Saul  Alaniz

Saul Alaniz

1649411031

Los 10 Principales Riesgos De Seguridad De Las Aplicaciones Web

Este es el primero de una serie de artículos relacionados con la seguridad. 

 

Introducción

El  Proyecto de Seguridad de Aplicaciones Web Abiertas  ( OWASP ) es una comunidad en línea que produce artículos, metodologías, documentación, herramientas y tecnologías disponibles gratuitamente en el campo de  la seguridad de aplicaciones web .

OWASP  proporciona recursos gratuitos y abiertos. Está dirigido por una organización sin fines de lucro llamada The OWASP Foundation . El OWASP Top 10 - 2021 es el resultado publicado de una investigación reciente basada en datos completos recopilados de más de 40 organizaciones asociadas. [ wiki ]

Los 10 principales riesgos de seguridad de las aplicaciones web

  • A01:2021: el control de acceso roto  se mueve hacia arriba desde la quinta posición; El 94 % de las aplicaciones se probaron en busca de algún tipo de control de acceso roto. Las 34 enumeraciones de debilidades comunes (CWE) asignadas al control de acceso roto tuvieron más ocurrencias en las aplicaciones que cualquier otra categoría.
  • A02:2021: las fallas criptográficas  suben una posición al n. ° 2, anteriormente conocido como exposición de datos confidenciales, que era un síntoma general en lugar de una causa raíz. El enfoque renovado aquí está en las fallas relacionadas con la criptografía que a menudo conducen a la exposición de datos confidenciales o al compromiso del sistema.
  • A03:2021-La inyección  se desliza hacia abajo hasta la tercera posición. El 94 % de las aplicaciones se probaron para detectar algún tipo de inyección, y los 33 CWE asignados a esta categoría tienen la segunda mayor cantidad de casos en las aplicaciones. Cross-site Scripting ahora es parte de esta categoría en esta edición.
  • A04:2021: Diseño inseguro  es una nueva categoría para 2021, con un enfoque en los riesgos relacionados con fallas de diseño. Si realmente queremos "mover a la izquierda" como industria, se requiere un mayor uso del modelado de amenazas, patrones y principios de diseño seguro y arquitecturas de referencia.
  • A05:2021: la configuración incorrecta de seguridad  sube del n. ° 6 en la edición anterior; El 90 % de las aplicaciones se probaron para detectar algún tipo de error de configuración. Con más cambios hacia software altamente configurable, no sorprende ver que esta categoría sube. La categoría anterior para entidades externas XML (XXE) ahora forma parte de esta categoría.
  • A06:2021: Componentes vulnerables y desactualizados  se tituló anteriormente Uso de componentes con vulnerabilidades conocidas y ocupa el segundo lugar en la encuesta de la comunidad Top 10, pero también tenía suficientes datos para llegar al Top 10 a través del análisis de datos. Esta categoría sube del puesto 9 en 2017 y es un problema conocido que nos cuesta probar y evaluar el riesgo. Es la única categoría que no tiene vulnerabilidades y exposiciones comunes (CVE) asignadas a los CWE incluidos, por lo que en sus puntajes se tienen en cuenta un exploit predeterminado y pesos de impacto de 5.0.
  • A07:2021: las fallas de identificación y autenticación  anteriormente eran autenticación rota y se están deslizando hacia abajo desde la segunda posición, y ahora incluyen CWE que están más relacionadas con fallas de identificación. Esta categoría sigue siendo una parte integral del Top 10, pero la mayor disponibilidad de marcos estandarizados parece estar ayudando.
  • A08:2021: Fallas de integridad de software y datos  es una nueva categoría para 2021, que se enfoca en hacer suposiciones relacionadas con actualizaciones de software, datos críticos y canalizaciones de CI/CD sin verificar la integridad. Uno de los impactos ponderados más altos de los datos de Common Vulnerability and Exposures/Common Vulnerability Scoring System (CVE/CVSS) asignados a los 10 CWE en esta categoría. La deserialización insegura de 2017 ahora forma parte de esta categoría más amplia.
  • A09:2021: las fallas de registro y monitoreo de seguridad  anteriormente eran registro y monitoreo insuficientes y se agregaron de la encuesta de la industria (n. ° 3), subiendo del n. ° 10 anterior. Esta categoría se expande para incluir más tipos de fallas, es difícil de probar y no está bien representada en los datos de CVE/CVSS. Sin embargo, las fallas en esta categoría pueden afectar directamente la visibilidad, las alertas de incidentes y el análisis forense.
  • A10: 2021: falsificación de solicitud del lado del servidor  se agregó de la encuesta de la comunidad Top 10 (# 1). Los datos muestran una tasa de incidencia relativamente baja con una cobertura de pruebas superior a la media, junto con calificaciones superiores a la media para el potencial de Explotación e Impacto. Esta categoría representa el escenario en el que los miembros de la comunidad de seguridad nos dicen que esto es importante, aunque no se ilustra en los datos en este momento.
  • [ referencia ]

Resumen

Esta serie de artículos tratará los principales problemas de seguridad de las aplicaciones de software.

