the development of those technologies. With a highly-skilled team of 120+ people there can be no better option for your development requirements in the latest techs.

Want to know more about the technologies we provide solutions in?

Visit: https://www.webcluesinfotech.com/latest-technology-development/

Share your requirements https://www.webcluesinfotech.com/contact-us/

View Portfolio https://www.webcluesinfotech.com/portfolio/

#latest it tech solution development company #it tech solution development company #it tech solution #technology solution development #it path solutions #tech solution india