1624258440
Microservices are not the answer to all the problems. It’s the job of an architect, to understand the context and identify the tradeoffs to build a story on monolith vs microservice
In the last 4 years of working with microservices, I have seen a wide range of stories in the path of microservices adoption. While many of these stories are successful ones to celebrate, some of them have really created chaotic situations.
If I look back and see, why did we failed in some of these instances? It all turns out to be a bad design decision to choose a microservice when the context has demanded a monolithic. Let us look at this with an example. Assume that we have got a requirement to build a payment module for an E-commerce application. Which of the below design you will choose?
Many people that I show these designs, tent to choose the second choice because of the microservice nature of the design. But to choose the apt option it’s important to understand the architectural characters of both the design and analyze the tradeoff based on the current constraints that the team/product is bounded with.
#microservices #monolithic #technology #software-architect
1656151740
Flutter Console Coverage Test
This small dart tools is used to generate Flutter Coverage Test report to console
Add a line like this to your package's pubspec.yaml (and run an implicit flutter pub get):
dev_dependencies:
test_cov_console: ^0.2.2
flutter pub get
Running "flutter pub get" in coverage... 0.5s
flutter test --coverage
00:02 +1: All tests passed!
flutter pub run test_cov_console
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
print_cov_constants.dart | 0.00 | 0.00 | 0.00 | no unit testing|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
If not given a FILE, "coverage/lcov.info" will be used.
-f, --file=<FILE> The target lcov.info file to be reported
-e, --exclude=<STRING1,STRING2,...> A list of contains string for files without unit testing
to be excluded from report
-l, --line It will print Lines & Uncovered Lines only
Branch & Functions coverage percentage will not be printed
-i, --ignore It will not print any file without unit testing
-m, --multi Report from multiple lcov.info files
-c, --csv Output to CSV file
-o, --output=<CSV-FILE> Full path of output CSV file
If not given, "coverage/test_cov_console.csv" will be used
-t, --total Print only the total coverage
Note: it will ignore all other option (if any), except -m
-p, --pass=<MINIMUM> Print only the whether total coverage is passed MINIMUM value or not
If the value >= MINIMUM, it will print PASSED, otherwise FAILED
Note: it will ignore all other option (if any), except -m
-h, --help Show this help
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
It support to run for multiple lcov.info files with the followings directory structures:
1. No root module
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
2. With root module
<root>/coverage/lcov.info
<root>/lib/src
<root>/<module_a>
<root>/<module_a>/coverage/lcov.info
<root>/<module_a>/lib/src
<root>/<module_b>
<root>/<module_b>/coverage/lcov.info
<root>/<module_b>/lib/src
...
You must run test_cov_console on <root> dir, and the report would be grouped by module, here is
the sample output for directory structure 'with root module':
flutter pub run test_cov_console --file=coverage/lcov.info --exclude=_constants,_mock --multi
---------------------------------------------|---------|---------|---------|-------------------|
File |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_a - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
---------------------------------------------|---------|---------|---------|-------------------|
File - module_b - |% Branch | % Funcs | % Lines | Uncovered Line #s |
---------------------------------------------|---------|---------|---------|-------------------|
lib/src/ | | | | |
print_cov.dart | 100.00 | 100.00 | 88.37 |...,149,205,206,207|
lib/ | | | | |
test_cov_console.dart | 0.00 | 0.00 | 0.00 | no unit testing|
---------------------------------------------|---------|---------|---------|-------------------|
All files with unit testing | 100.00 | 100.00 | 88.37 | |
---------------------------------------------|---------|---------|---------|-------------------|
flutter pub run test_cov_console -c --output=coverage/test_coverage.csv
#### sample CSV output file:
File,% Branch,% Funcs,% Lines,Uncovered Line #s
lib/,,,,
test_cov_console.dart,0.00,0.00,0.00,no unit testing
lib/src/,,,,
parser.dart,100.00,100.00,97.22,"97"
parser_constants.dart,100.00,100.00,100.00,""
print_cov.dart,100.00,100.00,82.91,"29,49,51,52,171,174,177,180,183,184,185,186,187,188,279,324,325,387,388,389,390,391,392,393,394,395,398"
print_cov_constants.dart,0.00,0.00,0.00,no unit testing
All files with unit testing,100.00,100.00,86.07,""
You can install the package from the command line:
dart pub global activate test_cov_console
The package has the following executables:
$ test_cov_console
Run this command:
With Dart:
$ dart pub add test_cov_console
With Flutter:
$ flutter pub add test_cov_console
This will add a line like this to your package's pubspec.yaml (and run an implicit dart pub get
):
dependencies:
test_cov_console: ^0.2.2
Alternatively, your editor might support dart pub get
or flutter pub get
. Check the docs for your editor to learn more.