Referencia

Fuente: https://www.c-sharpcorner.com/article/top-10-web-application-security-risks/

#applications #webapp #security 

What is GEEK

Buddha Community

Los 10 Principales Riesgos De Seguridad De Las Aplicaciones Web
Saul  Alaniz

Saul Alaniz

1649411031

Los 10 Principales Riesgos De Seguridad De Las Aplicaciones Web

Este es el primero de una serie de artículos relacionados con la seguridad. 

 

Introducción

El  Proyecto de Seguridad de Aplicaciones Web Abiertas  ( OWASP ) es una comunidad en línea que produce artículos, metodologías, documentación, herramientas y tecnologías disponibles gratuitamente en el campo de  la seguridad de aplicaciones web .

OWASP  proporciona recursos gratuitos y abiertos. Está dirigido por una organización sin fines de lucro llamada The OWASP Foundation . El OWASP Top 10 - 2021 es el resultado publicado de una investigación reciente basada en datos completos recopilados de más de 40 organizaciones asociadas. [ wiki ]

Los 10 principales riesgos de seguridad de las aplicaciones web

  • A01:2021: el control de acceso roto  se mueve hacia arriba desde la quinta posición; El 94 % de las aplicaciones se probaron en busca de algún tipo de control de acceso roto. Las 34 enumeraciones de debilidades comunes (CWE) asignadas al control de acceso roto tuvieron más ocurrencias en las aplicaciones que cualquier otra categoría.
  • A02:2021: las fallas criptográficas  suben una posición al n. ° 2, anteriormente conocido como exposición de datos confidenciales, que era un síntoma general en lugar de una causa raíz. El enfoque renovado aquí está en las fallas relacionadas con la criptografía que a menudo conducen a la exposición de datos confidenciales o al compromiso del sistema.
  • A03:2021-La inyección  se desliza hacia abajo hasta la tercera posición. El 94 % de las aplicaciones se probaron para detectar algún tipo de inyección, y los 33 CWE asignados a esta categoría tienen la segunda mayor cantidad de casos en las aplicaciones. Cross-site Scripting ahora es parte de esta categoría en esta edición.
  • A04:2021: Diseño inseguro  es una nueva categoría para 2021, con un enfoque en los riesgos relacionados con fallas de diseño. Si realmente queremos "mover a la izquierda" como industria, se requiere un mayor uso del modelado de amenazas, patrones y principios de diseño seguro y arquitecturas de referencia.
  • A05:2021: la configuración incorrecta de seguridad  sube del n. ° 6 en la edición anterior; El 90 % de las aplicaciones se probaron para detectar algún tipo de error de configuración. Con más cambios hacia software altamente configurable, no sorprende ver que esta categoría sube. La categoría anterior para entidades externas XML (XXE) ahora forma parte de esta categoría.
  • A06:2021: Componentes vulnerables y desactualizados  se tituló anteriormente Uso de componentes con vulnerabilidades conocidas y ocupa el segundo lugar en la encuesta de la comunidad Top 10, pero también tenía suficientes datos para llegar al Top 10 a través del análisis de datos. Esta categoría sube del puesto 9 en 2017 y es un problema conocido que nos cuesta probar y evaluar el riesgo. Es la única categoría que no tiene vulnerabilidades y exposiciones comunes (CVE) asignadas a los CWE incluidos, por lo que en sus puntajes se tienen en cuenta un exploit predeterminado y pesos de impacto de 5.0.
  • A07:2021: las fallas de identificación y autenticación  anteriormente eran autenticación rota y se están deslizando hacia abajo desde la segunda posición, y ahora incluyen CWE que están más relacionadas con fallas de identificación. Esta categoría sigue siendo una parte integral del Top 10, pero la mayor disponibilidad de marcos estandarizados parece estar ayudando.
  • A08:2021: Fallas de integridad de software y datos  es una nueva categoría para 2021, que se enfoca en hacer suposiciones relacionadas con actualizaciones de software, datos críticos y canalizaciones de CI/CD sin verificar la integridad. Uno de los impactos ponderados más altos de los datos de Common Vulnerability and Exposures/Common Vulnerability Scoring System (CVE/CVSS) asignados a los 10 CWE en esta categoría. La deserialización insegura de 2017 ahora forma parte de esta categoría más amplia.
  • A09:2021: las fallas de registro y monitoreo de seguridad  anteriormente eran registro y monitoreo insuficientes y se agregaron de la encuesta de la industria (n. ° 3), subiendo del n. ° 10 anterior. Esta categoría se expande para incluir más tipos de fallas, es difícil de probar y no está bien representada en los datos de CVE/CVSS. Sin embargo, las fallas en esta categoría pueden afectar directamente la visibilidad, las alertas de incidentes y el análisis forense.
  • A10: 2021: falsificación de solicitud del lado del servidor  se agregó de la encuesta de la comunidad Top 10 (# 1). Los datos muestran una tasa de incidencia relativamente baja con una cobertura de pruebas superior a la media, junto con calificaciones superiores a la media para el potencial de Explotación e Impacto. Esta categoría representa el escenario en el que los miembros de la comunidad de seguridad nos dicen que esto es importante, aunque no se ilustra en los datos en este momento.
  • [ referencia ]

Resumen

Esta serie de artículos tratará los principales problemas de seguridad de las aplicaciones de software.

Referencia

Fuente: https://www.c-sharpcorner.com/article/top-10-web-application-security-risks/

#applications #webapp #security 

Evolution in Web Design: A Case Study of 25 Years - Prismetric

The term web design simply encompasses a design process related to the front-end design of website that includes writing mark-up. Creative web design has a considerable impact on your perceived business credibility and quality. It taps onto the broader scopes of web development services.

Web designing is identified as a critical factor for the success of websites and eCommerce. The internet has completely changed the way businesses and brands operate. Web design and web development go hand-in-hand and the need for a professional web design and development company, offering a blend of creative designs and user-centric elements at an affordable rate, is growing at a significant rate.

In this blog, we have focused on the different areas of designing a website that covers all the trends, tools, and techniques coming up with time.

Web design
In 2020 itself, the number of smartphone users across the globe stands at 6.95 billion, with experts suggesting a high rise of 17.75 billion by 2024. On the other hand, the percentage of Gen Z web and internet users worldwide is up to 98%. This is not just a huge market but a ginormous one to boost your business and grow your presence online.

Web Design History
At a huge particle physics laboratory, CERN in Switzerland, the son of computer scientist Barner Lee published the first-ever website on August 6, 1991. He is not only the first web designer but also the creator of HTML (HyperText Markup Language). The worldwide web persisted and after two years, the world’s first search engine was born. This was just the beginning.

Evolution of Web Design over the years
With the release of the Internet web browser and Windows 95 in 1995, most trading companies at that time saw innumerable possibilities of instant worldwide information and public sharing of websites to increase their sales. This led to the prospect of eCommerce and worldwide group communications.

The next few years saw a soaring launch of the now-so-famous websites such as Yahoo, Amazon, eBay, Google, and substantially more. In 2004, by the time Facebook was launched, there were more than 50 million websites online.

Then came the era of Google, the ruler of all search engines introducing us to search engine optimization (SEO) and businesses sought their ways to improve their ranks. The world turned more towards mobile web experiences and responsive mobile-friendly web designs became requisite.

Let’s take a deep look at the evolution of illustrious brands to have a profound understanding of web design.

Here is a retrospection of a few widely acclaimed brands over the years.

Netflix
From a simple idea of renting DVDs online to a multi-billion-dollar business, saying that Netflix has come a long way is an understatement. A company that has sent shockwaves across Hollywood in the form of content delivery. Abundantly, Netflix (NFLX) is responsible for the rise in streaming services across 190 countries and meaningful changes in the entertainment industry.

1997-2000

The idea of Netflix was born when Reed Hastings and Marc Randolph decided to rent DVDs by mail. With 925 titles and a pay-per-rental model, Netflix.com debuts the first DVD rental and sales site with all novel features. It offered unlimited rentals without due dates or monthly rental limitations with a personalized movie recommendation system.

Netflix 1997-2000

2001-2005

Announcing its initial public offering (IPO) under the NASDAQ ticker NFLX, Netflix reached over 1 million subscribers in the United States by introducing a profile feature in their influential website design along with a free trial allowing members to create lists and rate their favorite movies. The user experience was quite engaging with the categorization of content, recommendations based on history, search engine, and a queue of movies to watch.