Now in your Dart code, you can use:
import 'package:test_cov_console/test_cov_console.dart';
example/lib/main.dart
import 'package:flutter/material.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
// This is the theme of your application.
//
// Try running your application with "flutter run". You'll see the
// application has a blue toolbar. Then, without quitting the app, try
// changing the primarySwatch below to Colors.green and then invoke
// "hot reload" (press "r" in the console where you ran "flutter run",
// or simply save your changes to "hot reload" in a Flutter IDE).
// Notice that the counter didn't reset back to zero; the application
// is not restarted.
primarySwatch: Colors.blue,
// This makes the visual density adapt to the platform that you run
// the app on. For desktop platforms, the controls will be smaller and
// closer together (more dense) than on mobile platforms.
visualDensity: VisualDensity.adaptivePlatformDensity,
),
home: MyHomePage(title: 'Flutter Demo Home Page'),
);
}
}
class MyHomePage extends StatefulWidget {
MyHomePage({Key? key, required this.title}) : super(key: key);
// This widget is the home page of your application. It is stateful, meaning
// that it has a State object (defined below) that contains fields that affect
// how it looks.
// This class is the configuration for the state. It holds the values (in this
// case the title) provided by the parent (in this case the App widget) and
// used by the build method of the State. Fields in a Widget subclass are
// always marked "final".
final String title;
@override
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
int _counter = 0;
void _incrementCounter() {
setState(() {
// This call to setState tells the Flutter framework that something has
// changed in this State, which causes it to rerun the build method below
// so that the display can reflect the updated values. If we changed
// _counter without calling setState(), then the build method would not be
// called again, and so nothing would appear to happen.
_counter++;
});
}
@override
Widget build(BuildContext context) {
// This method is rerun every time setState is called, for instance as done
// by the _incrementCounter method above.
//
// The Flutter framework has been optimized to make rerunning build methods
// fast, so that you can just rebuild anything that needs updating rather
// than having to individually change instances of widgets.
return Scaffold(
appBar: AppBar(
// Here we take the value from the MyHomePage object that was created by
// the App.build method, and use it to set our appbar title.
title: Text(widget.title),
),
body: Center(
// Center is a layout widget. It takes a single child and positions it
// in the middle of the parent.
child: Column(
// Column is also a layout widget. It takes a list of children and
// arranges them vertically. By default, it sizes itself to fit its
// children horizontally, and tries to be as tall as its parent.
//
// Invoke "debug painting" (press "p" in the console, choose the
// "Toggle Debug Paint" action from the Flutter Inspector in Android
// Studio, or the "Toggle Debug Paint" command in Visual Studio Code)
// to see the wireframe for each widget.
//
// Column has various properties to control how it sizes itself and
// how it positions its children. Here we use mainAxisAlignment to
// center the children vertically; the main axis here is the vertical
// axis because Columns are vertical (the cross axis would be
// horizontal).
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
'You have pushed the button this many times:',
),
Text(
'$_counter',
style: Theme.of(context).textTheme.headline4,
),
],
),
),
floatingActionButton: FloatingActionButton(
onPressed: _incrementCounter,
tooltip: 'Increment',
child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer for build methods.
);
}
}
Author: DigitalKatalis
Source Code: https://github.com/DigitalKatalis/test_cov_console
License: BSD-3-Clause license
1603438098
Technology has taken a place of more productiveness and give the best to the world. In the current situation, everything is done through the technical process, you don’t have to bother about doing task, everything will be done automatically.This is an article which has some important technologies which are new in the market are explained according to the career preferences. So let’s have a look into the top trending technologies followed in 2021 and its impression in the coming future in the world.