Netflix 2001-2005 -2003

2006-2010

They then unleashed streaming and partnering with electronic brands such as blu-ray, Xbox, and set-top boxes so that users can watch series and films straight away. Later in 2010, they also launched their sophisticated website on mobile devices with its iconic red and black themed background.

Netflix 2006-2010 -2007

2011-2015

In 2013, an eye-tracking test revealed that the users didn’t focus on the details of the movie or show in the existing interface and were perplexed with the flow of information. Hence, the professional web designers simply shifted the text from the right side to the top of the screen. With Daredevil, an audio description feature was also launched for the visually impaired ones.

Netflix 2011-2015

2016-2020

These years, Netflix came with a plethora of new features for their modern website design such as AutoPay, snippets of trailers, recommendations categorized by genre, percentage based on user experience, upcoming shows, top 10 lists, etc. These web application features yielded better results in visual hierarchy and flow of information across the website.

Netflix 2016-2020

2021

With a sleek logo in their iconic red N, timeless black background with a ‘Watch anywhere, Cancel anytime’ the color, the combination, the statement, and the leading ott platform for top video streaming service Netflix has overgrown into a revolutionary lifestyle of Netflix and Chill.

Netflix 2021

Contunue to read: Evolution in Web Design: A Case Study of 25 Years

#web #web-design #web-design-development #web-design-case-study #web-design-history #web-development

prashant patil

1598286700

whatsapp web-w app web-webs whatsapp »

Through whatsapp web you can easily run whatsapp on your android pc on your android mobile. Just like whatsapp mobile is for android device, whatsapp web is for windows device. Whatsapp web is quite popular which has quite cool features.

whatsapp web

how to use whatsapp web desktop
Whatsapp web is very easy to use. Simply you have to search web.whatsapp.com in your google chrome and click on first result which is the official website of whatsapp web.

As soon as you click, an interface will open in front of you, on which you will see a barcode. Follow the steps given below to use whatsapp web on your desktop

web.whatsapp.com

open your whatsapp on your mobile
You will see 3dots on the right side top inside whatsapp, you have to click
The 3rd option is whatsapp web, you have to click it
Now you have to capture the barcode you see on your desktop through your phone.
Now you can use whatsapp of your android mobile in your desktop
webs whatsapp

note: You can see whatsapp of anyone’s mobile by pointing to the barcode of your desktop. You can also call it whatsapp hack.

Remember that after using whatsapp web, logout it from your desktop. To logout follow the steps given below.

w app web

open your whatsapp on your mobile
You will see 3dots on the right side top inside whatsapp, you have to click
The 3rd option is whatsapp web, you have to click it
You will see the symbol for logout, you have to logout by clicking it.

read more

#whatsapp #whatappweb #https://web.whatsapp.com/ #wsp web #web.whatsapp web #web whatsapp

How to Create Arrays in Python

In this tutorial, you'll know the basics of how to create arrays in Python using the array module. Learn how to use Python arrays. You'll see how to define them and the different methods commonly used for performing operations on them.

This tutorialvideo on 'Arrays in Python' will help you establish a strong hold on all the fundamentals in python programming language. Below are the topics covered in this video:  
1:15 What is an array?
2:53 Is python list same as an array?
3:48  How to create arrays in python?
7:19 Accessing array elements
9:59 Basic array operations
        - 10:33  Finding the length of an array
        - 11:44  Adding Elements
        - 15:06  Removing elements
        - 18:32  Array concatenation
       - 20:59  Slicing
       - 23:26  Looping  


Python Array Tutorial – Define, Index, Methods

In this article, you'll learn how to use Python arrays. You'll see how to define them and the different methods commonly used for performing operations on them.

The artcile covers arrays that you create by importing the array module. We won't cover NumPy arrays here.

Table of Contents

  1. Introduction to Arrays
    1. The differences between Lists and Arrays
    2. When to use arrays
  2. How to use arrays
    1. Define arrays
    2. Find the length of arrays
    3. Array indexing
    4. Search through arrays
    5. Loop through arrays
    6. Slice an array
  3. Array methods for performing operations
    1. Change an existing value
    2. Add a new value
    3. Remove a value
  4. Conclusion

Let's get started!

What are Python Arrays?

Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.

Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.

What's the Difference between Python Lists and Python Arrays?

Lists are one of the most common data structures in Python, and a core part of the language.

Lists and arrays behave similarly.

Just like arrays, lists are an ordered sequence of elements.

They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.

However, lists and arrays are not the same thing.

Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.

As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.

When to Use Python Arrays

Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module in order to be used.

Arrays of the array module are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.

They are also more compact and take up less memory and space which makes them more size efficient compared to lists.

If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.

How to Use Arrays in Python

In order to create Python arrays, you'll first have to import the array module which contains all the necassary functions.

There are three ways you can import the array module:

  • By using import array at the top of the file. This includes the module array. You would then go on to create an array using array.array().
import array

#how you would create an array
array.array()
  • Instead of having to type array.array() all the time, you could use import array as arr at the top of the file, instead of import array alone. You would then create an array by typing arr.array(). The arr acts as an alias name, with the array constructor then immediately following it.
import array as arr

#how you would create an array
arr.array()
  • Lastly, you could also use from array import *, with * importing all the functionalities available. You would then create an array by writing the array() constructor alone.
from array import *

#how you would create an array
array()

How to Define Arrays in Python

Once you've imported the array module, you can then go on to define a Python array.

The general syntax for creating an array looks like this:

variable_name = array(typecode,[elements])

Let's break it down:

  • variable_name would be the name of the array.
  • The typecode specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.
  • Inside square brackets you mention the elements that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode) alone, without any elements.

Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:

TYPECODEC TYPEPYTHON TYPESIZE
'b'signed charint1
'B'unsigned charint1
'u'wchar_tUnicode character2
'h'signed shortint2
'H'unsigned shortint2
'i'signed intint2
'I'unsigned intint2
'l'signed longint4
'L'unsigned longint4
'q'signed long longint8
'Q'unsigned long longint8
'f'floatfloat4
'd'doublefloat8

Tying everything together, here is an example of how you would define an array in Python:

import array as arr 

numbers = arr.array('i',[10,20,30])


print(numbers)

#output

#array('i', [10, 20, 30])

Let's break it down:

  • First we included the array module, in this case with import array as arr .
  • Then, we created a numbers array.
  • We used arr.array() because of import array as arr .
  • Inside the array() constructor, we first included i, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H for example, would mean that no negative values are allowed.
  • Lastly, we included the values to be stored in the array in square brackets.

Keep in mind that if you tried to include values that were not of i typecode, meaning they were not integer values, you would get an error:

import array as arr 

numbers = arr.array('i',[10.0,20,30])


print(numbers)

#output

#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
#   numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer

In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.

Another way to create an array is the following:

from array import *

#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])

print(numbers)

#output

#array('d', [10.0, 20.0, 30.0])

The example above imported the array module via from array import * and created an array numbers of float data type. This means that it holds only floating point numbers, which is specified with the 'd' typecode.

How to Find the Length of an Array in Python

To find out the exact number of elements contained in an array, use the built-in len() method.

It will return the integer number that is equal to the total number of elements in the array you specify.

import array as arr 

numbers = arr.array('i',[10,20,30])


print(len(numbers))

#output
# 3

In the example above, the array contained three elements – 10, 20, 30 – so the length of numbers is 3.

Array Indexing and How to Access Individual Items in an Array in Python

Each item in an array has a specific address. Individual items are accessed by referencing their index number.

Indexing in Python, and in all programming languages and computing in general, starts at 0. It is important to remember that counting starts at 0 and not at 1.

To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.

The general syntax would look something like this:

array_name[index_value_of_item]

Here is how you would access each individual element in an array:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element

#output

#10
#20
#30

Remember that the index value of the last element of an array is always one less than the length of the array. Where n is the length of the array, n - 1 will be the index value of the last item.

Note that you can also access each individual element using negative indexing.

With negative indexing, the last element would have an index of -1, the second to last element would have an index of -2, and so on.

Here is how you would get each item in an array using that method:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
 
#output

#30
#20
#10

How to Search Through an Array in Python

You can find out an element's index number by using the index() method.

You pass the value of the element being searched as the argument to the method, and the element's index number is returned.

import array as arr 

numbers = arr.array('i',[10,20,30])

#search for the index of the value 10
print(numbers.index(10))

#output

#0

If there is more than one element with the same value, the index of the first instance of the value will be returned:

import array as arr 


numbers = arr.array('i',[10,20,30,10,20,30])

#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))

#output

#0

How to Loop through an Array in Python

You've seen how to access each individual element in an array and print it out on its own.

You've also seen how to print the array, using the print() method. That method gives the following result:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers)

#output

#array('i', [10, 20, 30])

What if you want to print each value one by one?

This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.

For this you can use a simple for loop:

import array as arr 

numbers = arr.array('i',[10,20,30])

for number in numbers:
    print(number)
    
#output
#10
#20
#30

You could also use the range() function, and pass the len() method as its parameter. This would give the same result as above:

import array as arr  

values = arr.array('i',[10,20,30])

#prints each individual value in the array
for value in range(len(values)):
    print(values[value])

#output

#10
#20
#30

How to Slice an Array in Python

To access a specific range of values inside the array, use the slicing operator, which is a colon :.