Data Science
First in the list of newest technologies is surprisingly Data Science. Data Science is the automation that helps to be reasonable for complicated data. The data is produces in a very large amount every day by several companies which comprise sales data, customer profile information, server data, business data, and financial structures. Almost all of the data which is in the form of big data is very indeterminate. The character of a data scientist is to convert the indeterminate datasets into determinate datasets. Then these structured data will examine to recognize trends and patterns. These trends and patterns are beneficial to understand the company’s business performance, customer retention, and how they can be enhanced.
DevOps
Next one is DevOps, This technology is a mixture of two different things and they are development (Dev) and operations (Ops). This process and technology provide value to their customers in a continuous manner. This technology plays an important role in different aspects and they can be- IT operations, development, security, quality, and engineering to synchronize and cooperate to develop the best and more definitive products. By embracing a culture of DevOps with creative tools and techniques, because through that company will gain the capacity to preferable comeback to consumer requirement, expand the confidence in the request they construct, and accomplish business goals faster. This makes DevOps come into the top 10 trending technologies.
Machine learning
Next one is Machine learning which is constantly established in all the categories of companies or industries, generating a high command for skilled professionals. The machine learning retailing business is looking forward to enlarging to $8.81 billion by 2022. Machine learning practices is basically use for data mining, data analytics, and pattern recognition. In today’s scenario, Machine learning has its own reputed place in the industry. This makes machine learning come into the top 10 trending technologies. Get the best machine learning course and make yourself future-ready.
To want to know more click on Top 10 Trending Technologies in 2021
You may also read more blogs mentioned below
How to Become a Salesforce Developer
The Scope of Hadoop and Big Data in 2021
#top trending technologies #top 10 trending technologies #top 10 trending technologies in 2021 #top trending technologies in 2021 #top 5 trending technologies in 2021 #top 5 trending technologies
1617868301
Do you want to keep up with new mobile app development trends to better serve your clients? From AppClues Infotech here, you can check out our complete guide to mobile app development trends to watch out for in the year 2021.
For more info:
Website: https://www.appcluesinfotech.com/
Email: info@appcluesinfotech.com
Call: +1-978-309-9910
#mobile app development trends #top mobile app development trends #top mobile app development trends to watch out in 2021 #top mobile app development trends to watch out in 2021 #app development trends to watch in 2021 #best mobile app development trends
1624258440
Microservices are not the answer to all the problems. It’s the job of an architect, to understand the context and identify the tradeoffs to build a story on monolith vs microservice
In the last 4 years of working with microservices, I have seen a wide range of stories in the path of microservices adoption. While many of these stories are successful ones to celebrate, some of them have really created chaotic situations.
If I look back and see, why did we failed in some of these instances? It all turns out to be a bad design decision to choose a microservice when the context has demanded a monolithic. Let us look at this with an example. Assume that we have got a requirement to build a payment module for an E-commerce application. Which of the below design you will choose?
Many people that I show these designs, tent to choose the second choice because of the microservice nature of the design. But to choose the apt option it’s important to understand the architectural characters of both the design and analyze the tradeoff based on the current constraints that the team/product is bounded with.
#microservices #monolithic #technology #software-architect
1624653660
A useful tool several businesses implement for answering questions that potential customers may have is a chatbot. Many programming languages give web designers several ways on how to make a chatbot for their websites. They are capable of answering basic questions for visitors and offer innovation for businesses.
With the help of programming languages, it is possible to create a chatbot from the ground up to satisfy someone’s needs.
Before building a chatbot, it is ideal for web designers to determine how it will function on a website. Several chatbot duties center around fulfilling customers’ needs and questions or compiling and optimizing data via transactions.
Some benefits of implementing chatbots include:
Some programmers may choose to design a chatbox to function through predefined answers based on the questions customers may input or function by adapting and learning via human input.
#chatbots #latest news #the best way to build a chatbot in 2021 #build #build a chatbot #best way to build a chatbot