When using the slicing operator and you only include one value, the counting starts from 0 by default. It gets the first item, and goes up to but not including the index number you specify.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#get the values 10 and 20 only
print(numbers[:2])  #first to second position

#output

#array('i', [10, 20])

When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])


#get the values 20 and 30 only
print(numbers[1:3]) #second to third position

#output

#rray('i', [20, 30])

Methods For Performing Operations on Arrays in Python

Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.

Let's see some of the most commonly used methods which are used for performing operations on arrays.

How to Change the Value of an Item in an Array

You can change the value of a specific element by speficying its position and assigning it a new value:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40

print(numbers)

#output

#array('i', [40, 20, 30])

How to Add a New Value to an Array

To add one single value at the end of an array, use the append() method:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40)

print(numbers)

#output

#array('i', [10, 20, 30, 40])

Be aware that the new item you add needs to be the same data type as the rest of the items in the array.

Look what happens when I try to add a float to an array of integers:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40.0)

print(numbers)

#output

#Traceback (most recent call last):
#  File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
#   numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer

But what if you want to add more than one value to the end an array?

Use the extend() method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets

numbers.extend([40,50,60])

print(numbers)

#output

#array('i', [10, 20, 30, 40, 50, 60])

And what if you don't want to add an item to the end of an array? Use the insert() method, to add an item at a specific position.

The insert() function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 in the first position
#remember indexing starts at 0

numbers.insert(0,40)

print(numbers)

#output

#array('i', [40, 10, 20, 30])

How to Remove a Value from an Array

To remove an element from an array, use the remove() method and include the value as an argument to the method.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30])

With remove(), only the first instance of the value you pass as an argument will be removed.

See what happens when there are more than one identical values:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Only the first occurence of 10 is removed.

You can also use the pop() method, and specify the position of the element to be removed:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

#remove the first instance of 10
numbers.pop(0)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Conclusion

And there you have it - you now know the basics of how to create arrays in Python using the array module. Hopefully you found this guide helpful.

Thanks for reading and happy coding!

#python #programming 

Connor Mills

Connor Mills

1670560264

Understanding Arrays in Python

Learn how to use Python arrays. Create arrays in Python using the array module. You'll see how to define them and the different methods commonly used for performing operations on them.
 

The artcile covers arrays that you create by importing the array module. We won't cover NumPy arrays here.

Table of Contents

  1. Introduction to Arrays
    1. The differences between Lists and Arrays
    2. When to use arrays
  2. How to use arrays
    1. Define arrays
    2. Find the length of arrays
    3. Array indexing
    4. Search through arrays
    5. Loop through arrays
    6. Slice an array
  3. Array methods for performing operations
    1. Change an existing value
    2. Add a new value
    3. Remove a value
  4. Conclusion

Let's get started!


What are Python Arrays?

Arrays are a fundamental data structure, and an important part of most programming languages. In Python, they are containers which are able to store more than one item at the same time.

Specifically, they are an ordered collection of elements with every value being of the same data type. That is the most important thing to remember about Python arrays - the fact that they can only hold a sequence of multiple items that are of the same type.

What's the Difference between Python Lists and Python Arrays?

Lists are one of the most common data structures in Python, and a core part of the language.

Lists and arrays behave similarly.

Just like arrays, lists are an ordered sequence of elements.

They are also mutable and not fixed in size, which means they can grow and shrink throughout the life of the program. Items can be added and removed, making them very flexible to work with.

However, lists and arrays are not the same thing.

Lists store items that are of various data types. This means that a list can contain integers, floating point numbers, strings, or any other Python data type, at the same time. That is not the case with arrays.

As mentioned in the section above, arrays store only items that are of the same single data type. There are arrays that contain only integers, or only floating point numbers, or only any other Python data type you want to use.

When to Use Python Arrays

Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in data structure, and therefore need to be imported via the array module in order to be used.

Arrays of the array module are a thin wrapper over C arrays, and are useful when you want to work with homogeneous data.

They are also more compact and take up less memory and space which makes them more size efficient compared to lists.

If you want to perform mathematical calculations, then you should use NumPy arrays by importing the NumPy package. Besides that, you should just use Python arrays when you really need to, as lists work in a similar way and are more flexible to work with.

How to Use Arrays in Python

In order to create Python arrays, you'll first have to import the array module which contains all the necassary functions.

There are three ways you can import the array module:

  1. By using import array at the top of the file. This includes the module array. You would then go on to create an array using array.array().
import array

#how you would create an array
array.array()
  1. Instead of having to type array.array() all the time, you could use import array as arr at the top of the file, instead of import array alone. You would then create an array by typing arr.array(). The arr acts as an alias name, with the array constructor then immediately following it.
import array as arr

#how you would create an array
arr.array()
  1. Lastly, you could also use from array import *, with * importing all the functionalities available. You would then create an array by writing the array() constructor alone.
from array import *

#how you would create an array
array()

How to Define Arrays in Python

Once you've imported the array module, you can then go on to define a Python array.

The general syntax for creating an array looks like this:

variable_name = array(typecode,[elements])

Let's break it down:

  • variable_name would be the name of the array.
  • The typecode specifies what kind of elements would be stored in the array. Whether it would be an array of integers, an array of floats or an array of any other Python data type. Remember that all elements should be of the same data type.
  • Inside square brackets you mention the elements that would be stored in the array, with each element being separated by a comma. You can also create an empty array by just writing variable_name = array(typecode) alone, without any elements.

Below is a typecode table, with the different typecodes that can be used with the different data types when defining Python arrays:

TYPECODEC TYPEPYTHON TYPESIZE
'b'signed charint1
'B'unsigned charint1
'u'wchar_tUnicode character2
'h'signed shortint2
'H'unsigned shortint2
'i'signed intint2
'I'unsigned intint2
'l'signed longint4
'L'unsigned longint4
'q'signed long longint8
'Q'unsigned long longint8
'f'floatfloat4
'd'doublefloat8

Tying everything together, here is an example of how you would define an array in Python:

import array as arr 

numbers = arr.array('i',[10,20,30])


print(numbers)

#output

#array('i', [10, 20, 30])

Let's break it down:

  • First we included the array module, in this case with import array as arr .
  • Then, we created a numbers array.
  • We used arr.array() because of import array as arr .
  • Inside the array() constructor, we first included i, for signed integer. Signed integer means that the array can include positive and negative values. Unsigned integer, with H for example, would mean that no negative values are allowed.
  • Lastly, we included the values to be stored in the array in square brackets.

Keep in mind that if you tried to include values that were not of i typecode, meaning they were not integer values, you would get an error:

import array as arr 

numbers = arr.array('i',[10.0,20,30])


print(numbers)

#output

#Traceback (most recent call last):
# File "/Users/dionysialemonaki/python_articles/demo.py", line 14, in <module>
#   numbers = arr.array('i',[10.0,20,30])
#TypeError: 'float' object cannot be interpreted as an integer

In the example above, I tried to include a floating point number in the array. I got an error because this is meant to be an integer array only.

Another way to create an array is the following:

from array import *

#an array of floating point values
numbers = array('d',[10.0,20.0,30.0])

print(numbers)

#output

#array('d', [10.0, 20.0, 30.0])

The example above imported the array module via from array import * and created an array numbers of float data type. This means that it holds only floating point numbers, which is specified with the 'd' typecode.

How to Find the Length of an Array in Python

To find out the exact number of elements contained in an array, use the built-in len() method.

It will return the integer number that is equal to the total number of elements in the array you specify.

import array as arr 

numbers = arr.array('i',[10,20,30])


print(len(numbers))

#output
# 3

In the example above, the array contained three elements – 10, 20, 30 – so the length of numbers is 3.

Array Indexing and How to Access Individual Items in an Array in Python

Each item in an array has a specific address. Individual items are accessed by referencing their index number.

Indexing in Python, and in all programming languages and computing in general, starts at 0. It is important to remember that counting starts at 0 and not at 1.

To access an element, you first write the name of the array followed by square brackets. Inside the square brackets you include the item's index number.

The general syntax would look something like this:

array_name[index_value_of_item]

Here is how you would access each individual element in an array:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[0]) # gets the 1st element
print(numbers[1]) # gets the 2nd element
print(numbers[2]) # gets the 3rd element

#output

#10
#20
#30

Remember that the index value of the last element of an array is always one less than the length of the array. Where n is the length of the array, n - 1 will be the index value of the last item.

Note that you can also access each individual element using negative indexing.

With negative indexing, the last element would have an index of -1, the second to last element would have an index of -2, and so on.

Here is how you would get each item in an array using that method:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers[-1]) #gets last item
print(numbers[-2]) #gets second to last item
print(numbers[-3]) #gets first item
 
#output

#30
#20
#10

How to Search Through an Array in Python

You can find out an element's index number by using the index() method.

You pass the value of the element being searched as the argument to the method, and the element's index number is returned.

import array as arr 

numbers = arr.array('i',[10,20,30])

#search for the index of the value 10
print(numbers.index(10))

#output

#0

If there is more than one element with the same value, the index of the first instance of the value will be returned:

import array as arr 


numbers = arr.array('i',[10,20,30,10,20,30])

#search for the index of the value 10
#will return the index number of the first instance of the value 10
print(numbers.index(10))

#output

#0

How to Loop through an Array in Python

You've seen how to access each individual element in an array and print it out on its own.

You've also seen how to print the array, using the print() method. That method gives the following result:

import array as arr 

numbers = arr.array('i',[10,20,30])

print(numbers)

#output

#array('i', [10, 20, 30])

What if you want to print each value one by one?

This is where a loop comes in handy. You can loop through the array and print out each value, one-by-one, with each loop iteration.

For this you can use a simple for loop:

import array as arr 

numbers = arr.array('i',[10,20,30])

for number in numbers:
    print(number)
    
#output
#10
#20
#30

You could also use the range() function, and pass the len() method as its parameter. This would give the same result as above:

import array as arr  

values = arr.array('i',[10,20,30])

#prints each individual value in the array
for value in range(len(values)):
    print(values[value])

#output

#10
#20
#30

How to Slice an Array in Python

To access a specific range of values inside the array, use the slicing operator, which is a colon :.

When using the slicing operator and you only include one value, the counting starts from 0 by default. It gets the first item, and goes up to but not including the index number you specify.


import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#get the values 10 and 20 only
print(numbers[:2])  #first to second position

#output

#array('i', [10, 20])

When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting starts at the position of the first number in the range, and up to but not including the second one:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])


#get the values 20 and 30 only
print(numbers[1:3]) #second to third position

#output

#rray('i', [20, 30])

Methods For Performing Operations on Arrays in Python

Arrays are mutable, which means they are changeable. You can change the value of the different items, add new ones, or remove any you don't want in your program anymore.

Let's see some of the most commonly used methods which are used for performing operations on arrays.

How to Change the Value of an Item in an Array

You can change the value of a specific element by speficying its position and assigning it a new value:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#change the first element
#change it from having a value of 10 to having a value of 40
numbers[0] = 40

print(numbers)

#output

#array('i', [40, 20, 30])

How to Add a New Value to an Array

To add one single value at the end of an array, use the append() method:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40)

print(numbers)

#output

#array('i', [10, 20, 30, 40])

Be aware that the new item you add needs to be the same data type as the rest of the items in the array.

Look what happens when I try to add a float to an array of integers:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 to the end of numbers
numbers.append(40.0)

print(numbers)

#output

#Traceback (most recent call last):
#  File "/Users/dionysialemonaki/python_articles/demo.py", line 19, in <module>
#   numbers.append(40.0)
#TypeError: 'float' object cannot be interpreted as an integer

But what if you want to add more than one value to the end an array?

Use the extend() method, which takes an iterable (such as a list of items) as an argument. Again, make sure that the new items are all the same data type.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integers 40,50,60 to the end of numbers
#The numbers need to be enclosed in square brackets

numbers.extend([40,50,60])

print(numbers)

#output

#array('i', [10, 20, 30, 40, 50, 60])

And what if you don't want to add an item to the end of an array? Use the insert() method, to add an item at a specific position.

The insert() function takes two arguments: the index number of the position the new element will be inserted, and the value of the new element.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

#add the integer 40 in the first position
#remember indexing starts at 0

numbers.insert(0,40)

print(numbers)

#output

#array('i', [40, 10, 20, 30])

How to Remove a Value from an Array

To remove an element from an array, use the remove() method and include the value as an argument to the method.

import array as arr 

#original array
numbers = arr.array('i',[10,20,30])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30])

With remove(), only the first instance of the value you pass as an argument will be removed.

See what happens when there are more than one identical values:


import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

numbers.remove(10)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Only the first occurence of 10 is removed.

You can also use the pop() method, and specify the position of the element to be removed:

import array as arr 

#original array
numbers = arr.array('i',[10,20,30,10,20])

#remove the first instance of 10
numbers.pop(0)

print(numbers)

#output

#array('i', [20, 30, 10, 20])

Conclusion

And there you have it - you now know the basics of how to create arrays in Python using the array module. Hopefully you found this guide helpful.

You'll start from the basics and learn in an interacitve and beginner-friendly way. You'll also build five projects at the end to put into practice and help reinforce what you learned.

Thanks for reading and happy coding!

Original article source at https://www.freecodecamp.org

#python